

Abstract—Service composition is a way of constructing new

services from existing services and is considered a

multi-objective optimization problem since it is concerned with

which instances of the services should compose an optimal

composition solution, often with regard to multiple quality of

service (QoS) requirements. This paper addresses two

composition problems: (1) Any service instance whose size of

capability, or granularity, does not fit exactly any service in the

composition plan will not be considered in the composition even

though it has good QoS which can contribute to the quality of

the composition solution. (2) QoS of service instances may vary

due to conditions and time of use, and hence a composition that

is optimal at one time may not be at another. To tackle these

problems, we propose how to use a genetic algorithm to discover

a composition solution by taking into account service instances

of different granularity. Moreover artificial neural network is

used to predict the QoS, i.e., response time, reliability, and

availability, of the service instances so that the algorithm can

discover the composition with the best predicted overall QoS.

Experiments show that QoS prediction is useful since

composition at different time periods yields different composite

services. Also, considering service granularity can increase the

opportunity to obtain composite services of good QoS.

Index Terms—Service composition, service granularity, QoS,

genetic algorithm, artificial neural network.

I. INTRODUCTION

Service composition is a way of constructing new services

from existing services by defining a group of service types or

abstract services that are to collaborate, and selecting

instances of those abstract services to form concrete

composition plans or composite services. Researches in this

area consider composition as a multi-objective optimization

problem and use several optimization algorithms to determine

a group of service instances that constitute the optimal

solution for the abstract plan, especially with regard to

multiple quality of service (QoS) requirements. Given a great

number of service instances and hence a great number of

potential compositions, genetic algorithms (GA) and their

modifications are attractive and commonly used since they

can efficiently discover an estimate of the optimal

composition without having to consider all possible solutions

[1]-[6].

Manuscript received May 28, 2011.

T. Senivongse is with the Department of Computer Engineering, Faculty

of Engineering, Chulalongkorn University, Bangkok 10330 Thailand

(phone: +66 2 2186996; fax: +66 2 2186955; e-mail: twittie.s@chula.ac.th).

N. Wongsawangpanich is also with the Department of Computer

Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok

10330 Thailand.

This paper addresses two problems regarding service

composition using GA. First, any service instance whose

granularity (or size of capability) does not fit exactly any

abstract service will not be considered in the composition. To

elaborate on this point, we first discuss a basic use of GA to

compose services. Fig. 1 shows a composition scheme which

is a specification of abstract services AS1 to ASn which are

required in a composition. Each abstract service has several

service instances as candidates to be selected in composition,

e.g., AS1 has three candidates - SI11, SI12, and SI13. GA can

randomly generate possible solutions (or chromosomes) for

the composition scheme, evaluate the quality (or fitness) of

the chromosomes, and further generate offspring

chromosomes from good parent chromosomes, by using

operators such as mutation and crossover. The GA process is

repeated until a chromosome with satisfactory fitness is

found; it becomes the solution to the composition problem.

Fig. 1. Composition scheme and service instances (adapted from [1]).

The chromosomes are often encoded with binary encoding.

Suppose a composition scheme comprises three abstract

services AS1, AS2, and AS3. AS1 has three service instances

(SI11, …, SI13), AS2 has five service instances (SI21, …, SI25)

and AS3 has six service instances (SI31, …, SI36). AS1 would

require two bits to encode three possible service instances,

whereas AS2 and AS3 both need three bits to encode five and

six service instances respectively. Therefore every possible

chromosome in this composition is eight-bits long. As an

example, a chromosome representing a composition plan that

is composed of SI12, SI23, and SI31 would be encoded as

10011001. That is, for a particular composition scheme, the

chromosomes are of the same length.

However, some service instances may have granularity that

does not fit exactly any of the abstract services in the scheme.

They can be problematic in the generation of offspring

chromosomes. Assume that a service instance SI[2,3]1 has

coarse granularity as it is capable of the tasks of both abstract

services AS2 and AS3. Including it in a chromosome, e.g. with

SI11, means this chromosome complies with a different

scheme which comprises only two abstract services AS1 and

AS[2,3]. It is likely that the chromosomes under this new

Composing Services of Different Granularity

and Varying QoS Using Genetic Algorithm

Twittie Senivongse and Nitirojht Wongsawangpanich

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

scheme are not eight-bits long; if AS1 has three service

instances, (requiring two bits) and AS[2,3] has one service

instance (requiring one bit), the length of the chromosomes

under this scheme is then three bits. It would be problematic

to apply mutation and crossover operators to parent

chromosomes of different schemes or different lengths, e.g.

eight-bit vs. three-bit chromosomes. On the one hand,

excluding such a coarser-grained service instance like SI[2,3]1

from the composition prevents such a problem in the GA

process. On the other hand, leaving it out may reduce the

opportunity to obtain good chromosomes since the

coarse-grained instance may have good QoS which can

contribute to the quality of the composition solution. Using

SI[2,3]1, for example, may result in better response time than

calling two separate service instances of AS2 and AS3.

The second problem addressed by this paper is that QoS of

service instances may vary due to conditions and time of use.

A number of clients, network conditions, and service

maintenance are common reasons for the variability.

Therefore a chromosome which is found optimal at one time

may not be at another since the QoS of its constituent service

instances changes over time.

To answer to the problems above, we propose an approach

to use GA for service composition when service instances are

of different granularity. In particular, the focus is on the case

of service instances having granularity coarser than abstract

services. Artificial neural network is used to predict the QoS

of candidate service instances so that GA can discover a

composition solution with the best predicted overall QoS for

the time of use. Here we assume that a composite service,

once being composed to fulfill a business process of an

organization, is likely to be used again at a certain time.

Therefore QoS prediction based on the past behavior of the

service instances should be beneficial.

 Section II discusses research work related to this paper.

Section III gives the detail of our service composition

methodology with regard to different service granularity and

varying QoS. Experiments on service composition are

presented in Section IV and results in Section V. Section VI

concludes the paper with future outlook.

II. RELATED WORK

Several optimization algorithms have been used to tackle

service composition problems. GAs, in particular, have been

proposed by many researches due to their ability to search

efficiently for an estimate of the optimal solution within the

solution space. The attempt by Canfora et al. [1] is among the

first that shows the power of GA with binary encoding over

integer programming when composing services based on

time, cost, reliability, availability, and custom attributes; GA

is more scalable and suitable to handle generic QoS, and its

solution has good quality also. Several researches follow this

approach but propose modifications to simple GA or consider

additional QoS such as successful execution rate, integrity,

and reputation. Amiri and Serajzadeh [2] propose

modifications to the crossover operator and the selection of

parent chromosomes to escape from local optima. Li et al. [3]

propose a pseudo-parallel GA with a relation matrix encoding

mode of chromosomes which, unlike one-dimension encoding

such as binary encoding, can express all composite paths and

support service re-planning. Liu et al. [4] use ant colony

algorithm to improve the generation of GA’s initial

population chromosomes. Pichanaharee and Senivongse [5]

use the estimation of distribution algorithm to improve the

generation of new offspring chromosomes in the GA process.

They also propose QoS-based service provision schemes by

which QoS guarantee is based on levels of service,

dependency among different kinds of QoS, and partnership

with other services. Similar idea is presented by Tang and Ai

[6] where composition using GA considers dependency

constraints and conflict constraints between service instances

within the chromosomes. Nevertheless, these modifications to

GA have not considered the service granularity issue.

On QoS variability, some researches, such as [7], present a

framework to handle QoS monitoring and service re-binding

when the actual QoS of the service instances in the

composition plans deviates. Another approach would be to

adopt QoS prediction based on the actual QoS in the past. Gao

and Wu [8] supports service selection by using artificial

neural network to predict execution duration and transaction

state of a single service invocation, given the following inputs

– reliability, availability, bandwidth, and request time. We

adopt this QoS prediction approach but will apply to the

composition problem since the composition which considers

the past behavior of service instances, rather than their QoS

values published by the providers, should give a more realistic

solution.

In summary, the comparison between our approach and

related work is shown in Table I.
TABLE I

COMPARISON WITH RELATED WORK

Paper QoS-Based

Composition

GA or Its

Modification

Services of

Different

Granularity

QoS

Prediction

[1]-[7] y y n n

[8] n n/a n/a y

Our paper y y y y

III. SERVICE COMPOSITION METHODOLOGY

The composition methodology is depicted in Fig. 2. Each

step is explained as follows, along with some details of

supporting software.

A. Define Flow of Abstract Services and Identify Service

Instances

In this step, the flow of abstract services called the initial

composition scheme is defined. Each abstract service fulfills

an atomic task within the flow. Then, candidate service

instances of different granularity are identified; service

discovery mechanisms or service search engines can help with

this matter. We consider the instances whose granularity

matches any single abstract services or any groups of abstract

services. Fig. 3 shows the initial composition scheme,

comprising n abstract services, and their matching service

instances. For example, SI[1,1]1 can fulfill AS[1,1] whereas

SI[1,2]1 can fulfill AS[1,1] and AS[2,2] altogether.

B. Monitor QoS of Service Instances

All service instances are called periodically by our

monitoring software, written in Java, in order to obtain their

QoS data, i.e., response time, reliability, and availability. The

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

following data are recorded respectively: request time,

response time in seconds (i.e. reply time - request time),

reliability status if the correct reply is returned within an

expected time frame (1 = reliable, 0 = unreliable), and

availability status when the call is made (1 = available, 0 =

unavailable). An example of the data recorded on one call to a

service instance is <1299873421098,78,1,1>.

Fig. 2. Service composition methodology.

Fig. 3. Composition scheme and service instances of different granularity.

C. Build QoS Prediction Model Using Neural Network

Artificial neural network [9] is employed to predict QoS

values of service instances to be used later in composition.

Specifically, we use the backpropagation neural network to

build the mathematical model for QoS prediction. The use of

neural network comprises the learning phase and prediction

phase. In the learning phase, the monitored QoS data of each

service instance from Section III.B are used to train the neural

network to obtain a model that, given the input data (i.e., the

request time), can generate the output (i.e., response time,

reliability, or availability of the service instance). Fig. 4

depicts a neural network with four layers of hidden nodes that

we use. The error between the output of the model and the

target data is propagated backward through the network to

adjust the weights on the network nodes and hence adjust the

model to better map the input to the output. The procedure is

repeated for each entry of the training data until the error is

small enough. Ten-fold cross validation is also used to

determine the fit of the model. We use the Weka framework

[10] to develop a Java program to build the neural network.

Fig. 4. Artificial neural network.

D. Predict QoS of Service Instances

In the prediction phase, we predict the QoS output for each

service instance with regard to the request time input (hour,

minute, second). That is, there are three models for each

service instance – response time, reliability, and availability

models.

E. Compose Composite Service Using GA

In this step, GA is used to discover a composite service

with the best overall QoS at a specified time of use. As

mentioned in Section I, the length of the chromosomes in GA

is fixed, but when the granularity of some service instances is

coarser than any abstract service in the initial composition

scheme, other composition schemes emerge and the length of

the chromosomes could vary, causing a problem for GA.

To overcome this, we propose a new way to encode and

generate chromosomes in order to handle the case of

coarse-grained service instances. We define the length of the

chromosomes to be the longest which could accommodate the

most fine-grained service instances:

ASL
CL

SIL
= (1)

where CL is the chromosome length, ASL is the number of

abstract services or atomic tasks in the initial composition

scheme, and SIL is the number of abstract services which the

most fine-grained service instances could fulfill. Suppose an

initial composition scheme consists of seven abstract services

AS[1,1], …, AS[7,7] (ASL = 7) with relevant service instances as

in Fig. 3. The number of abstract services which the most

fine-grained service instances (i.e., SI[1,1]k, …, SI[7,7]k) could

fulfill is 1 (SIL = 1). Thus the chromosome length CL is 7.

The rest of this section describes the GA process.

1) Generate Initial Population

GA randomly generates a number of chromosomes as the

initial population. As many service instances as the

chromosome length are picked randomly for a chromosome,

e.g., for a chromosome of length 7, seven service instances are

picked such as Fig. 5(a).

2) Find Valid Composition Plans

The chromosomes in 1) may not yet represent valid

composition plans. In this step, find valid plans by grouping

the service instances that altogether can fulfill the tasks within

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

the initial composition schemes. Fig. 5(b) shows two valid

plans obtained from the chromosome in Fig. 5(a). Note that

random selection of service instances in 1), in effect,

randomly selects other possible schemes for GA to consider.

3) Evaluate Quality of Composition Plans

In this step, each valid composition plan in 2) has its overall

QoS evaluated based on the predicted QoS values of each

composing service instances obtained from Section III.D. We

adopt the aggregation functions per flow construct and QoS

attribute from [1], as shown in Table II. The QoS of a flow

construct aggregates the QoS of the tasks t1,…, tm within the

construct. Note that pai is the probability that one of the n

cases of Switch is chosen, and k is the number of Loop

iterations; they both are defined by the composite service

designer.
TABLE II

QOS AGGREGATION FUNCTIONS [1]

QoS Sequence Switch Fork Loop

Response Time

(T)
1

()
m

i

i

T t
=

∑

1

* ()
n

ai i

i

p T t
=

∑
{1... }{ () }i i pMax T t
∈

 * ()k T t

Reliability (R)
1

()
m

i

i

R t
=

∏

1

* ()
n

ai i

i

p R t
=

∑

1

()
p

i

i

R t
=

∏ ()k
R t

Availability

(A)
1

()
m

i

i

A t
=

∏

1

* ()
n

ai i

i

p A t
=

∑

1

()
p

i

i

A t
=

∏ ()k
A t

The overall QoS of each composition plan p is determined

by the following fitness function adapted from [1]. The three

QoS values of the plan are normalized to [0,1] and wi is the

relative importance the composite service designer gives to

each QoS attribute:

1* ()
()

2* () 3* ()

w ResponseTime p
F p

w Reliability p w Availability p
=

+
 (2)

 The objective is to find a composition plan with the

minimum fitness value.

4) Determine Quality of Chromosome

In this step, use the best composition plan and its fitness

value to represent the chromosome and its fitness. In Fig 5(c),

the chromosome is represented by the plan with the fitness of

0.73. In the case that no valid composition plans are found in

step 2), the fitness of the chromosome would be assigned to a

value greater than 1, e.g., 1.5, so that this chromosome with

bad fitness will be excluded from the GA process in the next

step.

5) Select Parent Chromosomes

Repeat steps 2) – 4) to determine a composition plan and

fitness for every chromosome in the initial population. Once

this is done, select good chromosomes to generate the next

generation of population. The best chromosome will be

retained in the next generation (i.e., elitism), and other good

chromosomes will be selected as parent chromosomes to

further produce offspring.

6) Generate New Population

To produce offspring from parent chromosomes, mutation

and crossover operators are applied to the parent

chromosomes with probability defined by the composite

service designer. Mutation is done by randomly selecting a

position in a parent chromosome and randomly picking a new

service instance to replace the one at that position. Fig. 5(d)

shows a mutation of the service instance at 4
th

 position. For

crossover, a position in two parent chromosomes is chosen as

a crossover point for swapping their front and rear parts. Fig.

5(e) shows a crossover at 3
rd

 position. Repeat steps 2) – 4) to

determine a composition plan and fitness for every

chromosome within the new population.

7) Determine Stop Condition

The GA process of generating new generations of

population, evaluating chromosomes, and selecting parents to

produce new chromosomes repeats until a stop condition is

satisfied, e.g., when the number of generations to run GA is

reached. Then, select the best chromosome of the last

generation as the optimal composition.

Fig. 5. Generation of chromosome and evaluation of its fitness (a)

chromosome in initial population (b) valid composition plans (c) fitness of

chromosome (d) mutation (e) crossover.

IV. EXPERIMENTS

In our experiments, we define a sequential flow in Fig. 6 as

an initial composition scheme. The flow comprises five

abstract services which, given an IP address, will determine

the location and nearby place, get weather forecast, and

convert temperature unit and translate the forecast into a

specified language. We discover some REST Web services

from the Internet and also develop some of our own in order to

obtain 39 service instances in total. The hosts of these service

instances are located in several countries including United

States, Germany, United Kingdom, Canada, The Netherlands,

France, and Thailand. The granularity of these service

instances vary as listed in Table III. We monitor them by

invoking them periodically over a period of one month to

record response time, reliability, and availability. For

reliability, the expected time frame for a correct reply to

return is set to 10 seconds.

(a)

(b)

(c)

(d)

(e)

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

Fig. 6. Initial composition scheme.

TABLE III

39 SERVICE INSTANCES

Granularity Host

Change IP Address to Location [1,1] api.hostip.info

Change IP Address to Location [1,1] en.utrace.de

Change IP Address to Location [1,1] geoplugin

Change IP Address to Location [1,1] Gaze

Change IP Address to Location [1,1] ipinfodb

Change IP Address to Location [1,1] freegeoip

Find near Location [2,2] Geoplugin

Find near Location [2,2] geonames

Find near Location [2,2] geonamesWIKI

Find near Location [2,2] gaze-the mySociety

Find near Location [2,2] api.wunderground

Forecast [3,3] National Digital Forecast Database

Forecast [3,3] Yahoo! Weather

Forecast [3,3] geonames

Forecast [3,3] wunderground

Forecast [3,3] worldweatheronline

Convert Temperature Unit [4,4] DuckDoDuck

Convert Temperature Unit [4,4] Visual Dataflex

Convert Temperature Unit [4,4] raisondetre

Convert Temperature Unit [4,4] cp.eng.chula

Translation [5,5] Google

Translation [5,5] Anowa

Translation [5,5] dict.tu

Forecast+Convert Temperature

Unit+Translation [3,5]
Geonames

Change IP Address to Location+Find

near Location [1,2]
geoplugin

Change IP Address to Location+Find

near Location [1,2]
duckdoduck

Change IP Address to Location+Find

near Location [1,2]
2.api.in.th

Change IP Address to Location+Find

near Location [1,2]
3.api.in.th

Change IP Address to Location+Find

near Location [1,2]
4.api.in.th

Change IP Address to Location+Find

near Location [1,2]
5.api.in.th

Change IP Address to Location+Find

near Location [1,2]
raisondetre

Change IP Address to Location+Find

near Location [1,2]
cp.eng.chula

Change IP Address to Location+Find

near Location+Forecast [1,3]
duckdoduck

Change IP Address to Location+Find

near Location+Forecast [1,3]
2.api.in.th

Change IP Address to Location+Find

near Location+Forecast [1,3]
3.api.in.th

Change IP Address to Location+Find

near Location+Forecast [1,3]
4.api.in.th

Change IP Address to Location+Find

near Location+Forecast [1,3]
5.api.in.th

Change IP Address to Location+Find

near Location+Forecast [1,3]
raisondetre

Change IP Address to Location+Find

near Location+Forecast [1,3]
cp.eng.chula

Since we use Weka, the monitored QoS data are put in an

arff file to train the neural network. An example of the data

sets for training response time, reliability, and availability

models of a service instance is shown in Table IV. There are

39 x 3 = 117 models to train in total. Using 10-fold cross

validation, we adjust the training parameters of Weka until the

root mean square error and mean absolute error of each model

are close to 0 and then accept the model.

The parameters for training response time models are as

follows: learning rate is 0.27573, momentum is 0.1391, the

number of epochs is 1500, and the number of hidden layers is

4 with 5, 4, 3, and 2 hidden nodes.

The parameters for training reliability and availability

models are as follows: learning rate is 0.277, momentum is

0.137, the number of epochs is 1500, and the number of

hidden layers is 4 with 4, 4, 3, and 3 hidden nodes.

The QoS models can predict the QoS values of each service

instance at a certain time of use. An example of the input data

sets for the prediction is shown in Table V. Then we use the

predicted QoS data for composition using GA. We use equal

weight for wi in (2).
TABLE IV

TRAINING DATA SETS OF A SERVICE INSTANCE

Response Time (arff) Reliability (arff) Availability (arff)

@relation service_qos @relation service_qos @relation service_qos

@attribute HOUR

numeric

@attribute HOUR

numeric

@attribute HOUR

numeric

@attribute MIN numeric @attribute MIN numeric @attribute MIN numeric

@attribute SEC numeric @attribute SEC numeric @attribute SEC numeric

@attribute RES numeric @attribute REL numeric @attribute AVL numeric

@data @data @data

13,57,26,78.0 13,57,26,1 13,57,26,1

15,12,11,63.0 15,12,11,1 15,12,11,1

15,22,57,63.0 15,22,57,1 15,22,57,1

… … …

 TABLE V

QOS PREDICITON INPUT FOR A SERVICE INSTANCE

Response Time (arff) Reliability (arff) Availability (arff)

@relation service_qos @relation service_qos @relation service_qos

@attribute HOUR

numeric

@attribute HOUR

numeric

@attribute HOUR

numeric

@attribute MIN numeric @attribute MIN numeric @attribute MIN numeric

@attribute SEC numeric @attribute SEC numeric @attribute SEC numeric

@attribute RES numeric @attribute REL numeric @attribute AVL numeric

@data @data @data

21,52,16,? 21,52,16,? 21,52,16,?

17,32,51,? 17,32,51,? 17,32,51,?

15,32,7,? 15,32,7,? 15,32,7,?

… … …

V. RESULTS

Service composition is performed for 48 instances of time,

i.e., to find the best composite service for use at each half hour

of a day. We summarize how many times any service

instances appear in the top five compositions at each time

instance as in Fig. 7. Table VI lists some of the best

composite services with their fitness values, and Fig. 8 shows

the number of occurrences each composite service is found

the best.

All the information shows that both coarse-grained and

fine-grained service instances are part of all 48 solutions; no

solution is composed of only fine-grained service instances

which match exactly the five abstract services in the initial

composition scheme. Therefore it is useful to consider

coarse-grained service instances when designing a composite

service since they are likely to produce the solution of good

quality.

Table VI also shows that at different time of day, QoS of

service instances varies, resulting in the change of the best

AS[1,1]

AS[2,2]

AS[3,3]

AS[4,4]

AS[5,5]

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

solution. QoS prediction is then beneficial to service

composition. Fig. 9 presents the best and average fitness at 48

time instances. This graph shows that at certain period, e.g.,

between 13:30-21:30, the composition solution remains the

best throughout the period and therefore is appropriate for

reuse during that time. In addition, the graph suggests that

even though the best composite services may vary by time, the

composite service designer may want to keep the one being

used and not change to a new solution if the difference in their

fitness is small, since finding a new solution incurs overheads.

Fig. 7. Inclusion of service instances in top five compositions at each time

instance.

TABLE VI

SOME OF 48 COMPOSITE SERVICES FROM EXPERIMENTS

Request

Time

Fitness Best Composite Service

00:14:07 0.1203
Geoplugin [1,2]+Yahoo! Weather [3,3]+

DuckDoDuck [4,4]+Google [5,5]

00:51:17 0.1248
Geoplugin [1,2]+Yahoo! Weather [3,3]+

DuckDoDuck [4,4]+Anowa [5,5]

02:47:32 0.1203
Geoplugin [1,2]+Yahoo! Weather [3,3]+

DuckDoDuck [4,4]+Google [5,5]

…

03:35:45 0.1717
Geoplugin [1,2]+api.wunderground [3,3]+

DuckDoDuck [4,4]+Google [5,5]

…

06:48:43 0.1945 raisondetre [1,3]+DuckDoDuck [4,4]+Google [5,5]

…

Fig. 8. Best composite services and number of occurrences.

Fig. 9. Best and average fitness at different time.

VI. CONCLUSION

This paper presents a service composition methodology

which handles service granularity and QoS variability issues.

We use GA to compose services by proposing a new way to

encode and generate solution chromosomes and incorporating

prediction of service QoS by neural network. Experiments are

conducted on 39 Web service implementations, and the

results show that coarse granularity and QoS prediction both

contribute to finding composite services of good quality.

Our approach still requires the composite service designer

to determine granularity of service instances. That is, the

designer needs to specify which abstract services in the initial

composition scheme a particular service instance can fulfill.

For future work, semantic descriptions can be used to better

automate this task, e.g., using ontology to describe the scope

of tasks of each service instance. A composition framework

can also be developed to better support QoS monitoring,

training and re-training of QoS models when appropriate, and

prediction.

REFERENCES

[1] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “An approach

for QoS-aware service composition based on genetic algorithms,” in

Proc. of the 2005 Conf. on Genetic and Evolutionary Computation

(GECCO 2005), 2005, pp. 1069-1075.

[2] M. A. Amiri and H. Serajzadeh, “QoS aware web service composition

based on genetic algorithm,” in Proc. of 2010 5th Int. Sym. On

Telecommunications (IST 2010), 2010, pp. 502-507.

[3] J. H. Li, S. Q. Chen, Y. J. Li, and G. L. Li, “Application of genetic

algorithm to QoS-aware web services composition,” in Proc. of 3rd

IEEE Conf. on Industrial Electronics and Applications (ICIEA 2008),

2008, pp. 516-521.

[4] H. Liu, F. Zhong, B. Ouyang, and J. Wu, “An approach for QoS-aware

web service composition based on improved genetic algorithm,” in

Proc. of 2010 Int. Conf. on Web Information Systems and Mining

(WISM 2010), 2010, pp. 123-128.

[5] K. Pichanaharee and T. Senivongse, “QoS-based service provision

schemes and plan durability in service composition,” in Proc. of 8th

IFIP WG 6.1 Int. Conf. on Distributed Applications and Interoperable

Systems (DAIS 2008), LNCS 5053, 2008, pp. 58-71.

[6] M. Tang and L. Ai, “A hybrid genetic algorithm for the optimal

constrained web service selection problem in web service

composition,” in Proc. of 2010 IEEE Congress on Evolutionary

Computation (CEC 2010), 2010, pp. 1-8.

[7] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “A framework

for QoS-aware binding and re-binding of composite web services,” J.

Systems and Software, vol. 81, no. 10, pp. 1754–1769, Oct. 2008.

[8] Z. Gao and G. Wu, “Combining QoS-based service selection with

performance prediction,” in Proc. of 2005 IEEE Int. Conf. on

e-Business Engineering (ICEBE 2005), 2005, pp. 611-614.

[9] M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical

Foundations. Cambridge University Press, 1999.

[10] The University of Waikato. Weka 3: Data mining software in Java

[Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/

Number of Occurrences

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

