


Abstract —The advanced signal processing systems of today

requires extreme data throughput and low power
consumption. The only way to accomplish this work is to use
parallel processor architecture with efficient implementation of
algorithms. The aim of this paper is to evaluate the use of a
parallel processor architecture in Radar signal processing
applications where the processor has to perform complex
computations. The approach taken in this work is that we have
implemented a parameterized version of Fast Fourier
Transform (FFT) algorithm on Ambric Massivel Parallel
Processor Array (MPPA) and evaluated the results in terms of
resource usage, latency, and cycle count per processed output
sample. The design works for any given number of inputs
within the range for the given parameter values. We have
concluded that the use of parametrized design approach
enables us to do design space exploration between resource
usage and performance benefit for Ambric architecture.

Index Terms—Ambric platform, Parallel processor, Radar
Signal Processing, Fast Fourier Transform.

I. INTRODUCTION

URRENTLY, the communication systems are playing an
important role in our daily life. The rapid development

of modern communication system demands that the system
architecture and algorithm should develop accordingly. The
design of communication systems is becoming easier these
days, with the rising development of digital signal
processing techniques. The digital signal processing deals
with analysis, interpretation and manipulation of signals.
There are various fields of technology the signal processing
can be used, such as sound, images, biological signals, radar
signals processing, etc. Processing of such signals includes
filtering, storage and reconstruction, separation of
information from noise, compression, and feature extraction.

Md. Mashiur Rahman is with the International Masters Program in
Computer Systems Engineering, Department of Information Science,
Computer and Electrical Engineering(IDE), Halmstad University, Box 823,
30118 Halmstad, Sweden (phone: +4571801918; Email:
mashiur_cse@yahoo.com).

Yadagiri Pyaram is with the International Masters Program in Computer
Systems Engineering, Department of Information Science, Computer and
Electrical Engineering(IDE), Halmstad University, Box 823, 30118
Halmstad, Sweden (Email: giree1985@gmail.com).

S. M. Mohsin Reza is pursuing Masters degree in Information
Technology (Embedded Systems Engineering), Faculty of Computer
Science, Electrical Engineering and Information Technology, University of
Stuttgart, Germany, Email: smmohsin.reza@gmail.com

S. M. Khaled Reza completed his bachelor in Computer Science and
Engineering and currently is with the International Masters Program in
Computational Engineering (Distributed Systems Engineering) from
Dresden University of Technology, Nötnitzer Straße 46, D-01187 Dresden,
Germany (Email: khalednub@yahoo.com).

The benefits of digital signal processing include increased
throughput, reduced bit error rate, and greater stability over
temperature and process variation. Signal specification plays
a key role in selecting the appropriate system architecture as
well as determining the necessary computational cost of all
involved algorithms.

We considered a Radar signal processing application
which consists of many sub stages. After receiving the
electromagnetic signal by the receiver antenna, the signal
processor processes it. It consists of several stages like Pulse
Compression, Velocity Compression, MTI (Moving Target
Identification) filter, Doppler filter, Envelop Creation,
Detection and Resolving. In this paper we focused on
Doppler Filter stage where Fast Fourier Transform
algorithm is used to filter the received pulses.
In Radar signal processing, the processor works on many
complex algorithms. As it is a real time system, it should be
efficient and the data of the processing systems need to be
updated in least possible time as well as the delay in
communication between target and transceiver should be
minimized. To achieve this, the system needs efficient
algorithm. The main goal of this paper is to implement an
efficient Fast Fourier Transform (FFT) algorithm used in
Radar Signal Processing which is mapped on Ambric
Processor. The Ambric processor is a Massively Parallel
Processing Arrays (MPPA) mostly used in embedded
applications where parallel data processing is needed. We
developed parameterized versions of FFT algorithm which
can work in the broad range from 8 point to 32 point for a
given parameter values in the program. We used a Designer
tool provided by the Ambric Inc. and ajava, a subset of java
programming language. Then we have evaluated the results
in terms of latency, cycle count per output sample and
efficiency of the development tools.

II. RADAR SIGNAL PROCESSING

The Radar is defined as an object detection system that
uses electromagnetic waves to determine the range, altitude,
direction and speed of both moving and stationary objects
such as aircraft, ships, motor vehicles, weather formations,
and terrain. In 1940, the term RADAR, an acronym for
RAdio Detection And Ranging, was introduced by U.S.
Navy researchers.
The main aspects of signal processing are signal theory,
efficient computational algorithms, and the implementation
of these algorithms in hardware. The purpose of radar signal
processing was primarily developed to detect and process
signals for air and ballistic missile defense systems. The first
processing work was initiated by considering the
appropriate algorithms and techniques on SAGE (Semi-

Dynamic Range Input FFT Algorithm for Signal
Processing in Parallel Processor Architecture

Md. Mashiur Rahman, Yadagiri Pyaram, S. M. Mohsin Reza and S. M. Khaled Reza

C

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

Automatic Ground Environment) air-defense system to
detect aircraft from noisy electronic signals. However, to
programs in air defense initially it was applied only the
theoretical foundation, where the ballistic missile defense
was needed the application of both signal processing theory
and practice. Later, the signal processing also applied on
several fields like, air traffic control, space surveillance, and
tactical battlefield surveillance [1].

A. Signal Processor

A digital computer is considered as a processor in Radar
signal processing. This processor is specifically designed for
the radar applications to achieve efficient performance on
the huge number of repetitive additions, subtractions, and
multiplications in real-time signal processing. The data
processor loads the program in to temporary memory for the
currently selected mode of operation. As required by this
program, the signal processor sorts the incoming numbers
from the A/D converter based on time of arrival, hence
range and stores the numbers for each range interval in
memory locations called range bins. After this it filters the
bulk of the unwanted ground clutter on the basis of its
Doppler frequency. By forming a bank of narrow band
filters for each range bin, the processor then integrates the
energy of successive echoes from the same target (i.e.,
echoes having the same Doppler frequency) and still further
reduces the background of noise. By examining the outputs
of all the filters, the processor determines the level of the
background noise and residual clutter, just as a human
operator would do by observing the range trace on a display.
When the amplitude is above this level, it automatically
detects the target echoes. Rather than supplying the echoes
directly to the display, the processor temporarily stores the
target’s positions in its memory. Meanwhile, it continuously
scans the memory at a rapid rate and provides the operator
with a continuous bright TV-like display of the positions of
all targets. This feature, called digital scan conversion, gets
around the problem of target blips fading from the display
during comparatively longer azimuth scan time. The target
positions are indicated by synthetic blips of uniform
brightness on a clear background, which makes them
extremely easy to see.

B. Signal Processing Challenges

Now a days, due to increased number of applications,
running these on limited numbers of processors is not
efficient because of so many limitations like heat
dissipation, less processing speed, etc; hence there is need
of parallel processing techniques. In Radar signal
processing, the processor needs to process the complex data
and therefore it should have enough (high speed) processing
power for quick identification of target and its altitude,
position, etc. The data transmission has to be in a short
(minimum) time to the target. The processing speed is the
main factor in Radar signal processing, which plays a vital
role in overall system performance. However, in order to
make the system faster, it is possible to process the data in
parallel using multiple numbers of processors
simultaneously. This technique is called SIMD (Single
Instruction Multiple Data) processing.

 Another problem in signal processing is that the
processors could process only limited range of input data

which limits the processors application areas; however in
practice the range of input data could varies because the
input range of different Radar signal processing may not be
always constant. So, there is needed of algorithm which
could run for different range of input data like 8-point, 16-
point, 32-point, etc. and can be speeded-up the processing
performance accordingly. Since the input variables are
complex values, it is challenging to write an efficient
algorithm. However, the algorithm should be able to deal
with more input samples, means it could perform more
arithmetic and logic operations per cycle. When these
algorithms mapped on to the processor there is increased
system performance in terms of speed and use of memory
on the system. Nevertheless, the speed-up would depend on
the algorithms efficiency.

III. AMBRIC PLATFORM

A. Ambric Architecture

The Am2000 family is the latest platform for embedded
and accelerated computing that is based on object-based
programming model. Aim of this platform for application
developers is using software languages and methodologies.
The major objectives of this platform are massive
performance, long-term scalability, and easy development.
Massively Parallel Processor Array (MPPA) designed using
more than 100 million logic transistors (Gates) on a single
chip. In this hundreds of processors and memory units
interconnected in general purpose way, with flexibility, high
performance, and low power and low cost.

Initially, Ambric decided to choose a programming model
to solve the parallel development problem, then created a
processing and interconnect architecture, silicon, and tools
to realize the desired model. In the Structural Object
Programming Model (SOPM), objects are strictly
encapsulated. Software programs are running concurrently
on an asynchronous array of processors and memories [6].
Objects are interconnected with Ambric channels to
communicate and synchronize each other.

B. Processor Architecture

Ambric processor architecture is designed to perform data
processing and control through channels. The processor
architecture is depicted in Figure 1. The READ and WRITE
operation in memory is performed through channels;
similarly instructions are also passed through channels
which make channel communication a prominent feature of
Ambric architecture. Ambric processor is very lightweight
32-bit streaming RISC (Reduced Instruction Set Computer)
CPUs. In this architecture RAM is mostly used for buffering
rather than a global memory. Since Ambric uses hundreds
of processors to perform computing in parallel, it is very
important to have simple, efficient and fast implementation
of instruction set to take advantage of instruction-level
parallelism. In this architecture, every data path is a self-
synchronizing Ambric channel, which makes pipeline
control easy. Memory locations are composed of general
registers instead of Ambric registers, since they can be read
and overwritten at anytime.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

Fig. 1: Processor Architecture

C. SR and SRD Processor

There are two types of processors in Ambric chip: (1)
SRD processor and (2) SR processor. Those processors have
local RAM memories that can get the instructions through
the channels. Processors execute the instructions that are
streamed from local memory. In Ambric processors there is
no interruption since each processor is dedicated to own
task. SR processors are 32 bit streaming RISC processors
and SRD processors are also 32 bit streaming RISC
processors with DSP extension. The SRD is more powerful
then SR, since it has DSP extension for mathematical
calculations. However, the SR processors are mainly used
for small tasks, when SRD is not necessary, like forking.

IV. BASIC FFT ALGORITHM

Discrete Fourier Transform (DFT) is a mathematical
technique, which is used for analyzing periodic digital series
of observations: x (n) = 0… N − 1, where N is the large
number. The main applications areas of DFT are image
processing, communication and radar signal processing.
When analyzing series of digital signals by using DFT, the
assumption looks like there are periodical repeating patterns
that are hidden in the series of observations and also other
phenomena that are not repeated in any discernible cyclic
way, which is called “noise”. The DFT helps to identify the
cyclic phenomena [2]. The mathematic definition of a DFT
is,

K = 0 . . N − 1 (1)

In equation (1), the size of N in a DFT is often a factor of
power of two (i.e. 8, 16, 32, 64, 128, 256, …) and n is the
variable of samples.

To calculate the Discrete Fourier Transform (DFT), the
Fast Fourier Transforms (FFT) is an optimized and fast way
that is used to convert the samples in time domain signal to
frequency domain signal. FFT is optimized to reduce the
extra calculation in DFT. Number of samples to be
transformed should be an exact multiple of two.
Mathematically, the Fourier transform can be performed
without the demand of the number of samples [3]. Fast
Fourier transform algorithms generally fall into two classes:
Decimation-in-Time, and Decimation-in-Frequency. Both of
the approaches require the same number of complex
multiplications and additions. The main difference between
two approaches is that decimation-in-time takes bit-reversed
input and generates normal-order output; on the other hand

decimation-in-frequency takes normal-order input and
generates bit-reversed output [4].

A. Radix-2 FFT

Radix-2 algorithm is one of the popular techniques to
calculate Fast Fourier Transform (FFT). It will be valid only
to sequences of length N=nm, where m is a positive integer.
In this method computational scheme will be regular and
efficient. The basic computation in the radix-2 decimation-
in-time algorithm is the butterfly computation. Butterfly
Computation of radix-2 with decimation-in-time has been
shown in Figure 2 that is applied in log2N following steps,
N/2 times in each step giving the algorithm a complexity of
O (Nlog2N). Figure 2 shows the 8-point FFT computation
using the radix-2 decimation-in-time algorithm. Examine
the shuffled order of the input samples, the order is found
by reversing the binary representation of a normally ordered
sequence [5].

B. Complexity analysis of radix-2 FFT

In each butterfly computation needs one complex
multiplication and two additions. For N point FFT, in each
log2N steps with N/2 butterflies will have total 2Nlog2N real
multiplications and 3Nlog2N real additions, so that in total
5Nlog2N floating point operations are needed [5].

Fig. 2: 8-point FFT butterfly using radix-2 decimation-in-time

V. IMPLEMENTATION FFT FOR PARALLEL ARCHITECTURE

The parallel processing is the ability to carry out multiple
operations or tasks simultaneously. Our target is to
maximum utilization of parallel processing capabilities. We
have implemented FFT algorithm on Am2045 processor. In
this chip there has only four input and output ports in one
processor. So we are able to read maximum four input
streams from the chip. If we want to run an algorithm on
more than four processors we have to distribute a single
stream for parallel processing elements. According to the
Streaming RISC with DSP (SRD) processor’s instruction set
an object can have maximum five input ports and six output
ports. Principally Streaming RISC (SR) processors are used
for streaming and Streaming RISC with DSP (SRD)
processors are used for math computation intensive
operations.

A. FFT Implementation

We have described in previous section about radix-2 FFT,

   
kn

N
jN

n
N enxkX











 
21

0

4

2

6

1

0

5

3

7

1

2

3

4

0

5

6

7

1st Stage 2nd Stage 3rd Stage

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

in this section we will discuss about design of FFT
Algorithm that supports on Ambric platform, and then
implement this design using aDesign environment and
finally mapping on Ambric architecture.

Our main goal is to develop a design approach for
algorithms that will work for different range of input points.
The points are formatted of power of two (i.e. 8, 16, 32, 64,
…). Providing pre-calculated twiddle factors to the
application is a better technique without computing them on
run-time because of complexity. If we want to compute
twiddle factors on run-time, it will be more complex. We
can store twiddle factors to the application in several ways,
using lookup table to store these or store twiddle factors in
external memories. Another way to do this is to provide
twiddle factors to processors on run-time through input
streams which will consume more resources. Alternatively,
the twiddle factors maybe passed to the objects at compile
time [2].

Since our design approach is parameterized version, we
cannot provide twiddle factor for specific objects or
processors, as we do not know how many objects we may
expect. It will depend upon the number of considering
points of FFT. The number of twiddle factors required will
depend on the complexity of FFT algorithm. That means for
8 points we will require only 8 twiddle factors and each
object needs only one value of that. We store the maximum
number of twiddle factors required for the maximum range
of algorithm in the design file. The values (which stored in
design file) will be accessed by the algorithm during
compile time by using index. In our program, we store 32
twiddle factors for using different versions of algorithm for
the range 8 point to 32 point FFT. In this aspect, the twiddle
factors are complex variables, so we store 32 real and 32
imaginary values in the design file. Also, we have used
decimation-in-time technique for the implementation of
radix-2 operation. With this technique at first it uses bit-
reversal mechanism for distributing input point and then it
performs the butterfly calculations.

Fig. 3: N-point FFT bit-reversal sorting of Distribute object

There is no need to reserve one or more processors for the
bit-reversal sorting, so by using this mechanism we have
saved some execution time. Distribute objects divides the
even and odd elements of the input stream. The objects will
send a set of even points to its left object as well as a set of

odd points to its right object of the input stream. The final
stage will get totally separated even and odd points.

In Figure 3, we have shown that for N-point FFT, in the
beginning stage the points are spitted into two new objects
with each N/2 points and in the following stage every
objects are maintaining the same rule (as was for the first
stage) until every processor gets exactly two points.

In Figure 4 we have shown an example of mapping and
communication through channels for 8 point FFT. For N
point FFT the same mapping mechanism will be used. In
this figure, each circle represents an object or processor
which is running and arrow represents the flow of data.
Input stream consists of both real and imaginary parts of the
time domain signal.
 In our design approach, each object will compute only 2-
point butterfly calculations and therefore all objects will get
the same work load. Because of having the same work load,
processor stalls are reduced in this design. This design does
not require any change in the clock frequency of objects or
processors. Figure 4 shows three butterfly stages where each
object gets 2 point from distribute objects and perform the
butterfly computations throughout the butterfly stages. The
twiddle factors are used in butterfly computations which
supplied either through design file or compute at runtime by
using another algorithm. In our implementations, we have
sent twiddle factors through design file in run time. After
butterfly computations, the output samples collected and
assembled by assembler objects A1, A2, A0 and then the
final result will send to the output file.

Fig. 4: 8-Point FFT Design Approach

Since our design is parameterized version, channel

connection between two processors has to be established
automatically during compile time and make a proper design
for a specific version of FFT. The distribute objects and
assembler objects have the same way of connecting one
processor to another. The distribute object D0 will distribute
the samples in two ways and send it to the next stage
distribute objects D1, D2 for further process. So, every
distribute object will have one input channel and two output
channels. However, the assembler object’s function is
exactly opposite to the distribute objects. The assembler
objects will have two input channels and one output
channels. In butterfly stage it is difficult to make dynamic
channel connection, for that we consider three stages inside
butterfly operation. We tagged the first stage of the butterfly
operation is firstFFT, the middle stage as RealFFT and the
final stage as finalFFT. The objects of firstFFT are
connecting between distribute object and RealFFT as well

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

as the finalFFT are connected between RealFFTs and
assembler objects. According to our design if we consider
8-point FFT, so that we need a total of 18 objects, the 3
objects for distribute, 3 objects for assemble and 12 objects
for butterfly computation. Similarly, for 16-point FFT we
require a total of 46 objects.
 In general for N-point FFT,
 Numbers of SR processors = 2(N/m-1) …………… (2)
 Number of SRD processors = (N/m log2N) …. …… .(3)

The Total number of Processor =

     NmNmN 2log12  …………. ……. (4)

Where m is the number of points calculating on each object
and should be the power of 2. N is the total number of
points in the FFT and Log2 (N) represents number of stages
in the FFT.
 If we want to calculate the larger number of FFT points,
the total numbers of processors are required to increase
gradually. The Am2045 processor has a total of 336
processors and half of them are SR (Streaming RISC)
processor. So, we have only 168 SRD processors available
to calculate butterfly operations, since we cannot use SR
processors for the multiplication. In our design, we consider
two points calculation in one object, so that we can only
implement this design for the range of 8 to 32-point FFT.
However, if we want calculating larger FFT point by using
this design, we have to increase the number of point
calculation on each object that means the value of m in the
equation (4). By following this technique we will be able to
use this design for calculating any number of FFT points
with in the design constraints.

B. Performance Testing Tools

 The PerfHarness tools released in July, 2010 by the
Ambric providers Nethra Imaging Inc. By using these tools,
we found the performance in terms of latency and cycle
count per output sample for different versions of FFT
algorithm. Here the term Latency means the response time
for the first output for a given first input. And the cycle
count per output sample indicates the clock cycles between
two workload results. In this test, the ddrLoader Object
reads the input samples and stores in DDR memory from
input file. The PerfHarness Object streams the input samples
from the DDR memory and calculates the performance.
After that in the next stage the full program will be loaded
in to the dut Object. After completing algorithm’s execution
the output will return back to the PerfHarness Object where
it finds the latency and cycle count per output sample as
shown in the below Fig. 5.

VI. FFT RESULT ANALYSIS

The table 1 shows the results of FFT where we
displayed the latency, cycle count and number of processors
required in different complexity of algorithms like 8 point,
16 point and 32 point FFT. We have collected required
number of SRD and SR processors and cycle count per
output sample by using PerfHarness tools. For calculating
the latency of FFT algorithm we have used performance
analyzer which is attached with the aDesigner simulator.

Table 1: Results for FFT

FFT Results

FFT
8 Points 16 Points 32 Points

By
Design

Perf
Harness

Total
By

Design
Perf

Harness
Total

By
Design

Perf
Harness

Total

SRD
Processors

12 6 18 32 6 38 80 6 86

SR
Processors

6 24 30 14 24 38 30 24 54

Latency
(cycles)

979 2643 4254

Cycle
Count/
Output
Sample

377 234 197

As shown in the table 1, design for 8 point FFT requires

12 SRD processors that we can verify from the equation (3),
but in fact it requires a total of 18 SRDs. That means 6 of
those 18 SRD processors are used by PerfHarness tools.
This situation will remain same for all other design cases of
different point FFT. According to our design in 8 point FFT
every SRD object will work on two input points. For this
purpose we have to distribute 8 points until every processor
gets two input samples. For distribution purpose we require
three SR processors since they do not perform any
arithmetic operations. After distributing the input samples it
has to be sent to the next processors where they are
performing butterfly calculations. Here we require three
stages with four set of SRD processors which can perform
arithmetic operations, because they can execute DSP
instructions. Therefore, we use a total of 12 SRD for 8 point
FFT. When the arithmetic operation is performed, the
results are assembled and sent to the design output. At this
Assembler stage, we require three more SR processors for
assembling the results which are coming from the butterfly
(FFT) stage. Therefore, a total of 12 SRD and 6 SR
processors are required for 8 point FFT algorithm mapping.
However, there are 30 SR processors are used by the design
of 8 point FFT where we need only 6 SR processors for
performing distribution and accumulation of data and the
remaining 24 SR processors are used by the PerfHarness
tools to do performance test.
 When the complexity of algorithm increases, the number
of processors required will increase, because we consider
two points butterfly calculation for each and every SRD
processor. So, for 16 point FFT, it requires 32 SRD and 14
SR processors. Similarly, for 32 point, more processors are
required than 16 point. It is because when number of point
increases, the design requires more SR and SRD processors.
The SR processors are used for distributing input samples
and assembling the output samples and the SRD processors
are used for performing butterfly operations.
 The latency, as shown in the table 1, for 8 point FFT is
979cycles, which corresponds the time taken between
sending first input and receiving first output. This output

Fig. 5: Working of PerfHarness tools

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

can be found by using performance analyzer tool which is
embedded within the aDesigner simulator. This analyzer is
mainly used to analyze code efficiency rather than to
analyze the application in run time. It allows the
programmer to evaluate only single processors by giving
some cycle counts as total cycle count. The total number of
cycle counts is equal to the number of instructions executed
plus the number of processor stalls. Whenever a processor is
waiting for an input or output (waiting for other processor to
get input from it) is known as stall. This analyzer cannot
analyze both composite objects and applications. In addition
to the total cycle counts, the analyzer gives also the data in
the registers like inputs, outputs and program counter with
the first and last cycle numbers of duration of data transfer.
For example, between 5th cycle and 13th cycle there is a
Hexadecimal number 0x10000 in the first input and output.
When finding individual latency for each processor, the first
processor distribute_00 of 8 point FFT, we got 8 cycles. In
the next stage, where two processors are in parallel, we
consider the processor having maximum latency to add with
the serial processor of previous stage. Similarly, in further
stages, we have to also find out the execution time for all
parallel connected objects and the processor with the
maximum number of latency is considered. This maximum
latency would be added to the previously calculated
execution time. This cumulative addition of execution time
of individual objects gives the total latency of the entire
application.

Here the analyzer ignores the channel stalls which mean
that it does not count the cycles when the processor waits
for an input or when it waits to send an output. The length
of a cycle in seconds can change from a processor to
processor, as the processors can run with their own different
frequencies. So, when a processor counts two cycles, the
another one may count more than two for three cycles in the
same time, depending on the frequencies of the processor.
When there is any negative value in any register, the
performance analyzer shows it as 0x7fffffff. This becomes a
serious problem for analyzing it in an accurate way.
 As shown in the table 1, the latency increases with
algorithm complexity because when we increased FFT
points, we need more number of processors for distribute
the input samples, butterfly computations and assembling all
the output samples. For more butterfly computations the
instructions to be executed by the processor obviously will
be more and also processor stall will be more. Thus, the

overall latency will also increase. For 16 point FFT the
latency is more than double compared to 8 point FFT. In
case of 32 point FFT, the latency is approximately less than
double compared to 16 points, which is due to the less
number of processor stalls. If we compare the complexity
with respective to latency, we can observe that 32 point FFT
is running more efficiently.

 The cycle count per output sample for different point
of FFT is shown in the table 1. As we have already
discussed above, the cycle count for 8 point FFT is 377
cycles and for every 377 cycles it can receive one output
sample for the case of 8 point FFT. When the complexity
increases, the cycle count will be decreased because we
increase FFT point and so the work loads on each processor.
This increase keeps all processors busy so that the processor
stalls decreases as shown in table 1.

VII. CONCLUSION

The main aim of this work is to develop a parameterized
version FFT algorithm of complex input variables which
should work for multiple ranges of complexities. This
parameterized version of FFT algorithm works from 8 point
to 32 point for given parameter values in the program,
which is designed specifically for Radar Signal Processing
applications where the input variables are complex
variables. Since the aDesigner do not support floating point
operations, we solved this problem by converting Floating
point data to fixed point representation. In our
implementation, we provided the coefficients needed in
different ways, such as by using lookup tables, by storing
coefficients in external memory provided to processor in run
time through input streaming and also by passing the objects
at compile time. The coefficients are provided to the design
file so that the algorithm can access this coefficient in run
time. Higher order FFT filters is able to sample the data at
higher rate which permits the user to specify larger order of
filters without compromising maximum attainable clock
speed. We performed the simulation of FFT algorithm by
using PerfHarness tools which provided by Nethra Inc.
Using these tools we collected the simulated output in terms
of latency and cycle count per output sample. This paper
shows that the architecture of MPPA which is suitable for
parameterized versioned algorithm FFT.

REFERENCES
[1] Robert J. Purdy, Peter E. Blankenship, Charles Edward Muehe,

Charles M. Rader, Ernest Stern, and Richard C. Williamson, Radar
Signal Processing, volume 12, number 2, 2000 Lincoln laboratory
journal.

[2] E. Chu, A. George, “Inside the FFT black box Serial and parallel fast
fourier transfor algorithms”, CRC Press, 2000.

[3] B. Bylin and R. Karlsson, “Extreme processor for extreme
processing”, Technical Report, Halmstad University, IDE0503,
January 2005.

[4] S. Jenkins “MIMO/OFDM Implement OFDMA, MIMO for WiMAX,
LTE”, picoChip
<http://www.eetasia.com/ARTICLES/2008MAR/PDF/EEOL_2008M
AR17_RFD_NETD _TA.pdf.

[5] P. Söderstam, “STAP Signal Processing Algorithms on Ring and
Torus SIMD Arrays”, Technical Report, Chalmers University of
Technology. April 1998.

[6] “Am2000FamilyArchRef_2008_3”,http://ambric.info/documentation/
Documentation/MPPAs/Am2000FamilyArchRef_2008_3.pdf, Date
02-05-2008.

Fig. 6: Screenshot of performance analyzer

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

