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Abstract - To assess capability of k-mean and fuzzy clustering 
method (FCM) in diagnosing Alzheimer’s disease (AD) 
subjects using longitudinal whole brain atrophy percentage 
calculated via Magnetic Resonance Images (MRI). We included 
60 subjects (30 AD and 30 controls) in this study and measured 
their whole brain atrophy percentage. Discriminative power of 
this measure is statistically analyzed and it is used as a feature 
in classifying subject using k-mean and FCM. It is revealed 
that FCM has higher specificity besides k-mean but the same 
sensitivity. Accuracies of both systems are remarkable. Pattern 
recognition algorithms even by unsupervised learning methods 
can help us to diagnose AD with considerable accuracy. 
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I. INTRODUCTION 

Alzheimer’s disease (AD) is known as the commonest 
form of dementia in subjects over 65 years old which has 
been influenced about 26 millions worldwide [1]. It starts 
with abnormal excessive agglomeration of amyloid β (Aβ) 
protein and then hyperphosphorylated tau in the brain. This 
leads to deterioration of the synopsis and axons in neurons. 
Consequently degeneration of brain structures happens and 
then memory lapses appear followed by functional and 
lingual decline. These changes always start in the same 
order but they may overlap each other in various clinical 
disease stages [2]. These orders and overlaps are revealed in 
Fig. 1. 

Clinical measures for diagnosing AD are traditionaly 
based on two rightmost markers and some standard 
measures such as Mini Mental Score Exam (MMSE) or 
Clinical Dementia Rating (CDR) are used for clinically 
diagnosing people with AD. It is obvious that these 
measures are useful just in second and third stages of 
disease and cannot be used in first stage which there is not 
any manifest behavioral or memory impairment [3-4]. 
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Fig.1. Various biomarkers of AD and the stage of disease they are affective. 
The first three biomarkers can be used to prognose AD prior to dementia 
diagnosis.  
 

Furthermore, these scores alone are not accurate enough 
and some complementary biomarkers are needed for 
accurate diagnosis of AD [5].  The need for monitoring 
disease progression in designing new therapeutic trials 
encourages researchers to find noninvasive accurate 
biomarkers of AD [6-7]. MR images because of their high 
resolution and noninvasive nature, are good candidates for 
realising degeneration of brain structures and finding strong 
relationships between them and disease progression [8]. 
Various antomical structures of brain such as Entorhinal 
Cortex, Hippocampus, Cerebral Cortex and etc have been 
influenced of AD and their atrophic characteristics such as 
volume, shape and thickness can be used as biomarkers of 
AD [8-11]. Concentrating on atrophic characteristics of 
anatomical structures is prone to some imperfection. That is, 
disease related atrophies don’t necessarily follow the 
anatomical boundaries of structures and any part of brain 
can be changed under influence of disease. The rate of 
whole brain volume change is almost constant in third satge 
of disease and this makes it usefull in monitoring the 
pharmacotherapeutic trials [10, 12-13]. Fig. 2 shows the 
profile of structural changes in AD. 

 
Fig. 2. Natural progression of cognitive and biological markers of 
Alzheimer disease: a theoretical model. 
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30 subjects with AD and 30 NCs from ADNI image 
database are used in this study. This paper uses the pipeline 
implemented by smith to measure the longitudinal volume 
changes between baseline and 2 years follow ups [13]. 
Fuzzy C-mean (FCM) is used as a clissifier to classify 
subjects into the AD and NC groups.  

II. MATERIALS AND METHODS 

A. Subjects 

A total of 30 AD patients (46.7% female; 75 (7) years), 
and 30 age-matched healthy normal controls (50% female; 
77 (5) years) were selected from the Alzheimer’s disease 
NeuroImaging (ADNI) public database 
(http://www.loni.ucla.edu/ADNI/Data/). ADNI is a large 
five-year study launched in 2004 by the National Institute on 
Aging (NIA), the National Institute of Biomedical Imaging 
and Bioengineering (NIBIB), the Food and Drug 
Administration (FDA), private pharmaceutical companies 
and nonprofit organizations, as a $60 million public–private 
partnership. The primary goal of ADNI has been to test 
whether serial MRI, PET, other biological markers, and 
clinical and neuropsychological assessments acquired at 
multiple sites (as in a typical clinical trial), can replicate 
results from smaller single site studies measuring the 
progression of MCI and early AD. Determination of 
sensitive and specific markers of very early AD progression 
is intended to aid researchers and clinicians to monitor the 
effectiveness of new treatments, and lessen the time and cost 
of clinical trials. The Principal Investigator of this initiative 
is Michael W.Weiner, M.D., VA Medical Center and 
University of California, San Francisco. 

All the AD and NC subjects in this study had successfully 
undergone magnetic resonance imaging (MRI), cognitive 
tests and clinical evaluation at baseline and 2 years follow 
up.  

B. Statistical analysis 

Some demographic parameters such as age, sex, years of 
education and etc have remarkable impact in brain atrophic 
measures and to avoid their influence in the study, subjects 
of two groups must be matched regarding them. Difference 
in gender among the two groups was tested with the Chi-
square test. There were no significant differences in gender 
(p = 0.796). Independent two sample student t-test was used 
to test inter-group differences in age and years of education. 
As there were no significant differences in age (p = 0.188) 
and years of education (p = 0.554) among the two groups, 
they were ignored in diagnosing AD in this study. The 
MMSE score and also percentage of brain volume change 
show significant differences in between two groups 
(unpaired student t-test, p < 0.00001 and p < 0.00001 
respectively). The former is one of the clinical biomarkers 
of AD and the aim of this study is to evaluate the 
discriminant power of the later in diagnosing AD and 
classify subjects based on this measure using fuzzy C-mean 

(FCM). Statistical analysis of demographic and clinical data 
is revealed in Table 1. 

 
Table 1 

Demographic and clinical variables by diagnostic group 
 NC(n=30) AD(n=30) ρ 

Gender(M/F) 15/15a 16/14 0.796 
Age(M/SD) 77/5a 75/7 0.188 

Years of 
Education(M/SD) 

16.2/2.9a 15.7/2.7 0.554 

Baseline 
MMSE(M/SD) 

29.3/0.8b 23.5/2.2 <0.00001 

PBVC(M/SD) -
1.65/1.05b 

-4.13/1.85 <0.00001 

Chi-square was used for gender comparison. 
Unpaired student t-test was used for age, education-year, MMSE scores and 
percentage of whole brain volume change comparisons. 
a Indicates insignificant compared to NC group. 
b Indicates significant compared to NC group. 

 

C. Whole brain atrophy rate 

First step in this pipeline is brain surface extraction which 
separates brain from other non-brain parts such as skull or 
scalp in both images of longitudinal study. To do this, a 
deformable tessellated mesh have been used which deforms 
under control of local parameters and finally matches the 
brain of head [14]. Afterward, base brain images must be 
registered to follow up counterparts. In this step, it is 
necessary to avoid rescaling artifacts which can change the 
atrophy size. With this in mind, it is supposed that the size 
of skull is constant and it is the normalization factor in 
scaling process. To escape unnecessary modifications of 
nonlinear registration which matches images as much as 
possible and so eliminates the atrophic differences between 
them, the linear registration is preferred in this study [15]. 

Now it is time to measure the differences between 
images. Thus, brain images are segmented into its three 
major tissues – Gray Matter (GM), White Matter (WM) and 
Cerebrospinal Fluid (CSF) [16]. Boundary points of these 
tissues are used to measure differences between images. One 
3 by 3 gradient operator is used to find the gradients in these 
points. In a peer to peer comparison of 3mm intensity profile 
on these gradients the shift distance that maximizes the 
correlation between these profiles are considered as 
difference measure. Normalized sum of these measures over 
all boundary points indicates the overall differences between 
brain volumes and is called percentage of brain volume 
change (PBVC) [17]. This measure is used as a feature for 
discriminating AD from NCs. To evaluate the discriminative 
power of it, the unpaired student t-test is performed on it 
(Table 1). Results imply the discriminative power of this 
feature. That is, two different populations of AD and NCs 
have statistically significant differences in the average 
volume changes. 

Until now, it is approved that our two groups are 
separable based on longitudinal volume changes. But there 
is not any way of classifying one individual subject into one 
of these groups. To this end, it is necessary to design a 
pattern classifier to classify patterns of subjects into two 
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separate groups, one for AD and the other for NC. Here in 
this study, K-mean and its fuzzy counterpart FCM were 
used to classify subjects.  

D. K-mean algorithm  

Suppose ܺ ൌ ሼݔ௜ ∈ Թ
௣|݅ ൌ 1…݊ሽ denotes the set of ݊ 

observations of ݌–dimensional patterns and the goal is to 
classify those ݊ observations into ܭ ൏ ݊ classes, 
௞ܥ 1 ൏ ݇ ൏  A classifying rule (denoted by ܴ is a .ܭ
many-to-one mapping, 
ܴሺݔ௜ሻ ൌ ௞ܥ ሺ1 ൏ ݅ ൏ ݊ , 1 ൏ ݇ ൏  ሻ. The K-meansܭ
algorithm aims to minimize the overall objective function, 

෍ ෍ ௜ݔ‖ െ ‖௞ߤ
ଶ

ோሺ௫೔ሻୀ஼ೖ

௄

௞ୀଵ

 

with respect to the classification rule ܴ, where ߤ௞ is the 
means (or centroid) of patterns from cluster ݇. This paper, 
assumes ݇ ൌ 2 and therefore there is only two cluster 
means, ߤଵ and ߤଶ. Beginning with an initial assignment of 
observations to clusters or an initial assignment of cluster 
means, the K-means algorithm iterates through the 
following two steps:  

Step 1: Reassign each observation to the cluster whose 
mean is closest to that observation. 

ܴሺݔ௜ሻ ൌ ௞ܥ ↔ ݇ ൌ ݊݅݉݃ݎܽ
௟
௜ݔ‖ െ ‖௟ߤ

ଶ
  

Step 2: Recalculate the new cluster means.  
The convergence is reached if the cluster means do not 

change. An observation ݔ is therefore classified to ܥଵ with 
cluster mean ߤଵ if and only if 

௜ݔ‖ െ ‖ଵߤ
ଶ ൏ ௜ݔ‖ െ ‖ଶߤ

ଶ 

E. FCM algorithm 

FCM clustering technique imparts a degree of fuzziness 
to each data point corresponding to every cluster. The 
degree of fuzziness is represented by membership 
value  ߤ௜௞ ∈ ሺ0,1ሻ. ߤ௜௞ represents the membership value of 
 ௜௞ implies greaterߤ class. Larger value of ݄ݐ′݇ pattern to ݄ݐ′݅
proximity of the ݅′݄ݐ pattern to the center of ݇′݄ݐ class. The 
aim of the algorithm is to find well-defined membership 
value for every pattern. This is done by iteratively 
minimizing a modified objective function: 

෍෍ߤ௜௞
௠|ݔ௜ െ |௞ݓ

௡

௜ୀଵ

௄

௞ୀଵ

 

݉ is called fuzzification parameter. It controls the noise 
sensitivity and the extent of the effect of ߤ௜௞ in the 
computation of cluster centers. ݉ ∈ ሺ1.5,2.5ሻ has been 
found to be the optimal range for this parameter [19]. 
Correspondingly, ݉ ൌ 2 has been taken as it lies in the 
middle of the optimal range. 

To determine objective function, the matrix ܷ ൌ ሾߤ௜௞ሿ 
and the vector ܹ ൌ ሾݓ௞ሿ are determined, which are given as 

௜௞ߤ ൌ

ቆ
1

݀௜௞
ଶቇ

ଵ
ሺ௠ିଵሻൗ

∑ ቆ
1

݀௜௞
ଶቇ

ଵ
ሺ௠ିଵሻൗ

௄
௞ୀଵ

 

௞ݓ ൌ
∑ ௜௞ߤ

௠ݔ௜
௡
௜ୀଵ

∑ ௜௞ߤ
௠௡

௜ୀଵ

 

where, ݀௜௞ is the distance between ݅′݄ݐ and ݆′݄ݐ cluster 
center. 

The matrix ܷ and vector W corresponding to minimized 
objective function represents the final classification of pixels 
and cluster centers. 

III. Results and discussion 

Two different classifiers with unsupervised learning 
methods are used in this study. Classification results impart 
their capacity in diagnosing AD. 

A. Classification using k-mean 

Pbvc as a feature is used to classify subjects into two 
classes, AD and NC. Discriminative power of this measure 
is tested using unpaired student t-test and its significance 
level is presented in Table 1. Classification results based on 
sensitivity and specificity are summarized in Table 2. 

B. Classification using FCM 

To compare the power of FCM with classic k-mean, 
patterns of subjects are classified using FCM. Results imply 
the higher sensitivity and specificity of FCM with respect to 
c-mean. Results are revealed in table 2. 

 
Table 2 

Classification Results of k-mean and FCM 
 Sensitivity Specificity Accuracy 

K-mean 73.3% 93.3% 83.3% 
FCM 80% 93.3% 86.67% 

Both classifiers have the same specificity, but FCM shows higher 
sensitivity and hence higher accuracy besides k-mean. 

 

Herein, in order to more robust evaluation of the relative 
prediction performance of two classifiers, Receiver 
Operating Characteristics (ROC) curve is also adopted 
beside the traditional comparison of relative error. This 
analysis is held to provide more robust comparative 
evaluation of expected performance on target data than 
simple comparison of error, which assumes the observed 
class distribution and does not reflect any differences in the 
cost of different types of error. ROC curve for k-mean and 
FCM classifiers are illustrated in Fig. 3. 

IV. Conclusion  

According to the previous findings, pbvc measure has the 
power of discriminating populations of AD from controls. 
This study revealed the usefulness of it in diagnosing 
individual subjects using various classifiers with remarkable 
accuracy even in unsupervised mode. 
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Fig. 3. ROC curve of k-mean (left) and FCM (right). Maximum accuracy of both classifiers are the same but the total area under the curve (AUC) of FOC is 
higher than k-mean. 
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