

Abstract—In the first part, we review basic principles of the

distributed modeling approach in optimization and present
introduction to the formal framework based on the concept of
a distributed optimization program. The framework is a
general one and may be utilized for various classes of decision
problems. The DOPs (distributed optimization programs) are
introduced as syntactical entities containing certain
optimization elements and based on composition rules. They
may describe both basic and advanced mathematical programs
(e.g., dynamic, stochastic, multistage, and hierarchical) and
also game theory models. In addition, more complicated
models can be derived from these building stones and further
transformed in the syntactical correct way. Although the
introduced descriptions are particularly designed for
manipulations of programs’ structures, semantics for certain
DOPs can also be defined. Hence, the next challenge is to
search promising solutions in the feasible sets of optimization
elements of DOPs. Therefore, several genetic algorithms (GAs)
are chosen to search in separate feasible sets and they may also
exchange information about different populations for achieved
solutions of DOP elements in various ways. The general
inspiration comes from decomposition techniques in scenario-
based multistage programs, so the name nested GAs is used in
our case. The computational results and implementation
description are presented for the specific min-max problems
that are chosen as elementary prototype instances.

Index Terms—Genetic algorithms, minmax problems,
distributed optimization programs, nested decompostion

I. INTRODUCTION

ECENT engineering optimization problems require
further development of suitable modeling and

algorithmic tools; see, e.g., [1]. By experience of our
collaborators at the Brno University of Technology,
decomposability of models and algorithms is asked, see,
e.g., [2] and [3] for continuous casting problems, [4], [5],
and [6] for concrete design problems, [7], [8], and [9] for
power plant policies, [10] for statistical estimation
problems, and [11], [12] for stochastic programming
engineering applications.

Complexity of optimization models has its quantitative
side, related to the growing size of data, and its qualitative

Manuscript received July 16, 2011; revised August 10, 2011. This work

was supported in part by the projects of Ministry of education of the Czech
Republic OPVK CZ.1.07/2.2.00/07.0406 and MSM 0021630529.

J. Roupec is with the Institute of Automation and Computer Science,
Brno University of Technology, Technicka 2, 616 69 Brno, Czech Republic
(phone: +420 54114 3346; e-mail: roupec@fme.vutbr.cz).

P. Popela is with The Institute of Mathematics, Brno University of
Technology, Brno, Czech Republic. (e-mail: popela@fme.vutbr.cz).

side, related to the program structure. We deal mainly with
qualitative complexity. In this case, well-known
decomposition models and methods characterized by a
splitting of the original program into subprograms are
widely employed, see [1]. These subprograms must interact,
and the goal is to coordinate their actions in such a way that
the solution of the original program is obtained.

We may see that several mathematical programming
approaches as in [1] give a direct motivation for detailed
studies of relations among optimization programs (see also
minmax objective functions, two-stage programs, multistage
programs, and optimal control and dynamic programming
problems). The additional motivation may be provided by
other structural approaches to optimization as optimization
of multilevel systems and hierarchical optimization (see,
e.g., [13] and [14]).

The challenge is to develop tools supporting easy
manipulations with large decomposable programs and the
solution procedures based on linked GAs.

We have recognized that these models are based on the
graph-related decision stage structure, see [1]. Therefore, we
have developed an algebraic framework [15], [16] and
proposed an object-oriented shell, see [17], [18] that can
help the applicability of particular heuristic algorithms, see,
e. g. [19] and [20]. The paper shows how to enrich the
algebraic framework for so called DOPs (Distributed
Optimization Problems) with the use of the set of linked
genetic algorithms that we name nested genetic algorithms.

An important requirement that must be considered with
further syntax development is to keep developed syntactical
rules open also for multicriteria programs, models of
conflicts by game theory, and future enhances. Although
such requirement may look too ambitious, at the same time
we restrict ourselves to the most general and descriptive
level. We realize the first attempt in the development of
environment that will allow combination of different
complex decision problems.

II. DISTRIBUTED OPTIMIZATION PROBLEMS

Generalizing the experience mentioned in Section 1, we

have found that static programs may be understood as
certain optimization elements with similar structure: O = (C,
F, G). Symbols C, F, and G define the internal structure of
any optimization element. The symbol C defines the
decision variable x and related feasible set C. With F the
evaluation rule for x is given (e.g., objective function f(x)).
The symbol G specifies the goal for decision x if any exists.
We may see that this optimization notation is useful for the

The Nested Genetic Algorithms for Distributed
Optimization Problems

Jan Roupec and Pavel Popela

R

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

specification of different goals. A simple graph notation is
developed to describe optimization elements visually.
Optimization elements representing deterministic
mathematical programs are denoted by nodes. Further
elements together with model transformations are discussed
in [15].

In this paper we focus on introduction of specialized
heuristic algorithms linked to optimization elements. Up to
now, all optimization elements have represented separate
programs, so the relations between them must be reviewed.

Having two different optimization elements, we see that
they may generate optimal and feasible solutions. The
relation between two optimization elements is based on the
principal idea that the solution of one element may influence
the behavior of another one. For example, the solution of
the first program may change the feasible set (e.g.,
coefficients in the constraints) and/or the objective function
value (by the additional cost or profit) of the second
program.

From the mathematical point of view, the difference
between modification of the objective and feasible set is not
so important, because the feasibility check may be
incorporated into the objective when infinite values are
assigned to the objective for infeasible solutions.

The relation between two elements is represented by arc.
The relations can be further classified by the impact of the
solution of one element on the other one, see [15].
Described relations may also be symmetric; this situation is
denoted with two arcs of the opposite direction or with one
edge without orientation.

Using sequence of arcs, we identify how the actions
discussed with description of relations between programs
are scheduled in time. Therefore, for each optimization
element the algorithm can be chosen and they may
communicate following the arc related information.

In the common case of more optimization elements Ot,
t=1,…,T, we may choose them in the form

)(,;minarg? tttttt Cf uxuvx , (1)

where the influence of other elements is described by import
parameters ut and vt, and ...minarg? means that we

search for any optimal solution.
Without assigning values to ut and vt, this description has

no reasonable semantics. Using our syntax O = (C, F, G),
we introduce transformation elements as those that may
connect optimization elements (e.g., Tt(xt ;vt) where Tt is a
suitable mapping).

The transformation elements may be combined to design
even more complex transformation elements. All considered
elements (optimization, transformation, random) are called
DOP elements.

To link Ot to other elements, we have to specify values of
ut and vt. Therefore, for so called immediate ancestor
elements with indices from A(t), we have

ut = t(xA(t)) = t((xa)a A(t)), (2)

where xA(t) are variables and parameters of Ot immediate

ancestors chosen by a modeler, and t is a suitable vector
(or scalar) function. For so called immediate successor
elements with indices from S(t), we have

vt = t(xS(t)) = t((xs)s S(t)), (3)

where xS(t) are variables and parameters of Ot immediate
successors chosen by a modeler, and t is a suitable vector

(or scalar) function, see Figure 1.
Therefore, the DOP elements may be understood as being

composed of optimization, transformation, and further
elements indexed by t with a similar structure

Ot = (Ct, Ft, Gt, t, t). (4)

For the given set of indices t, the set of Ot’s is called a

distributed optimization program (DOP). The DOP is closed
(CDOP) when for all t: ut and vt parameters are all specified
with t and t. We may assume that variables, functions,
and parameters are specified in the manner that satisfies
necessary dimensional requirements. Therefore, the DOP
contains nodes that are connected by arcs. Graphical
representation of DOP is called a support graph.

In certain cases, ut and vt parameters are not fully
specified for some t and t. The DOP with this property
is called an open DOP (ODOP). The ODOP may be
understood as representing a certain form of uncertainty.
When we specify the uncertainty including random elements
and further deterministic reformulations, we again obtain
closed DOP (CDOP), see [16].

We have syntactically correct description with graphical
visualization based on relations among DOP elements.
Under circumstances introduced in [16] i.e. the CDOP
without circuits, having one forefather optimization
element, may be shrunken into one-node compressed
description.

In this case, the forward substitution procedure applied to
the DOP replaces all occurrences of u j with j in
successive forward steps, and then, the backward procedure
replaces v j with j and collects constraints and objective
functions. This backward procedure is similar to the
substitution used for composed functions.

We have presented DOP syntax and we now mention

Fig. 1. DOP element and related arcs, see (4).

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

DOP semantics. Usually, the obtained one-node compressed
description is rather complex, but it may be often interpreted
as the mathematical program that defines the DOP
semantics.

 When objective functions of all node programs are
contained in the final composed objective function of the
forefather node, we may understand it as a generalized
utility function that replaces multiple criteria with a single
criterion.

However, in certain cases, this compact description is not
available and simulation techniques and heuristics to study
behavior of the DOP are welcome. So, we focus on this
problem in the next section.

III. NESTED GENETIC ALGORITHMS

Many optimization models with a complex structure (e.g.,
dynamic programming, multistage stochastic programming,
bilevel programming, Nash-Stackelberg games, minmax
problems, etc.) can be studied within the framework of
DOP.

Therefore, it is a challenge to develop algorithms that are
enough robust to be suitable for the large set of DOPs. We
may find that the aforementioned classes of programs and
games often deal with specialized algorithms. In addition,
many of them also involve specialized heuristic algorithms.

Hence, we have decided to utilize our previous
experience, see [16] and [20] and extend the developed GAs
in such a way that may serve for the DOPs as well.
However, there are certain methodological challenges that
must be solved. Therefore, to tackle them, we firstly focus
on the particular class of minmax problems that can be
applied in engineering robust models, see also [20].

Firstly, we review the fundamental ideas of genetic
algorithms (GAs) that is quite understandable and seems to
be widely known. Genetic algorithms belong in stochastic
heuristic optimization methods. The main usage of GA is
the solving of problems of complicated multi-dimensional
optimization where classical analytic and numerical
techniques fail.

We denote an optimization problem as

 Cf xxx minargopt , (5)

where f is an objective function, C is a set of feasible
solutions, x is a feasible solution and optx is the optimum

solution to be found.
The strategy of searching through the set C used by the

GA is inspired by natural evolution, where the best
individuals have the biggest chance to survive and to
become parents of new offspring. In addition, the GA uses
another mechanism existing in the nature - mutation.
Mutation is based on a random change of genetic
information. Using mutation individuals can adapt to
changing living conditions easier. Mutation can also prevent
degeneration (in optimization the deadlock in a local
extreme can be supposed to be an analogy to degeneration).

The GA has an iterative character. It works not only with
one solution in time but with the whole population of
solutions. The population contains many (from tens to

hundreds) individuals – bit strings representing solutions.
The mechanism of GA involves only elementary

operations like strings copying, partially bit swapping or bit
value changing. The GA starts with a population of strings
and thereafter generates successive populations using the
following three basic operations: reproduction, crossover,
and mutation.

Reproduction is the process by which individual strings
are copied according to an objective function value (fitness).
Copying of strings according to their fitness value means
that strings with a higher value have a higher probability of
contributing one or more offspring to next generation. This
is an artificial version of natural selection.

Mutation is an occasional (with a small probability)
random alteration of the string position value. Mutation is
needed since, in spite of reproduction and crossover
effectively searching and recombining the existing
representations, they occasionally become overzealous and
lose some potentially useful genetic material. The mutation
operator prevents such an irrecoverable loss.

The recombination mechanism allows mixing of parental
information while passing it to their descendants, and
mutation introduces innovation into the population. In spite
of simple principles, the design of GA for successful
practical usage is surprisingly complicated. The GA may
have many parameters that depend on the problem to be
solved.

The description of GA implementation details can be
found in [21] and [22]. The basic GA that we use for
particular optimization elements in the examples described
in the paper utilizes shadows i.e. a type of redundancy
introduced by [23], and the death operator, see [24].

As an example of the DOP that we use for our tests we
consider the following minmax problem

)},({maxmin? yx

yx
f

YX
 , (6)

where f is an objective function, x and y are decision
vectors from spaces X and Y respectively.

In this case, there are two optimization elements.
A maximization-based (outer) element should be solved for
fixed values of x set by , and then the minimization-
based (inner) element has to be solved for obtained optimal
values of y that are passed from maximization-based
element by identity transformation .

Hence, the both elements are represented by nodes and
they are connected by arcs. Our test computations have
shown that the single GA is not suitable for solving the
minmax problem. Thus we have developed and tested the
population-based method with the nested arrangement of
genetic algorithms. The basic idea was inspired by [25] and
further generalized.

We use the matrix of three columns and n rows. The first
and second columns contain the values of x and y variables
and the third one holds the corresponding objective function
values. Above that the auxiliary data structure is used for
storing the triplet iiii f yxyx ,,, representing the best

known solution at the moment.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

The nested combination of GAs works as follows:

1. Initialization

1.1. Generating values },...1{,0 nii x (randomly). The

subscript denotes the line number in the matrix
and the superscript denotes the number of
iteration.

1.2. Computing },...1{,1 nii y , such that

)},({max),(010 yxyx
y

i
Y

ii ff

using GA selected for y related DOP element (the
inner nested GA).

1.3. Sorting of matrix rows by the third column
(ascending). Storing of the first line values to the
auxiliary structure (least known maximum).
Hence, the obtained solution of the inner DOP
element is transformed to the outer DOP element.

2. Main cycle

2.1. Computing },...1{, nik
i x , such that

)},({min),(k
i

X

k
i

k
i ff yxyx

x

using GA selected for x related DOP element (the
outer nested GA).

2.2. Computing },...1{,1 nik
i y , such that

)},({max),(1 yxyx
y

k
i

Y

k
i

k
i ff

using GA selected for y related DOP element (the
outer nested GA).

2.3. Sorting of matrix rows by the third column
(ascending). When better solution was obtained it
is stored into the auxiliary structure (new least
known maximum).

2.4. Go to step 2.1 until the number of iterations is
satisfied.

We have realized several tests (see Figure 2 and 3 for

examples of two graphs of the further discussed test
objective functions). For the first test case of the objective
function

 yxyxyxf cos10sin10, 22 , (7)

we have obtained

 08.64.1,6.2},{maxmin*,*

 fyxf

YyXx
yxf .

For the next more complicated test objective function

 2222 sin15, yxyxyxf , (8)

we have computed

 53.400.0,13.4},{maxmin*,*

 fyxf

YyXx
yxf .

For presented instances, we have chosen 10,10X and

10,10Y . We have used the population size of 30

individuals and the number of iterations of 30 for all genetic
algorithms in the arrangement described above.

We did not realize any statistical evaluation (some
principal ideas to follow in the future can be found in [22].
The results tended to stabilize usually after 10 iteration of
the main cycle. Results were verified using software Octave.

IV. CONCLUSION

We have reviewed basic concepts of DOPs, focusing on
syntax and mentioning semantics. For the simple case of the
minmax problem, the nested genetic algorithms are
introduced. Two computational examples are presented and
visualized.

Fig. 2. The graph of the 1st test function (7).

Fig. 3. The graph of the 2nd test function (8).

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

ACKNOWLEDGMENT

The paper was supported by project from MSMT of the
Czech Republic no.1M06047, by a research plan from
Ministry of Education of the Czech Republic no.
MSM0021630519 and by the Czech Ministry of Industry
and Trade within the framework of research tasks FR-
TI1/357. The support from Strategiskhoyskoleprosjekt
“Supply chain management og optimierungsmodeller” is
also gratefully acknowledged.

REFERENCES
[1] P. Popela, “An Objected-Oriented Approach to Multistage Stochastic

Programming,” Ph.D. dissertation, Charles University, Prague, 1998.
[2] F. Kavička, J. Štětina, B. Sekanina, et al. “The optimization of a

concasting technology by two numerical models,” Journal of
Materials Processing Technology, vol. 185, no.1–3, pp. 152–159,
2007.

[3] T. Mauder, Č. Šandera, M. Šeda, J. Štětina “Optimization of Quality
of Continuously Cast Steel Slabs by Using Firefly Algorithm,” in
Proc. of Conference on Materials and Technology, Portoroz, 2010,
pp. 45–53.

[4] J. Plšek, P. Štěpánek, P. Popela, “Deterministic and Reliability Based
Structural Optimization of Concrete Cross-section,” Journal of
Advanced Concrete Technology vol. 5, no. 1, pp. 63–74, 2007.

[5] P. Štěpánek, J. Plšek, I. Laníková, F. Girgle, and P. Šimůnek,
“Optimization of Concrete Structures Design,” In Proc. of the 16th
International Conference on Soft Computing MENDEL 2010, Brno,
2010, pp. 434–440.

[6] I. Laníková, P. Štěpánek, P. Šimůnek, “Fully Probabilistic Design of
Concrete Structures,” In Proc. of the 16th International Conference
on Soft Computing MENDEL 2010, Brno, 2010, pp. 426–433.

[7] M. Touš, M. Pavlas, P. Stehlík, P. Popela, “Effective biomass
integration into existing combustion plant,” Energy, vol. 36, no. 8, pp.
4654 – 4662, 2011.

[8] M. Pavlas, M. Touš, P. Klimek, L. Bébar, “Waste incineration with
production of clean and reliable energy,” (10 p.). Clean Technologies
and Environmental Policy, vol. 13, no. 4, pp. 595–605, 2011.

[9] M. Pavlas, M. Touš, L. Bébar, P. Stehlík, “Waste to Energy - An
Evaluation of the Environmental Impact,” Applied Thermal
Engineering, vol. 30, no. 10, pp. 2326–2332, 2010.

[10] R Matoušek, Z. Karpíšek, “Exotic Metrics for Function
Approximations,” in Proc. of the 17th International Conference on
Soft Computing MENDEL 2011, Brno, 2011, pp. 560–566.

[11] T. Mauder, J. Novotný, “Two Mathematical Approaches for Optimal
Control of the Continuous Slab Casting Process,” in Proc. of the 16th
International Conference on Soft Computing MENDEL 2010, Brno,
2010, pp. 395–400.

[12] E. Žampachová, P. Popela, M. Mrázek, “Optimum beam design via
stochastic programming”. Kybernetika vol. 46, no. 3, pp. 575–586,
2010.

[13] P.N.D. Bukh, “A bibliography of hierarchical production planning,”
Research report, Institute of Management, University of Aarhus,
March 1994.

[14] R. M. Burton and B. Obel, editors. Design Models for Hierarchical
Organizations: Computation, Information and Decentralization.
Kluwer Academic Press, 1995.

[15] P. Popela, R. Matoušek, J. Sklenář, “The Formal Framework for
DOP,” in Proc. of the 14th International Conference MENDEL 2008,
Brno, 2008, pp. 235–240.

[16] P. Popela, R. Matoušek, J. Sklenář, E. Žampachová, J. Roupec,
“Advances in the Formal Framework for DOP,” in Proc. of the 17th
International Conference on Soft Computing MENDEL 2011, Brno,
2011, pp. 454–469.

[17] P. Popela, R. Matoušek, J. Sklenář, E. Žampachová, “The internal
objects for optimization programs,” in Proc. of the 15th International
Conference on Soft Computing MENDEL 2009, Brno, 2009, pp. 247–
258.

[18] P. Popela, R. Matoušek, J. Sklenář, E. Žampachová, “The external
objects for optimization programs,” in Proc. of the 16th International
Conference on Soft Computing MENDEL 2010, Brno, 2010, pp. 465–
470.

[19] R. Matoušek, “GAHC: Improved GA with HC mutation”, in Proc. of
the World Congress on Engineering and Computer Science WCECS
2007, San Francisco, CA, 2007, pp.915–920.

[20] J. Roupec, P. Popela “Scenario generation and analysis by heuristic
algorithms”, in Proceedings of World Congress on Engineering and
Computer Science (WCECS), San Francisco, CA, 2007, pp. 931–935.

[21] J. Roupec “Advanced Genetic Algorithms for Engineering Design
Problems,” Engineering Mechanics, vol. 17, no. 5/6, pp. 407–417,
2011.

[22] J. Roupec, “Design of Genetic Algorithm for Optimization of Fuzzy
Controllers Parameters (In Czech),” Ph.D. dissertation, Brno
University of Technology, Brno, 2001.

[23] C. Ryan, “Shades. Polygenic Inheritance Scheme,” in Proc. of the 3th
International Conference on Soft Computing MENDEL 1997, Brno,
1997, pp. 140–147.

[24] P. Ošmera, J. Roupec “Limited Lifetime Genetic Algorithms in
Comparison with Sexual Reproduction Based GAs,” in Proc. of the
6th International Conference on Soft Computing MENDEL 2000,
Brno, 2000, pp. 118–126.

[25] H. J. C. Barbosa, “A Coevolutionary Genetic Algorithm for
Constrained Optimization,” in Proc. of the CEC’99, Washington, DC,
1999, pp. 1605–1611.

[26] Č. Šandera, P. Popela, J. Roupec, “The Worst Case Analysis by
Heuristic Algorithms,” in Proc. of the 15th International Conference
on Soft Computing MENDEL 2009, Brno, 2009, pp.109–114.

[27] P. Popela, J. Roupec, P. Ošmera, R. Matoušek, “The Formal
Stochastic Framework for Comparison of Genetic Algorithms,” in
Proc. of The 2002 IEEE World Congress on Computational
Intelligence, Honolulu, HI, 2002, pp. 576–581.

[28] R. Matoušek, P. Ošmera, J. Roupec, “GA with Fuzzy Inference
System,” in Proc. of the Congress of Evolutionary Computing
CEC 2000, La Jolla, CA, 2000, pp. 646–651.

[29] J. Šťastný, V. Škorpil, “Genetic Algorithm and Neural Network,” in
Proc. of the 7th WSEAS International Conference on Applied
Informatics and Communications, Vouliagmeni, Greece, 2007, pp.
347–351.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

