
 

 

 

  

Abstract—Service composition is a way of constructing new 

services from existing services and is considered a 

multi-objective optimization problem since it is concerned with 

which instances of the services should compose an optimal 

composition solution, often with regard to multiple quality of 

service (QoS) requirements. This paper addresses two 

composition problems: (1) Any service instance whose size of 

capability, or granularity, does not fit exactly any service in the 

composition plan will not be considered in the composition even 

though it has good QoS which can contribute to the quality of 

the composition solution. (2) QoS of service instances may vary 

due to conditions and time of use, and hence a composition that 

is optimal at one time may not be at another. To tackle these 

problems, we propose how to use a genetic algorithm to discover 

a composition solution by taking into account service instances 

of different granularity. Moreover artificial neural network is 

used to predict the QoS, i.e., response time, reliability, and 

availability, of the service instances so that the algorithm can 

discover the composition with the best predicted overall QoS. 

Experiments show that QoS prediction is useful since 

composition at different time periods yields different composite 

services. Also, considering service granularity can increase the 

opportunity to obtain composite services of good QoS.     

 
Index Terms—Service composition, service granularity, QoS, 

genetic algorithm, artificial neural network.   

 

I. INTRODUCTION 

Service composition is a way of constructing new services 

from existing services by defining a group of service types or 

abstract services that are to collaborate, and selecting 

instances of those abstract services to form concrete 

composition plans or composite services. Researches in this 

area consider composition as a multi-objective optimization 

problem and use several optimization algorithms to determine 

a group of service instances that constitute the optimal 

solution for the abstract plan, especially with regard to 

multiple quality of service (QoS) requirements. Given a great 

number of service instances and hence a great number of 

potential compositions, genetic algorithms (GA) and their 

modifications are attractive and commonly used since they 

can efficiently discover an estimate of the optimal 

composition without having to consider all possible solutions 

[1]-[6]. 
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This paper addresses two problems regarding service 

composition using GA. First, any service instance whose 

granularity (or size of capability) does not fit exactly any 

abstract service will not be considered in the composition. To 

elaborate on this point, we first discuss a basic use of GA to 

compose services. Fig. 1 shows a composition scheme which 

is a specification of abstract services AS1 to ASn which are 

required in a composition. Each abstract service has several 

service instances as candidates to be selected in composition, 

e.g., AS1 has three candidates - SI11, SI12, and SI13. GA can 

randomly generate possible solutions (or chromosomes) for 

the composition scheme, evaluate the quality (or fitness) of 

the chromosomes, and further generate offspring 

chromosomes from good parent chromosomes, by using 

operators such as mutation and crossover. The GA process is 

repeated until a chromosome with satisfactory fitness is 

found; it becomes the solution to the composition problem.  

 
Fig. 1.  Composition scheme and service instances (adapted from [1]). 

 

The chromosomes are often encoded with binary encoding. 

Suppose a composition scheme comprises three abstract 

services AS1, AS2, and AS3. AS1 has three service instances 

(SI11, …, SI13), AS2 has five service instances (SI21, …, SI25) 

and AS3 has six service instances (SI31, …, SI36). AS1 would 

require two bits to encode three possible service instances, 

whereas AS2 and AS3 both need three bits to encode five and 

six service instances respectively. Therefore every possible 

chromosome in this composition is eight-bits long. As an 

example, a chromosome representing a composition plan that 

is composed of SI12, SI23, and SI31 would be encoded as 

10011001. That is, for a particular composition scheme, the 

chromosomes are of the same length. 

However, some service instances may have granularity that 

does not fit exactly any of the abstract services in the scheme.  

They can be problematic in the generation of offspring 

chromosomes. Assume that a service instance SI[2,3]1 has 

coarse granularity as it is capable of the tasks of both abstract 

services AS2 and AS3. Including it in a chromosome, e.g. with   

SI11, means this chromosome complies with a different 

scheme which comprises only two abstract services AS1 and 

AS[2,3]. It is likely that the chromosomes under this new 
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scheme are not eight-bits long; if AS1 has three service 

instances, (requiring two bits) and AS[2,3] has one service 

instance (requiring one bit), the length of the chromosomes 

under this scheme is then three bits. It would be problematic 

to apply mutation and crossover operators to parent 

chromosomes of different schemes or different lengths, e.g. 

eight-bit vs. three-bit chromosomes. On the one hand, 

excluding such a coarser-grained service instance like SI[2,3]1 

from the composition prevents such a problem in the GA 

process. On the other hand, leaving it out may reduce the 

opportunity to obtain good chromosomes since the 

coarse-grained instance may have good QoS which can 

contribute to the quality of the composition solution. Using 

SI[2,3]1, for example, may result in better response time than 

calling two separate service instances of AS2 and AS3.   

The second problem addressed by this paper is that QoS of 

service instances may vary due to conditions and time of use. 

A number of clients, network conditions, and service 

maintenance are common reasons for the variability. 

Therefore a chromosome which is found optimal at one time 

may not be at another since the QoS of its constituent service 

instances changes over time.  

To answer to the problems above, we propose an approach 

to use GA for service composition when service instances are 

of different granularity. In particular, the focus is on the case 

of service instances having granularity coarser than abstract 

services. Artificial neural network is used to predict the QoS 

of candidate service instances so that GA can discover a 

composition solution with the best predicted overall QoS for 

the time of use. Here we assume that a composite service, 

once being composed to fulfill a business process of an 

organization, is likely to be used again at a certain time. 

Therefore QoS prediction based on the past behavior of the 

service instances should be beneficial.  

 Section II discusses research work related to this paper. 

Section III gives the detail of our service composition 

methodology with regard to different service granularity and 

varying QoS. Experiments on service composition are 

presented in Section IV and results in Section V. Section VI 

concludes the paper with future outlook. 

II. RELATED WORK 

Several optimization algorithms have been used to tackle 

service composition problems. GAs, in particular, have been 

proposed by many researches due to their ability to search 

efficiently for an estimate of the optimal solution within the 

solution space. The attempt by Canfora et al.  [1] is among the 

first that shows the power of GA with binary encoding over 

integer programming when composing services based on 

time, cost, reliability, availability, and custom attributes; GA 

is more scalable and suitable to handle generic QoS, and its 

solution has good quality also. Several researches follow this 

approach but propose modifications to simple GA or consider 

additional QoS such as successful execution rate, integrity, 

and reputation. Amiri and Serajzadeh [2] propose 

modifications to the crossover operator and the selection of 

parent chromosomes to escape from local optima. Li et al. [3] 

propose a pseudo-parallel GA with a relation matrix encoding 

mode of chromosomes which, unlike one-dimension encoding 

such as binary encoding, can express all composite paths and 

support service re-planning. Liu et al. [4] use ant colony 

algorithm to improve the generation of GA’s initial 

population chromosomes. Pichanaharee and Senivongse [5] 

use the estimation of distribution algorithm to improve the 

generation of new offspring chromosomes in the GA process. 

They also propose QoS-based service provision schemes by 

which QoS guarantee is based on levels of service, 

dependency among different kinds of QoS, and partnership 

with other services. Similar idea is presented by Tang and Ai 

[6] where composition using GA considers dependency 

constraints and conflict constraints between service instances 

within the chromosomes. Nevertheless, these modifications to 

GA have not considered the service granularity issue.  

On QoS variability, some researches, such as [7], present a 

framework to handle QoS monitoring and service re-binding 

when the actual QoS of the service instances in the 

composition plans deviates. Another approach would be to 

adopt QoS prediction based on the actual QoS in the past. Gao 

and Wu [8] supports service selection by using artificial 

neural network to predict execution duration and transaction 

state of a single service invocation, given the following inputs 

– reliability, availability, bandwidth, and request time. We 

adopt this QoS prediction approach but will apply to the 

composition problem since the composition which considers 

the past behavior of service instances, rather than their QoS 

values published by the providers, should give a more realistic 

solution.   

In summary, the comparison between our approach and 

related work is shown in Table I.  
TABLE I 

COMPARISON WITH RELATED WORK 

Paper QoS-Based 

Composition 

GA or Its 

Modification 

Services of 

Different 

Granularity 

QoS 

Prediction 

[1]-[7] y y n n 

[8] n n/a n/a y 

Our paper y y y y 

III. SERVICE COMPOSITION METHODOLOGY 

The composition methodology is depicted in Fig. 2.  Each 

step is explained as follows, along with some details of 

supporting software.   

A. Define Flow of Abstract Services and Identify Service 

Instances 

In this step, the flow of abstract services called the initial 

composition scheme is defined. Each abstract service fulfills 

an atomic task within the flow. Then, candidate service 

instances of different granularity are identified; service 

discovery mechanisms or service search engines can help with 

this matter. We consider the instances whose granularity 

matches any single abstract services or any groups of abstract 

services. Fig. 3 shows the initial composition scheme, 

comprising n abstract services, and their matching service 

instances. For example, SI[1,1]1 can fulfill AS[1,1] whereas 

SI[1,2]1 can fulfill AS[1,1] and AS[2,2] altogether.  

B. Monitor QoS of Service Instances 

All service instances are called periodically by our 

monitoring software, written in Java, in order to obtain their 

QoS data, i.e., response time, reliability, and availability. The 
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following data are recorded respectively: request time, 

response time in seconds (i.e. reply time - request time), 

reliability status if the correct reply is returned within an 

expected time frame (1 = reliable, 0 = unreliable), and 

availability status when the call is made (1 = available, 0 = 

unavailable). An example of the data recorded on one call to a 

service instance is <1299873421098,78,1,1>. 

 

 
Fig. 2.  Service composition methodology. 

 

 
Fig. 3.  Composition scheme and service instances of different granularity. 

C. Build QoS Prediction Model Using Neural Network 

Artificial neural network [9] is employed to predict QoS 

values of service instances to be used later in composition. 

Specifically, we use the backpropagation neural network to 

build the mathematical model for QoS prediction. The use of 

neural network comprises the learning phase and prediction 

phase. In the learning phase, the monitored QoS data of each 

service instance from Section III.B are used to train the neural 

network to obtain a model that, given the input data (i.e., the 

request time), can generate the output (i.e., response time, 

reliability, or availability of the service instance). Fig. 4 

depicts a neural network with four layers of hidden nodes that 

we use. The error between the output of the model and the 

target data is propagated backward through the network to 

adjust the weights on the network nodes and hence adjust the 

model to better map the input to the output. The procedure is 

repeated for each entry of the training data until the error is 

small enough. Ten-fold cross validation is also used to 

determine the fit of the model. We use the Weka framework 

[10] to develop a Java program to build the neural network. 

 

 
Fig. 4.  Artificial neural network. 

 

D. Predict QoS of Service Instances 

In the prediction phase, we predict the QoS output for each 

service instance with regard to the request time input (hour, 

minute, second). That is, there are three models for each 

service instance – response time, reliability, and availability 

models.  

E. Compose Composite Service Using GA   

In this step, GA is used to discover a composite service 

with the best overall QoS at a specified time of use. As 

mentioned in Section I, the length of the chromosomes in GA 

is fixed, but when the granularity of some service instances is 

coarser than any abstract service in the initial composition 

scheme, other composition schemes emerge and the length of 

the chromosomes could vary, causing a problem for GA. 

To overcome this, we propose a new way to encode and 

generate chromosomes in order to handle the case of 

coarse-grained service instances. We define the length of the 

chromosomes to be the longest which could accommodate the 

most fine-grained service instances: 

ASL
CL

SIL
=           (1) 

where CL is the chromosome length, ASL is the number of 

abstract services or atomic tasks in the initial composition 

scheme, and SIL is the number of  abstract services which the 

most fine-grained service instances could fulfill. Suppose an 

initial composition scheme consists of seven abstract services 

AS[1,1], …, AS[7,7] (ASL = 7) with relevant service instances as 

in Fig. 3. The number of abstract services which the most 

fine-grained service instances (i.e., SI[1,1]k, …, SI[7,7]k)  could 

fulfill is 1 (SIL = 1). Thus the chromosome length CL is 7.  

The rest of this section describes the GA process. 

1) Generate Initial Population 

GA randomly generates a number of chromosomes as the 

initial population. As many service instances as the 

chromosome length are picked randomly for a chromosome, 

e.g., for a chromosome of length 7, seven service instances are 

picked such as Fig. 5(a).   

2) Find Valid Composition Plans 

The chromosomes in 1) may not yet represent valid 

composition plans. In this step, find valid plans by grouping 

the service instances that altogether can fulfill the tasks within 
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the initial composition schemes. Fig. 5(b) shows two valid 

plans obtained from the chromosome in Fig. 5(a). Note that 

random selection of service instances in 1), in effect, 

randomly selects other possible schemes for GA to consider.  

3) Evaluate Quality of Composition Plans 

In this step, each valid composition plan in 2) has its overall 

QoS evaluated based on the predicted QoS values of each 

composing service instances obtained from Section III.D.  We 

adopt the aggregation functions per flow construct and QoS 

attribute from [1], as shown in Table II. The QoS of a flow 

construct aggregates the QoS of the tasks t1,…, tm within the 

construct. Note that pai is the probability that one of the n 

cases of Switch is chosen, and k is the number of Loop 

iterations; they both are defined by the composite service 

designer. 
TABLE II 

QOS AGGREGATION FUNCTIONS [1] 

QoS Sequence Switch Fork Loop 

Response Time 

(T) 
1

( )
m

i

i

T t
=

∑  

1

* ( )
n

ai i

i

p T t
=

∑  
{1... }{ ( ) }i i pMax T t
∈

 * ( )k T t  

Reliability (R) 
1

( )
m

i

i

R t
=

∏  

1

* ( )
n

ai i

i

p R t
=

∑  

1

( )
p

i

i

R t
=

∏  ( )k
R t  

Availability 

(A) 
1

( )
m

i

i

A t
=

∏  

1

* ( )
n

ai i

i

p A t
=

∑  

1

( )
p

i

i

A t
=

∏  ( )k
A t  

    

The overall QoS of each composition plan p is determined 

by the following fitness function adapted from [1]. The three 

QoS values of the plan are normalized to [0,1] and wi is the 

relative importance the composite service designer gives to 

each QoS attribute: 

 

1* ( )
( )

2* ( ) 3* ( )

w ResponseTime p
F p

w Reliability p w Availability p
=

+
   (2) 

   

  The objective is to find a composition plan with the 

minimum fitness value.  

4) Determine Quality of Chromosome 

In this step, use the best composition plan and its fitness 

value to represent the chromosome and its fitness. In Fig 5(c), 

the chromosome is represented by the plan with the fitness of 

0.73. In the case that no valid composition plans are found in 

step 2), the fitness of the chromosome would be assigned to a 

value greater than 1, e.g., 1.5, so that this chromosome with 

bad fitness will be excluded from the GA process in the next 

step.  

5)    Select Parent Chromosomes 

Repeat steps 2) – 4) to determine a composition plan and 

fitness for every chromosome in the initial population. Once 

this is done, select good chromosomes to generate the next 

generation of population. The best chromosome will be 

retained in the next generation (i.e., elitism), and other good 

chromosomes will be selected as parent chromosomes to 

further produce offspring. 

6) Generate New Population 

To produce offspring from parent chromosomes, mutation 

and crossover operators are applied to the parent 

chromosomes with probability defined by the composite 

service designer. Mutation is done by randomly selecting a 

position in a parent chromosome and randomly picking a new 

service instance to replace the one at that position. Fig. 5(d) 

shows a mutation of the service instance at 4
th

 position. For 

crossover, a position in two parent chromosomes is chosen as 

a crossover point for swapping their front and rear parts. Fig. 

5(e) shows a crossover at 3
rd

 position. Repeat steps 2) – 4) to 

determine a composition plan and fitness for every 

chromosome within the new population.  

7) Determine Stop Condition 

The GA process of generating new generations of 

population, evaluating chromosomes, and selecting parents to 

produce new chromosomes repeats until a stop condition is 

satisfied, e.g., when the number of generations to run GA is 

reached. Then, select the best chromosome of the last 

generation as the optimal composition.  

 

 
 

 
 

 
 

 
 

 

 
Fig. 5.  Generation of chromosome and evaluation of its fitness (a) 

chromosome in initial population (b) valid composition plans (c) fitness of 

chromosome (d) mutation (e) crossover.  

IV. EXPERIMENTS 

In our experiments, we define a sequential flow in Fig. 6 as 

an initial composition scheme. The flow comprises five 

abstract services which, given an IP address, will determine 

the location and nearby place, get weather forecast, and 

convert temperature unit and translate the forecast into a 

specified language. We discover some REST Web services 

from the Internet and also develop some of our own in order to 

obtain 39 service instances in total. The hosts of these service 

instances are located in several countries including United 

States, Germany, United Kingdom, Canada, The Netherlands, 

France, and Thailand. The granularity of these service 

instances vary as listed in Table III. We monitor them by 

invoking them periodically over a period of one month to 

record response time, reliability, and availability. For 

reliability, the expected time frame for a correct reply to 

return is set to 10 seconds.   

(a) 

(b) 

(c) 

(d) 

(e) 
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Fig. 6. Initial composition scheme.  

 

TABLE III 

39 SERVICE INSTANCES 

Granularity Host 

Change IP Address to Location [1,1] api.hostip.info 

Change IP Address to Location [1,1] en.utrace.de 

Change IP Address to Location [1,1] geoplugin 

Change IP Address to Location [1,1] Gaze 

Change IP Address to Location [1,1] ipinfodb 

Change IP Address to Location [1,1] freegeoip 

Find near Location [2,2] Geoplugin 

Find near Location [2,2] geonames 

Find near Location [2,2] geonamesWIKI 

Find near Location [2,2] gaze-the mySociety 

Find near Location [2,2] api.wunderground 

Forecast [3,3] National Digital Forecast Database 

Forecast [3,3] Yahoo! Weather 

Forecast [3,3] geonames 

Forecast [3,3] wunderground 

Forecast [3,3] worldweatheronline 

Convert Temperature Unit [4,4] DuckDoDuck 

Convert Temperature Unit [4,4] Visual Dataflex 

Convert Temperature Unit [4,4] raisondetre 

Convert Temperature Unit [4,4] cp.eng.chula 

Translation [5,5] Google 

Translation [5,5] Anowa 

Translation [5,5] dict.tu 

Forecast+Convert Temperature 

Unit+Translation [3,5] 
Geonames 

Change IP Address to Location+Find 

near Location [1,2] 
geoplugin 

Change IP Address to Location+Find 

near Location [1,2] 
duckdoduck 

Change IP Address to Location+Find 

near Location [1,2] 
2.api.in.th 

Change IP Address to Location+Find 

near Location [1,2] 
3.api.in.th 

Change IP Address to Location+Find 

near Location [1,2] 
4.api.in.th 

Change IP Address to Location+Find 

near Location [1,2] 
5.api.in.th 

Change IP Address to Location+Find 

near Location [1,2] 
raisondetre 

Change IP Address to Location+Find 

near Location [1,2] 
cp.eng.chula 

Change IP Address to Location+Find 

near Location+Forecast [1,3] 
duckdoduck 

Change IP Address to Location+Find 

near Location+Forecast [1,3] 
2.api.in.th 

Change IP Address to Location+Find 

near Location+Forecast [1,3] 
3.api.in.th 

Change IP Address to Location+Find 

near Location+Forecast [1,3] 
4.api.in.th 

Change IP Address to Location+Find 

near Location+Forecast [1,3] 
5.api.in.th 

Change IP Address to Location+Find 

near Location+Forecast [1,3] 
raisondetre 

Change IP Address to Location+Find 

near Location+Forecast [1,3] 
cp.eng.chula 

    

Since we use Weka, the monitored QoS data are put in an 

arff file to train the neural network. An example of the data 

sets for training response time, reliability, and availability 

models of a service instance is shown in Table IV. There are 

39 x 3 = 117 models to train in total. Using 10-fold cross 

validation, we adjust the training parameters of Weka until the 

root mean square error and mean absolute error of each model 

are close to 0 and then accept the model.   

The parameters for training response time models are as 

follows: learning rate is 0.27573, momentum is 0.1391, the 

number of epochs is 1500, and the number of hidden layers is 

4 with 5, 4, 3, and 2 hidden nodes.  

The parameters for training reliability and availability 

models are as follows: learning rate is 0.277, momentum is 

0.137, the number of epochs is 1500, and the number of 

hidden layers is 4 with 4, 4, 3, and 3 hidden nodes. 

The QoS models can predict the QoS values of each service 

instance at a certain time of use. An example of the input data 

sets for the prediction is shown in Table V. Then we use the 

predicted QoS data for composition using GA. We use equal 

weight for wi in (2). 
TABLE IV 

TRAINING DATA SETS OF A SERVICE INSTANCE 

Response Time (arff) Reliability (arff) Availability (arff) 

@relation service_qos @relation service_qos @relation service_qos 

@attribute HOUR 

numeric 

@attribute HOUR 

numeric 

@attribute HOUR 

numeric 

@attribute MIN numeric @attribute MIN numeric @attribute MIN numeric 

@attribute SEC numeric @attribute SEC numeric @attribute SEC numeric 

@attribute RES numeric @attribute REL numeric @attribute AVL numeric 

@data @data @data 

13,57,26,78.0 13,57,26,1 13,57,26,1 

15,12,11,63.0 15,12,11,1 15,12,11,1 

15,22,57,63.0 15,22,57,1 15,22,57,1 

… … … 

    
 TABLE V 

QOS PREDICITON INPUT FOR A SERVICE INSTANCE 

Response Time (arff) Reliability (arff) Availability (arff) 

@relation service_qos @relation service_qos @relation service_qos 

@attribute HOUR 

numeric 

@attribute HOUR 

numeric 

@attribute HOUR 

numeric 

@attribute MIN numeric @attribute MIN numeric @attribute MIN numeric 

@attribute SEC numeric @attribute SEC numeric @attribute SEC numeric 

@attribute RES numeric @attribute REL numeric @attribute AVL numeric 

@data @data @data 

21,52,16,? 21,52,16,? 21,52,16,? 

17,32,51,? 17,32,51,? 17,32,51,? 

15,32,7,? 15,32,7,? 15,32,7,? 

… … … 

V.    RESULTS 

Service composition is performed for 48 instances of time, 

i.e., to find the best composite service for use at each half hour 

of a day. We summarize how many times any service 

instances appear in the top five compositions at each time 

instance as in Fig. 7.  Table VI lists some of the best 

composite services with their fitness values, and Fig. 8 shows 

the number of occurrences each composite service is found 

the best.  

All the information shows that both coarse-grained and 

fine-grained service instances are part of all 48 solutions; no 

solution is composed of only fine-grained service instances 

which match exactly the five abstract services in the initial 

composition scheme. Therefore it is useful to consider 

coarse-grained service instances when designing a composite 

service since they are likely to produce the solution of good 

quality. 

Table VI also shows that at different time of day, QoS of 

service instances varies, resulting in the change of the best 

AS[1,1] 

AS[2,2] 

AS[3,3] 

AS[4,4] 

AS[5,5] 
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solution. QoS prediction is then beneficial to service 

composition. Fig. 9 presents the best and average fitness at 48 

time instances. This graph shows that at certain period, e.g., 

between 13:30-21:30, the composition solution remains the 

best throughout the period and therefore is appropriate for 

reuse during that time. In addition, the graph suggests that 

even though the best composite services may vary by time, the 

composite service designer may want to keep the one being 

used and not change to a new solution if the difference in their 

fitness is small, since finding a new solution incurs overheads. 

 

 
Fig. 7.  Inclusion of service instances in top five compositions at each time 

instance. 

TABLE VI 

SOME OF 48 COMPOSITE SERVICES FROM EXPERIMENTS 

Request 

Time 

Fitness Best Composite Service 

00:14:07 0.1203 
Geoplugin [1,2]+Yahoo! Weather [3,3]+ 

DuckDoDuck [4,4]+Google [5,5] 

00:51:17 0.1248 
Geoplugin [1,2]+Yahoo! Weather [3,3]+ 

DuckDoDuck [4,4]+Anowa [5,5] 

02:47:32 0.1203 
Geoplugin [1,2]+Yahoo! Weather [3,3]+ 

DuckDoDuck [4,4]+Google [5,5] 

…   

03:35:45 0.1717 
Geoplugin [1,2]+api.wunderground [3,3]+ 

DuckDoDuck [4,4]+Google [5,5] 

…   

06:48:43 0.1945 raisondetre [1,3]+DuckDoDuck [4,4]+Google [5,5] 

…   

    

 

 
Fig. 8.  Best composite services and number of occurrences. 

 
Fig. 9.  Best and average fitness at different time.  

VI. CONCLUSION 

This paper presents a service composition methodology 

which handles service granularity and QoS variability issues. 

We use GA to compose services by proposing a new way to 

encode and generate solution chromosomes and incorporating 

prediction of service QoS by neural network. Experiments are 

conducted on 39 Web service implementations, and the 

results show that coarse granularity and QoS prediction both 

contribute to finding composite services of good quality.  

Our approach still requires the composite service designer 

to determine granularity of service instances. That is, the 

designer needs to specify which abstract services in the initial 

composition scheme a particular service instance can fulfill. 

For future work, semantic descriptions can be used to better 

automate this task, e.g., using ontology to describe the scope 

of tasks of each service instance. A composition framework 

can also be developed to better support QoS monitoring, 

training and re-training of QoS models when appropriate, and 

prediction. 
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