
 

 
Abstract—In the first part, we review basic principles of the 

distributed modeling approach in optimization and present 
introduction to the formal framework based on the concept of 
a distributed optimization program. The framework is a 
general one and may be utilized for various classes of decision 
problems. The DOPs (distributed optimization programs) are 
introduced as syntactical entities containing certain 
optimization elements and based on composition rules. They 
may describe both basic and advanced mathematical programs 
(e.g., dynamic, stochastic, multistage, and hierarchical) and 
also game theory models. In addition, more complicated 
models can be derived from these building stones and further 
transformed in the syntactical correct way. Although the 
introduced descriptions are particularly designed for 
manipulations of programs’ structures, semantics for certain 
DOPs can also be defined. Hence, the next challenge is to 
search promising solutions in the feasible sets of optimization 
elements of DOPs. Therefore, several genetic algorithms (GAs) 
are chosen to search in separate feasible sets and they may also 
exchange information about different populations for achieved 
solutions of DOP elements in various ways. The general 
inspiration comes from decomposition techniques in scenario-
based multistage programs, so the name nested GAs is used in 
our case. The computational results and implementation 
description are presented for the specific min-max problems 
that are chosen as elementary prototype instances. 
 

Index Terms—Genetic algorithms, minmax problems, 
distributed optimization programs, nested decompostion 
 
 

I. INTRODUCTION 

ECENT engineering optimization problems require 
further development of suitable modeling and 

algorithmic tools; see, e.g., [1]. By experience of our 
collaborators at the Brno University of Technology, 
decomposability of models and algorithms is asked, see, 
e.g., [2] and [3] for continuous casting problems, [4], [5], 
and [6] for concrete design problems, [7], [8], and [9] for 
power plant policies, [10] for statistical estimation 
problems, and [11], [12] for stochastic programming 
engineering applications.  

Complexity of optimization models has its quantitative 
side, related to the growing size of data, and its qualitative 
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side, related to the program structure. We deal mainly with 
qualitative complexity. In this case, well-known 
decomposition models and methods characterized by a 
splitting of the original program into subprograms are 
widely employed, see [1]. These subprograms must interact, 
and the goal is to coordinate their actions in such a way that 
the solution of the original program is obtained. 

We may see that several mathematical programming 
approaches as in [1] give a direct motivation for detailed 
studies of relations among optimization programs (see also 
minmax objective functions, two-stage programs, multistage 
programs, and optimal control and dynamic programming 
problems). The additional motivation may be provided by 
other structural approaches to optimization as optimization 
of multilevel systems and hierarchical optimization (see, 
e.g., [13] and [14]).  

The challenge is to develop tools supporting easy 
manipulations with large decomposable programs and the 
solution procedures based on linked GAs.  

We have recognized that these models are based on the 
graph-related decision stage structure, see [1]. Therefore, we 
have developed an algebraic framework [15], [16] and 
proposed an object-oriented shell, see [17], [18] that can 
help the applicability of particular heuristic algorithms, see, 
e. g. [19] and [20]. The paper shows how to enrich the 
algebraic framework for so called DOPs (Distributed 
Optimization Problems) with the use of the set of linked 
genetic algorithms that we name nested genetic algorithms.  

An important requirement that must be considered with 
further syntax development is to keep developed syntactical 
rules open also for multicriteria programs, models of 
conflicts by game theory, and future enhances. Although 
such requirement may look too ambitious, at the same time 
we restrict ourselves to the most general and descriptive 
level. We realize the first attempt in the development of 
environment that will allow combination of different 
complex decision problems.  

II. DISTRIBUTED OPTIMIZATION PROBLEMS 

  
Generalizing the experience mentioned in Section 1, we 

have found that static programs may be understood as 
certain optimization elements with similar structure: O = (C, 
F, G). Symbols C, F, and G define the internal structure of 
any optimization element. The symbol C defines the 
decision variable x and related feasible set C. With F the 
evaluation rule for x is given (e.g., objective function f(x)). 
The symbol G specifies the goal for decision x if any exists. 
We may see that this optimization notation is useful for the 
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specification of different goals. A simple graph notation is 
developed to describe optimization elements visually. 
Optimization elements representing deterministic 
mathematical programs are denoted by nodes. Further 
elements together with model transformations are discussed 
in [15].  

In this paper we focus on introduction of specialized 
heuristic algorithms linked to optimization elements. Up to 
now, all optimization elements have represented separate 
programs, so the relations between them must be reviewed.  

Having two different optimization elements, we see that 
they may generate optimal and feasible solutions. The 
relation between two optimization elements is based on the 
principal idea that the solution of one element may influence 
the behavior of another one. For example, the solution of 
the first program may change the feasible set (e.g., 
coefficients in the constraints) and/or the objective function 
value (by the additional cost or profit) of the second 
program.  

From the mathematical point of view, the difference 
between modification of the objective and feasible set is not 
so important, because the feasibility check may be 
incorporated into the objective when infinite values are 
assigned to the objective for infeasible solutions.  

The relation between two elements is represented by arc. 
The relations can be further classified by the impact of the 
solution of one element on the other one, see [15]. 
Described relations may also be symmetric; this situation is 
denoted with two arcs of the opposite direction or with one 
edge without orientation.  

Using sequence of arcs, we identify how the actions 
discussed with description of relations between programs 
are scheduled in time. Therefore, for each optimization 
element the algorithm can be chosen and they may 
communicate following the arc related information. 

In the common case of more optimization elements Ot, 
t=1,…,T, we may choose them in the form 

 

  )(,;minarg? tttttt Cf uxuvx  , (1) 

 
where the influence of other elements is described by import 
parameters ut and vt, and  ...minarg?  means that we 

search for any optimal solution.  
Without assigning values to ut and vt, this description has 

no reasonable semantics. Using our syntax O = (C, F, G), 
we introduce transformation elements as those that may 
connect optimization elements (e.g., Tt(xt ;vt) where Tt is a 
suitable mapping).  

The transformation elements may be combined to design 
even more complex transformation elements. All considered 
elements (optimization, transformation, random) are called 
DOP elements.  

To link Ot to other elements, we have to specify values of 
ut and vt. Therefore, for so called immediate ancestor 
elements with indices from A(t), we have  

 
ut =  t(xA(t)) =  t((xa)a A(t)),  (2) 

 
where xA(t) are variables and parameters of  Ot immediate 

ancestors chosen by a modeler, and   t is a suitable vector 
(or scalar) function. For so called immediate successor 
elements with indices from S(t), we have  
 
vt =  t(xS(t)) =   t((xs)s  S(t)), (3)  
 
where xS(t) are variables and parameters of  Ot immediate 
successors chosen by a modeler, and   t is a suitable vector 

(or scalar) function, see Figure 1. 
Therefore, the DOP elements may be understood as being 

composed of optimization, transformation, and further 
elements indexed by t with a similar structure  

 
Ot = (Ct, Ft, Gt,  t,  t).  (4) 

 
For the given set of indices t, the set of Ot’s is called a 

distributed optimization program (DOP). The DOP is closed 
(CDOP) when for all t: ut and vt parameters are all specified 
with  t and  t. We may assume that variables, functions, 
and parameters are specified in the manner that satisfies 
necessary dimensional requirements. Therefore, the DOP 
contains nodes that are connected by arcs. Graphical 
representation of DOP is called a support graph. 

In certain cases, ut and vt parameters are not fully 
specified for some  t and  t. The DOP with this property 
is called an open DOP (ODOP). The ODOP may be 
understood as representing a certain form of uncertainty. 
When we specify the uncertainty including random elements 
and further deterministic reformulations, we again obtain 
closed DOP (CDOP), see [16].  

We have syntactically correct description with graphical 
visualization based on relations among DOP elements. 
Under circumstances introduced in [16] i.e. the CDOP 
without circuits, having one forefather optimization 
element, may be shrunken into one-node compressed 
description.  

In this case, the forward substitution procedure applied to 
the DOP replaces all occurrences of u j with  j in 
successive forward steps, and then, the backward procedure 
replaces v j with  j and collects constraints and objective 
functions. This backward procedure is similar to the 
substitution used for composed functions. 

We have presented DOP syntax and we now mention 

 
Fig. 1.  DOP element and related arcs, see (4). 
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DOP semantics. Usually, the obtained one-node compressed 
description is rather complex, but it may be often interpreted 
as the mathematical program that defines the DOP 
semantics. 

 When objective functions of all node programs are 
contained in the final composed objective function of the 
forefather node, we may understand it as a generalized 
utility function that replaces multiple criteria with a single 
criterion.  

However, in certain cases, this compact description is not 
available and simulation techniques and heuristics to study 
behavior of the DOP are welcome. So, we focus on this 
problem in the next section. 

III. NESTED GENETIC ALGORITHMS 

Many optimization models with a complex structure (e.g., 
dynamic programming, multistage stochastic programming, 
bilevel programming, Nash-Stackelberg games, minmax 
problems, etc.) can be studied within the framework of 
DOP.  

Therefore, it is a challenge to develop algorithms that are 
enough robust to be suitable for the large set of DOPs. We 
may find that the aforementioned classes of programs and 
games often deal with specialized algorithms. In addition, 
many of them also involve specialized heuristic algorithms.  

Hence, we have decided to utilize our previous 
experience, see [16] and [20] and extend the developed GAs 
in such a way that may serve for the DOPs as well. 
However, there are certain methodological challenges that 
must be solved. Therefore, to tackle them, we firstly focus 
on the particular class of minmax problems that can be 
applied in engineering robust models, see also [20]. 

Firstly, we review the fundamental ideas of genetic 
algorithms (GAs) that is quite understandable and seems to 
be widely known. Genetic algorithms belong in stochastic 
heuristic optimization methods. The main usage of GA is 
the solving of problems of complicated multi-dimensional 
optimization where classical analytic and numerical 
techniques fail. 

We denote an optimization problem as 
 

  Cf  xxx minargopt , (5) 

 
where f is an objective function, C is a set of feasible 
solutions, x  is a feasible solution and optx  is the optimum 

solution to be found.  
The strategy of searching through the set C used by the 

GA is inspired by natural evolution, where the best 
individuals have the biggest chance to survive and to 
become parents of new offspring. In addition, the GA uses 
another mechanism existing in the nature - mutation. 
Mutation is based on a random change of genetic 
information. Using mutation individuals can adapt to 
changing living conditions easier. Mutation can also prevent 
degeneration (in optimization the deadlock in a local 
extreme can be supposed to be an analogy to degeneration). 

The GA has an iterative character. It works not only with 
one solution in time but with the whole population of 
solutions. The population contains many (from tens to 

hundreds) individuals – bit strings representing solutions.  
The mechanism of GA involves only elementary 

operations like strings copying, partially bit swapping or bit 
value changing. The GA starts with a population of strings 
and thereafter generates successive populations using the 
following three basic operations: reproduction, crossover, 
and mutation. 

Reproduction is the process by which individual strings 
are copied according to an objective function value (fitness). 
Copying of strings according to their fitness value means 
that strings with a higher value have a higher probability of 
contributing one or more offspring to next generation. This 
is an artificial version of natural selection.  

Mutation is an occasional (with a small probability) 
random alteration of the string position value. Mutation is 
needed since, in spite of reproduction and crossover 
effectively searching and recombining the existing 
representations, they occasionally become overzealous and 
lose some potentially useful genetic material. The mutation 
operator prevents such an irrecoverable loss.  

The recombination mechanism allows mixing of parental 
information while passing it to their descendants, and 
mutation introduces innovation into the population. In spite 
of simple principles, the design of GA for successful 
practical usage is surprisingly complicated. The GA may 
have many parameters that depend on the problem to be 
solved.  

The description of GA implementation details can be 
found in [21] and [22]. The basic GA that we use for 
particular optimization elements in the examples described 
in the paper utilizes shadows i.e. a type of redundancy 
introduced by [23], and the death operator, see [24]. 

As an example of the DOP that we use for our tests we 
consider the following minmax problem  

 
)},({maxmin? yx

yx
f

YX 
 , (6) 

 
where f  is an objective function, x and y are decision 
vectors from spaces X and Y respectively.  

In this case, there are two optimization elements. 
A maximization-based (outer) element should be solved for 
fixed values of x set by  , and then the minimization-
based (inner) element has to be solved for obtained optimal 
values of y that are passed from maximization-based 
element by identity transformation  . 

Hence, the both elements are represented by nodes and 
they are connected by arcs. Our test computations have 
shown that the single GA is not suitable for solving the 
minmax problem. Thus we have developed and tested the 
population-based method with the nested arrangement of 
genetic algorithms. The basic idea was inspired by [25] and 
further generalized. 

We use the matrix of three columns and n rows. The first 
and second columns contain the values of x and y variables 
and the third one holds the corresponding objective function 
values. Above that the auxiliary data structure is used for 
storing the triplet   iiii f yxyx ,,,  representing the best 

known solution at the moment.  
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The nested combination of GAs works as follows: 
 

1. Initialization 

1.1. Generating values },...1{,0 nii x  (randomly). The 

subscript denotes the line number in the matrix 
and the superscript denotes the number of 
iteration. 

1.2. Computing },...1{,1 nii y , such that 

 

)},({max),( 010 yxyx
y

i
Y

ii ff


  

 
using GA selected for y related DOP element (the 
inner  nested GA). 

1.3. Sorting of matrix rows by the third column 
(ascending). Storing of the first line values to the 
auxiliary structure (least known maximum). 
Hence, the obtained solution of the inner DOP 
element is transformed to the outer DOP element. 

2. Main cycle 

2.1. Computing },...1{, nik
i x , such that  

 

)},({min),( k
i

X

k
i

k
i ff yxyx

x
  

 
using GA selected for x related DOP element (the 
outer nested GA). 

2.2. Computing },...1{,1 nik
i y , such that  

 

)},({max),( 1 yxyx
y

k
i

Y

k
i

k
i ff



   

 
using GA selected for y related DOP element (the 
outer nested GA). 

2.3. Sorting of matrix rows by the third column 
(ascending). When better solution was obtained it 
is stored into the auxiliary structure (new least 
known maximum). 

2.4. Go to step 2.1 until the number of iterations is 
satisfied. 

 
We have realized several tests (see Figure 2 and 3 for 

examples of two graphs of the further discussed test 
objective functions). For the first test case of the objective 
function 

 

  yxyxyxf cos10sin10, 22  , (7) 

 
we have obtained 
 

    08.64.1,6.2},{maxmin*,* 







 fyxf

YyXx
yxf . 

 
For the next more complicated test objective function 
 

  




  2222 sin15, yxyxyxf , (8) 

we have computed  

    53.400.0,13.4},{maxmin*,* 







 fyxf

YyXx
yxf . 

For presented instances, we have chosen 10,10X  and 

10,10Y . We have used the population size of 30 

individuals and the number of iterations of 30 for all genetic 
algorithms in the arrangement described above.  

We did not realize any statistical evaluation (some 
principal ideas to follow in the future can be found in [22]. 
The results tended to stabilize usually after 10 iteration of 
the main cycle. Results were verified using software Octave. 

 

IV. CONCLUSION 

We have reviewed basic concepts of DOPs, focusing on 
syntax and mentioning semantics. For the simple case of the 
minmax problem, the nested genetic algorithms are 
introduced. Two computational examples are presented and 
visualized. 

Fig. 2.  The graph of the 1st test function (7). 

 
Fig. 3.  The graph of the 2nd test function (8). 
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