

Abstract—In XML-IR systems, the weighting algorithm plays

an important role cause of it greatly affects the precision and

recall results of the retrieval systems. Term weight algorithm is

widely applied into retrieval models. Since, we developed a

XML information retrieval system by using MySQL and

Sphinx, namely MEXIR, and extended indices’ scheme to

handle parameter tuned weight, which we call Double Scoring

function. This function has separated the content into two

indices by using the XML structure. Thus, we have to

investigate weighting schemes and performed a comparative

study of Sphinx’s weighting schemes processing on MEXIR.

Our objective of the study was to find out the appropriate

features to achieve the effectiveness of XML Retrieval. The

experiment results show the use of BM25 function on leaf-node

indices and term frequency on selected weight indices performs

better than other methods measured by INEX evaluations.

Index Terms— XML Retrieval, Ranking Strategies, Sphinx,

Implementation

I. INTRODUCTION

HE weighting schemes of information retrieval have

been widely studied. Many researchers have been

studied base on different weighting functions. We

developed XML [1] information retrieval system by using

MySQL [2] and Sphinx [3, 4], namely MEXIR [5], and

extended indices scheme to handle parameter tuned weight,

namely Double Scoring function [6]. For this purpose, our

study addressing on the comparison of various term

weighting base on Sphinx’s methods and contribution of

weighting schemes area of understanding features that

influence the automatic indexing potential of terms.

This paper is organized as follows; Section 2 reviews

related works. Section 3 explains our experiments,

conclusions and further work are drawn in Section 4.

Manuscript received April 20, 2011; revised May 30, 2011. This work

was supported in part by the Graduate School of Kasersart University.

Wichaiwong T. He is currently pursuing the Ph.D. degree in Kasetsart

University, Bangkok, Thailand. He current research interests include the

area of Information Retrieval, XML Retrieval and XML Query Language

and Database. Thailand (phone: 6687-696-1333; e-mail: g5184041@

ku.ac.th).

Jaruskulchai C. She received her Bachelor of Education from

Chulalongkorn University, and Master of Science in Applied Science in the

area of computer Science from National Institute of Development

Administration in 1978, and Ph.D. from George Washington University,

USA, in 1998. Currently, she served as the Chair Ph.D. program in

computer Science, Department of Computer Science, Kasetsart University,

Bangkok, Thailand. (e-mail: fscichj@ku.ac.th).

II. RELATED WORKS

A. Sphinx Full Text Search Engine Overview

Sphinx [3, 4] is a Full Text Search (FTS) engine that

provides fast, size efficient and relevant full-text search

functions to other applications. The only kind of collection

updating it supports is appending new documents.

Document updates and deletions require a complete index

rebuild. Sphinx’s index structure is very simple. There are

two files, a term dictionary and the inverted list. The term
dictionary contains for each term an offset into the inverted

list file and some statistics. The inverted list file is simply a

list of all occurrences for the terms, with no empty space.

Reading the inverted list for a term thus requires a

maximum of one disk seek.

Sphinx has two types of weighting functions:

• Phrase rank: based on a length of the longest

common subsequence (LCS) of search words

between the document body and query phrases. So

if there's a perfect phrase match in some document

then its phrase rank would be the highest possible,

and equal to query words count.

• Statistical rank: based on classic BM25 function

[7], which only takes word frequencies into

account. If the word is rare in the whole database, it
receives more weight. Final BM25 weight is a

floating point number between 0 and 1.

Sphinx has seven types of search modes:

• MATCH ALL: the final weight is a sum of

weighted phrase ranks and matches all query

words.

• MATCH ANY: the final weight is a sum of

weighted phrase ranks and matches any of the

query words.

• MATCH PHRASE: the final weight is a sum of

weighted phrase ranks, and matches query as a

phrase, requiring the perfect match.

• MATCH_BOOLEAN: matches query as a Boolean

expression

• MATCH_EXTENDED: the final weight is a sum
of weighted phrase ranks and BM25 weight,

multiplied by 1000 and rounded to integer.

• MATCH_EXTENDED2: matches query using the

second version of the extended matching mode.

• MATCH_FULLSCAN: matches query, forcibly

using the "full scan" mode, any query terms will be

ignored, such that filters, filter-ranges and grouping

will still be applied, but no text-matching.

A Comparative Study Weighting Schemes for

Double Scoring Technique

Tanakorn Wichaiwong Member, IAENG and Chuleerat Jaruskulchai

T

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

B. Double Scoring on BM25 (BM25W)

The leaf node indexing is closest to traditional

information retrieval since each XML node is a bag of

words of itself, and can be scored as ordinary plain text

document then we calculate the leaf element score of its

context using BM25 of Sphinx as following;

(1)

(2)

Note that;

LeafScore(e, Q) measures the relevance of element e in leaf-

node indices to a query Q.

Wt is the inverse element frequency weight of term t.

tfe is the frequency of term t occurring in element e.

len(e) is the length of element e.

avel is the average length of elements in whole collection.

N is the total number of an element in the collection.

et is the total element of a term t occur.

k1 and b are used to balance the weight of term frequency

and element length.

Suppose we have n mixed content nodes in given

collection C. Given a weight Wnf for each element n this

contributes to a given element’s weight store in Selected

Weight (SW) indices, and then these indices is also closest

to traditional information retrieval since each mixed content

node is a bag of words of itself, and can be compute the
weight for each field as ordinary plain text document, and

then we calculate the SW using BM25 as follows;

(3)

Note that;

Wnf is the field weight of mixed content elements in Selected

Weight indices.

SW(e, Q) measures the relevance of element e in Selected

Weight indices to a query Q.

Given a query Q, we run the query in parallel on each

index, and then integrate the double scoring function by

using the weight from SWRelList of SW indices apply to

each LeafNodeRelList result set from Leaf-Node indices.

The weighting for each element in each LeafNodeRelList

result set is linear combination by SWRelList when the

prefix of result set is same as the SWRelList path, and then

the new score for each LeafNodeRelList list can compute

BM25W as follows;

(4)

Note that;

BM25W(e, Q) measures the relevance of element e to a query

Q.

C. MEXIR System Overview

The More Efficient XML Information Retrieval

(MEXIR) is a base on leaf-node indexing scheme and uses a

relational DBMS as a storage back-end. We discussed the

schema setup using the MySQL and the full-text engine

Sphinx using the MySQL dumps.

For the initial step, we consider a simplified XML data

model but disregard any kind of Meta mark-up, including

comments, links in the form of XLink or ID/IDRef and

attributes. In figure 2, depicts the overview of XML retrieval

system. The main components of the MEXIR retrieval

system are as follows.

• When new documents are entered, the ADXPI

Indexer more details as discuss in section E; parses
and analyzes the tag and content data to classify

indices.

• The Sphinx is used to build the indices.

• The score sharing function more details as discuss

in D, is used to assign parent scores by sharing

scores from leaf nodes to their parents.

• The double scoring function is used to adjust the

leaf nodes score by linear combination.

We used four types of search modes in Sphinx as show

in Table I.

TABLE I. THE SPHINX SEARCH MODES

MODE Description

ANY The final weight is a sum of

weighted phrase ranks and matches

any of the query words.

ALL The final weight is a sum of

weighted phrase ranks and matches

all query words

PHRASE The final weight is a sum of

weighted phrase ranks, and matches
query as a phrase, requiring the

perfect match.

EXTENDED The final weight is a sum of

weighted phrase ranks and BM25

weight, multiplied by a thousand

and rounded to integer.

D. Score Sharing Function

In previous reports [8], we compute the scores of all

elements in the collection that contain query terms. We must

consider the scores of elements by accounting for their

relevant descendents. The scores of retrieved elements are

now shared between leaf node and their parents in the

document XML tree according to the following scheme.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

(5)

Note that;

PNode is a current parent node.

β is tuning parameter.

If {0 – 1}, then preference is given to the leaf node over

the parents.

Otherwise, preference should be given to the parents.

n is the distance between the current parent node and the

leaf node.

E. Absolute Document XPath Indexer

In previous reports [9], a single inverted file can hold the

entire reference list, while the suitable indexing of terms can

support the fast retrieval of the term-inverted lists. To

control overlap and reduce the cost of joined on DBMS; we

used the Absolute Document XPath Indexing (ADXPI)

scheme to transform each leaf element level into a document

level.
<?xml version="1.0"?>

<article id = “1”>

 <title>xml</title>

 <body>xml

 <section>retrieval

 <title>xml</title>

 <p>information</p>

 <p>retrieval</p>

 </section>

 </body>

</article>

Figure 1. The Example of XML Element

In figure 1, depicts the example of the XML element. For

instance, take a document named x1; we can build an index

using the ADXPI expression to identify a leaf XML node

that has text contained within the document, relative to

document and its parents are in Table II and Table III.

TABLE II. EXAMPLE OF SW INVERTED FILE.

TABLE III. EXAMPLE OF LEAF-NODE INVERTED FILE.

Figure 2. MEXIR System Overview

Term Inverted List

Xml x1/article[1]/body[1]

Retrieval x1/article[1]/body[1]/section[1]

Term Inverted List

Xml
x1/article[1]/title[1],

x1/article[1]/body[1]/section[1]/title[1]

1 x1/article[1]/@id[1]

Information x1/article[1]/body[1]/section[1]/p[1]

Retrieval x1/article[1]/body[1]/section[1]/p[2]

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

III. EXPERIMENT SETUP

In this section, we present and discuss the results that

were obtained at INEX collections. We performed with the

Wikipedia collection. This experiment was done on Intel

Pentium i5 4 * 2.79 GHz with the memory of 6 GB,

Microsoft Windows 7 Ultimate 64-bit Operating System and

using Microsoft Visual C#.NET 2008 for develop system.

A. INEX Collection Tests

The document collections are from the INEX-Wikipedia

2006 XML Corpus for English Wikipedia from early 2006

[10] contains 659,338 Wikipedia articles; the total size is 4.6

GB without images and 52 million elements. On average, an

article contains 161.35 XML nodes, whereas the average

depth of a node in the XML tree of a document is 6.72. The

INEX-Wikipedia 2009 [11] collection was created from the
October 8, 2008 dump of the English Wikipedia articles and

incorporates semantic annotations from the 2008-w40-2

version of YAGO. It contains 2,666,190 Wikipedia articles

and has a total uncompressed size of 50.7 GB. After that,

our system uses them in the experiments.

B. INEX Evaluations

Our evaluation is based on the main INEX measures
[12]. The main ranking of INEX evaluation is based on

iP[0.01] instead of the overall measure MAiP, allowing to

emphasize the precision at low recall levels. Our experiment

targets for CO Task only, the system accepts CO queries,

which are terms enclosed in <title> tag. Then, the Focused

Task only remains in INEX 2008 and 2010 topics. Thus the

system is evaluated on only Focused Task by inex_eval that

tool provided by INEX.

C. Experiment Results and Discussion

In this section, we present the results of evaluation of the

MEXIR. We tuned parameters using INEX-2005 Adhoc

track evaluation scripts distributed by the INEX organizers.

The total number of leaf nodes is 2,500 and the β parameter

is set to 0.10 [4], which is used to compute the score sharing

function. In order to evaluate the sensitivity of the

evaluation, we have used the entire Sphinx match mode

values for each index including MATCH ANY (ANY),

MATCH ALL (ALL), MATCH PHRASE (PHRASE), and

MATCH EXTENDED (EXTEND). We have use the

columns indicate to Leaf-Node indices and the rows indicate

to SW indices. As such, we report the effectiveness of our

system on INEX collections as follows:

TABLE IV. THE EFFECTIVENESS ON IP[0.01] OF INEX-2008 FOCUSED TASK

MODE ANY ALL PHRASE EXTEND

ANY 0.4419 0.4386 0.4386 0.417

ALL 0.484 0.4751 0.4751 0.4768

PHRASE 0.4595 0.4544 0.4544 0.4514

EXTEND 0.6499 0.6499 0.6499 0.5678

TABLE V. THE EFFECTIVENESS ON MAIP OF INEX-2008 FOCUSED TASK

MODE ANY ALL PHRASE EXTEND

ANY 0.0961 0.096 0.096 0.0907

ALL 0.0854 0.0835 0.0835 0.0829

PHRASE 0.0870 0.0868 0.0868 0.0868

EXTEND 0.1828 0.1827 0.1827 0.1631

TABLE VI. THE EFFECTIVENESS ON IP[0.01] OF INEX-2010 FOCUSED TASK

MODE ANY ALL PHRASE EXTEND

ANY 0.3285 0.3144 0.3284 0.2791

ALL 0.2469 0.2432 0.2468 0.2463

PHRASE 0.2262 0.2261 0.2261 0.2256

EXTEND 0.3909 0.3909 0.3909 0.3769

TABLE VII. THE EFFECTIVENESS ON MAIP OF INEX-2010 FOCUSED TASK

MODE ANY ALL PHRASE EXTEND

ANY 0.0619 0.0629 0.0624 0.0615

ALL 0.0500 0.0535 0.0500 0.0499

PHRASE 0.0570 0.0570 0.0570 0.0570

EXTEND 0.0750 0.0749 0.0749 0.0728

The performance of different Sphinx’s search features is

evaluated. Tables IV and Table V show the results obtained
by the BM25W ranking functions on INEX-Wikipedia
2006. Table VI and Table VII on INEX-Wikipedia 2009
collection more details are following:

The run BM25W obtained the highest scores for INEX-
Wikipedia 2006 on 2008 topics is the MATCH
EXTENDED on leaf node indices and MATCH ANY on
SW indices as follows: 0.6499 at iP[0.01] and 0.1828 at
MAiP respectively. The run BM25W obtained the highest
scores for INEX- Wikipedia 2009 on 2010 topics is the
MATCH EXTENDED on leaf node indices and MATCH
ANY on SW indices as follows: 0.3909 at iP[0.01] and
0.0750 at MAiP respectively.

Due to the BM25 weight is not able to benefit from
information contained in the fields with less text. Then the
experiment results of Term Frequency on SW index have
performed better than other weighting methods.

IV. CONCLUSIONS

Due to the ever increasing information available
electronically, their size is growing rapidly. The widespread
use of XML documents in digital libraries led to the
development of information retrieval (IR) methods
specifically designed for XML collections. Most traditional
IR systems are limited to whole document retrieval;
however, since XML documents separate content and
structure, XML-IR systems are able to retrieve the relevant
portions of documents. Therefore, users who utilize an
XML-IR system could potentially receive highly relevant
and highly relevant and precise material.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

In this paper, we performed a comparative study of
Sphinx’s search modes processing on MEXIR. Our
experiment shows that the Sphinx search mode used is the
BM25 function of MATCH EXTENDED on leaf node
indices and the term frequency of MATCH ANY on
Selected Weight indices performs better than other methods
measured by INEX evaluations on iP[0.01] and MAiP.

In our future work, we plan to study how to make

inferences regarding structural aspects based on CAS

queries.

REFERENCES

[1] Extensible Markup Language (XML) 1.1 (Second Edition).

http://www.w3.org/TR/xml11/

[2] MySQL Full-Text Search Functions, Available at

http://dev.mysql.com/

[3] Sphinx Open Source Search Server, Available at

http://www.sphinxsearch.com/

[4] Aksyonoff, A. Introduction to Search with Sphinx, O'Reilly Media.

2011.

[5] Wichaiwong T. and Jaruskulchai C., ―MEXIR: An Implementation of

High-Speed and High-Precision XML Information Retrieval,‖ The

3rd International Conference on Machine Learning and Computing,

Singapore, February 26-28, 2011.

[6] Wichaiwong T. and Jaruskulchai C., ―XML Retrieval More Efficient

Using Double-Scoring Scheme,‖ The 9th International Workshop of

the Initiative for the Evaluation of XML Retrieval, (INEX-2010),

pages 292–298, 2010.

[7] Robertson, S.E. et al, Okapi at TREC. The Proceedings of the 3rd

Text REtrieval Conference, 1995. pp. 109-126.

[8] Wichaiwong T. and Jaruskulchai C., ―A Simple Approach to

Optimize XML Retrieval,‖ The 6th International Conference on Next

Generation Web Services Practices, Goa, India, November 23-25,

2010.

[9] Wichaiwong T. and Jaruskulchai C., ―XML Retrieval More Efficient

Using ADXPI Indexing Scheme,‖ The 4th International Symposium

on Mining and Web, Biopolis, Singapore, March 22-25, 2011.

[10] Denoyer L. and Gallinari P., 2006. The Wikipedia XML Corpus.

SIGIR Forum, pp. 64–69.

[11] Schenkel R., Suchanek F. M., and Kasneci G., YAWN: A

semantically annotated Wikipedia XML corpus. In 12. GI-Fachtagung

f¨ur Datenbanksysteme in Business, Technologie und Web (BTW

2007), pages 277–291, 2007.

[12] Kamps, J. Pehcevski, J. Kazai, G. Lalmas, M. and Robertson, S. 2007.

INEX 2007 evaluation measures. In 6th International Workshop of

the Initiative for the Evaluation of XML Retrieval, INEX 2007,

Dagstuhl Castle, Germany, Selected Papers, 2008.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

