Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ARTIC for Assistive Technologies:
Transformation to Resource-Limited Hardware

Daniel Tihelka, Petr Stanislav

Abstract—The present paper describes the transfer of ARTIC
TTS to the real smartphone/communicator hardware, as the
increasing penetration of such devices provides the solid base
for the creation of special assistive technology applications, ren-
dering the communication with hearing- or speaking-impaired
people markedly more effective, simple and natural. As the
target platform, the Google’s Android OS has been chosen. In
the paper, the unique system software stack of the Android
OS is described, and the specifics of low-resource hardware
are discussed from the point of view of two ARTIC TTS
technologies single unit instance and multiple unit instance
(also known as unit selection). The performance of the ARTIC
running on the given low-resource hardware is presented and
discussed.

Index Terms—speech synthesis, assistive technologies, low-
resource devices, Android OS.

I. INTRODUCTION

The ongoing increase in low-powered CPU speeds and
memory sizes, followed by lowering their prices, results in
the increased interest in smartphones and communicators.
The first massive penetration was with the introduction
of Apple’s iPhone, later followed by T-Mobile Gl, on
which Android [1], the new Linux-based OS maintaining
by Google, was used. The Android OS very soon gained
popularity and more and more smartphones appeared on the
market.

The fairly acceptable price of such devices allows hearing-
or speaking-impaired or disabled people to purchase them
and use them as a valuable helping tool that makes their
everyday communication with the rest of the population
far more effective, natural and pleasant. In addition to
our experience with (audio-)visual speech synthetis [3], [4]
created to help hearing-impaired people, we are planning
to create a special assistive application (running on the
majority of today’s most common embedded platforms) for
people with total laryngectomy surgery interposition. It will
combine predictive keyboard based on LVCSR language
modelling, adapting itself during its usage, with speech
synthesizer immediately reading what is written. The aim
is to allow more comfortable, intelligible, and to some
extent also natural communication when compared to the
use of electrolarynx device. However, to create such assistive
tools, which are strictly language-dependent, we need a
TTS system generating close-to-natural speech while leaving
enough hardware resources for the application core and the

Manuscript received June 28, 2011; revised August 11, 2011. This work
has been supported by the Grant Agency of the Czech Republic, project
No. GACR 102/09/0989 and by the internal UWB grant, project No. SGS-
2010-054.

D. Tihelka is with the Department of Cybernetics, University of West
Bohemia, e-mail dtihelka@kky.zcu.cz

P. Stanislav is with the Department of Cybernetics, University of West
Bohemia, e-mail pstanisl@kky.zcu.cz

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

rest of system, which also means not draining battery power
almost only for running the TTS.

The fast-growing interest in smartphones presents, in gen-
eral, a good opportunity for TTS systems, as they can be
used not only for assistive technologies (although they are
clearly the most meritorious), but also by text/SMS readers,
navigation software and other tools allowing to detach the
visual attention from the device in cases when it needs to be
focused somewhere else (i.e. when driving a car).

In the paper, we have focused on the Android OS. Its
choice was primarily due to the most limited support for
C/C++ development (significantly wider range of C++ stan-
dard is supported by iOS or Windows CE/Mobile/Phone 7),
which allows us to verify the platform independence of
ARTIC TTS [2] as well as to identify obstacles to be solved
before any assistive application can begin to be worked on.
An additional - while unplanned - benefit is the ever-growing
popularity of devices operating by the OS — according to
[8], 36.4% of the new smartphones subscribed in the United
States from January 2011 to Appril 2011 were powered
exactly by the Android OS. The popularity is also increased
by the ever-growing number of third party applications (over
150,000 application up to 10.2010) available for all the users
of the OS through the on-line software store. In addition,
the Android runs on wide range of devices from various
manufactures

The transformation of ARTIC TTS to a representative
communicator device operated by the Android is described
in the present paper. We describe the unique system software
stack of the Android OS with the emphasis of specifics
and limitations of C/C++ development and their influence
on the TTS build process. Further, the specifics of low-
resource hardware are discussed from the point of view of
two TTS technologies single unit instance and multiple unit
instance (also known as unit selection). The performance of
the ARTIC running on a given low-resource hardware is
presented and discussed with the focus on various aspects
like speed and battery exhaustion.

II. ANDROID PLATFORM

The Android is the operating system designed in particular
for mobile devices like smartphones and tablets, currently
developed and maintained by Google. It is based on mod-
ified Linux kernel (the modifications are related mainly to
suspend/resume of OS) and GNU software system utilities
(dhcped, wpa-supplicant, bluez, dbus, SQLite, etc.), accom-
plishing low-level system tasks. On top of this, Android’s
specific Java virtual machine, named Dalvik, provides for all
the applications both interface to system components, and to
Android’s display manager and the GUI itself. The choice
of Java as the main (and mostly the only) interface to the

WCECS 2011

system does thus not allow the development of purely native
applications and custom system components. On the other
hand, its effective fixing as the main programming language
for the OS allowed the rapid development of the enormous
number of 3¢ party applications, mostly by independent
individuals.

The drawback of this solution is that the porting of al-
ready existing non-Java applications has become much more
complicated. Although there is native development kit (NDK)
available for the development in C/C++, its very limited sup-
port of C/C++ features and interaction with the system may
cause hard-to-solve issues. Namely, the following constraints
must be taken into account for NDK <= rev.4:

e GNU libc does not exist on Android, a subset called
bionic exists instead

« only limited support of C++ code, RTII and Exceptions
are explicitly not supported (although the lack of ex-
ceptions support is mentioned for Android v1.5 only)

« standard low-level C++ libraries like STL are not sup-
ported

« ports of common libraries used on GNU-Linux are rare,
and, if exist, they must be linked statically (cannot be
installed system-wide)

« documentation is sparse, incorrect, and sometimes con-
fusing

« building is carried out by Android’s native cross-
compiler toolchain, widely used tools like CMake are
not supported

It is due to the fact that the NDK has not been intended
as a full alternative to Android’s Java development model.
According to the documentation, the native code should
only be used very rarely, typically for libraries with “self-
contained CPU-intensive operations that don’t allocate much
memory”.

As the ARTIC TTS engine is written in C++, those limi-
tations may complicate, limit or even prevent the possibility
of transforming the TTS under that platform. This is why
we have chosen it, because simply being able to get ARTIC
working under Android we will be able to get it working
under all not-as-much limited platforms (e.g. iOS or various
smartphone-Windows).

A. ARTIC for the Android Platform

Although ARTIC TTS is written in C++, from the very be-
ginning of its development it has been emphasised that non-
standard features and third-party libraries should be avoided
wherever possible. This decision has proved beneficial to us,
as there are no parts of the engine with features not-supported
by the NDK. The only exception is the support of exceptions,
but using an unofficial alternative NDK build [14] of the
same version has solved this issue without any extra work.

The largest amount of work was spent on the transfor-
mation of the building process since ARTIC employs the
CMake building system. Since there is a wide range of
possible ARTIC build configurations, rather than converting
the building process to the NDK’s native building tools,
we have decided to create a new CMake toolchain tied to
Android’s NDK. This allows us to transfer the already tuned
flexibility of the TTS build to the Android without any need
to rewrite it.

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

The TTS interface functions were wrapped by very thin
layer using JNI library (provided as the part of NDK) to
be accessible from Java, in which the rest of the testing
application was created. Finally, all the C++ sources were
smoothly compiled using CMake with the alternative NDK-
r4 tools to . so library with ARMv7-A architecture. Let us
emphasize that the .so library with ARTIC TTS and JNI
wrapper, and simple Java class making the bridge to the TTS
library, can now be used in any application created for the
OS. Moreover, we plan to integrate the ARTIC to be one of
the native system’s TTS engines.

B. The Hardware for testing

We have chosen two common communicators for the
ARTIC performance measures. The first was more than a
year old HTC Desire, the second was rather new Samsung
Galaxy S. Their hardware specification is listed in Table I.

TABLE I
THE HARDWARE SPECIFICATION OF THE COMMUNICATORS USED.

[[[HTC Desire [Samsung Galaxy S
CPU Qualcomm Snapdragon, | Cortex-A8

QSD 8250
frequency 1 GHz 1 GHz
cores 1 1
RAM 576 MB 512 MB
battery Li-Ion 1,400 mAh Li-Ton 1,500 mAh

4GB micro SD card, 8 GB internal Flash memory
data storage

external

The testing application, including the ARTIC TTS library,
was installed into the default applications location within
phone’s internal memory, the speech unit database files were
copied to the data storage from which they were “mapped
to memory” (mmap () function under Linux). The Android
OS version 2.2 (Froyo) was installed on the device.

III. ARTIC EXPERIMENTS

There are two speech synthesis technologies employed
within the ARTIC TTS - single instance unit (SUI) and
multiple instance unit synthesis. The SUI version uses one
off-line pre-selected candidate for each speech unit (triphone)
[2]. Speech signal of the candidates must then be modified
according to the prosodic contours estimated by prosody
generator module [9]. This version is primarily intended for
low/lower-resource hardware, as the speech unit database
fits into several megabytes of space — customizable from
430MB, depending on the units clustering level and speech
compression methods chosen. On the other hand, the modi-
fications of speech makes it sound more robotic [10].

On the contrary, the MUI version (also known as unit
selection) uses for each unit (diphone) all the candidates
recorded in the speech corpus [2], [11], or optionally their
subset, and the best candidate used to create synthetic speech
is chosen according to the actual structure of synthesized
phrase. Apart from the huge size of speech unit database
— depending on candidates reduction level [12], [13] it
scales from 600 down to approximately 100MB. The selec-
tion algorithm itself needs, naturally, much more computing
power than the SUI version. Its significant advantage is,
however, that the quality of synthetic speech is nearly natural-
sounding.

WCECS 2011

A. Performance Measure

The speech segment database used for the experiments
was recorded by a male semi-professional speaker in special
echo-less recording studio. It consists of 12,242 utterances
yielding approximately 18.5hours of speech (without pauses)
[15], [16]. The corpus was segmented into phones automat-
ically [5], [6], and triphone SUI and diphone MUI speech
segment databases were created from that data. When in use,
the database is “mapped to memory” from the communica-
tor’s data storage memory.

The measurement of the performance of Android’s ARTIC
build was split into initialization and synthesis parts. The
initialization measured the time required to index units in
the speech units database, which depends on its size. The
synthesis part measured the time required for the synthesis
of 250 clauses (giving 314 phrases), which resulted in ap-
proximately 14minutes of synthetic speech. Each experiment
(both initialization and synthesis) was repeated Stimes.

For both parts, the battery consumption was measured as
well. This measuring, however, was only approximate, as
Android does not expose interface for exact battery level
check; instead, it sends events when the battery level changes.
Let us note that to be able to measure the power consumption
related to the TTS run, the synthetic speech was not actually
played (energy consumed by 30 seconds of synthesis will
surely be lower than consumption of 10 minutes more of
playback, no matter lower load of hardware). Therefore, the
playback duration was computed from speech length.

B. ARTIC SUI Version

The speech segment database for SUI version contained
5662 unique triphones and occupied approximately 20.4MB
on data storage. Using more efficient compression, its size
can be reduced down to SMB. Further size reduction, down
to about 1.6MB [7], can be achieved by more aggressive
triphones clustering during the HMM segmentation phase,
although the pressure to clustering may of course affect the
quality of synthetic speech. Such reduction, nevertheless,
would have positive effect on the initialization part.

Considering the named size, Table II collects the results of
performance measured on both devices. It can be seen from

TABLE 1T
THE PERFORMANCE OF ARTIC SUT INITIALIZATION AND SYNTHESIS.
THE “REALTIME” IS THE DURATION OF SYNTHESIZED SPEECH. MEDIAN
OF INITIALIZATION TIME IS PRESENTED INSTEAD OF MEAN, SINCE
MEAN VALUE IS MEANINGLESS REGARDING THE SYSTEM BEHAVIOUR.

Initialization time[s] || Synthesis time[s] / X realtime
Experiment || Desire [Samsung Desire [Samsung
1 543 1.24 49.60 / 17.14| 46.1/18.42
2 0.19 0.23 42.68 /19.92 | 43.4/19.60
3 0.19 0.23 4245/ 20.02| 42.7/19.92
4 0.20 0.23 42.84/19.84| 44.6/19.07
5 0.22 0.22 42.41/20.04| 48.4/17.56
Mean 0.20 0.23 43.99/19.39| 45.0/ 1891
(median) | (median)
Realtime: 849.90

the Table that the first initialization took approximately 5.5
seconds on HTC, which is not negligible, yet still acceptable,
amount of time. The Samsung was significantly faster in
reading the inventory from storage memory, which may be
caused by the different technologies used for storage memory

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

— we have checked by AnTutu benchmark that Samsung
reads data about 4times(!) faster from the storage.

The following initializations took only a few dozen
milliseconds, most likely due to data caching, where the
database is read from system’s file cache in memory, instead
of from the much slower storage memory. The battery ex-
haustion during the initialization was unmeasurable. Also the
performance of the synthesis is rather good and comparable
on both devices — synthesizing text almost 20 times faster
than it is played guarantees enough power reserve for other
concurrently running applications and the system itself. Such
numbers, however, are not very surprising, considering the
intended simplicity of methods used in the SUI version.
The battery exhaustion was unmeasurable for each individual
experiment, with about 2% of energy consumed by HTC
during the whole experiment (it took about 4minutes of pure
TTS runtime, but 70minutes of speech were generated), with
the device’s display switched on. Samsung consumed less
that 1% of battery power during synthesis (although we were
not able to get exact number). It is not surprising, regarding
its larger battery capacity.

C. ARTIC MUI Version

The following results are related to the MUI version. Al-
though this version is rather intended for desktop computers
or servers, it is very interesting to look how it performs
on the lower-resource device. For the experiment, however,
there had to be a few adjustments of the system used
otherwise. Firstly, aggressive pruning [17] was switched on.
This speeds up the selection algorithm more than 50 times,
without a considerable impact on speech quality observed
[17]. Secondly, the size of speech segment database was
shrank from 590MB to about 360MB. It has been achieved
by a technique which preserves phrases containing only the
most often used candidates [13], with coverage set to 85%
(phrase was transformed into database only if it contains any
candidate out of those 85% candidates used most frequently
to create synthetic speech). Such coverage has been chosen
ad-hoc, making speech database small enough to be mapped
to the smartphone’s memory and preserving a rather larger
number of candidates. Similar to SUI version, further size
reduction can be achieved by lowering the coverage, which,
however, may have a negative impact on the quality of
synthetic speech since fewer unit candidates are available in
the selection process. Except those two adjustments, there
were no other changes involved either in TTS engine or
speech segments database.

The results of the experiment are shown in Table IIIL.
The initialization part of the TTS engine was unacceptably

TABLE I
THE PERFORMANCE OF ARTIC MUI INITIALIZATION AND SYNTHESIS.

Initialization time[s] || Synthesis time[s] / X realtime
Experiment || Desire | Samsung Desire [Samsung

1| 177.65 50.8 137.43 7 6.12| 257.35/3.27

2 || 191.61 56.8 135.80 / 6.20 | 182.25/ 4.62

31/ 188.59 60.6 137.96 / 6.10 | 253.47 / 3.32

4 195.11 57.2 135.05/ 6.23 | 196,90 / 4.27

51 189.92 53.9 143.43 /5.87| 169.45/4.97

Mean: [[188.58 | 55.9 [[137.94/6.10] 211.89 /4.09

Realtime: 841.50
WCECS 2011

slow on HTC, taking more than 3 minutes to get the
engine ready. However, considering that 360MB must be
read from SD card and processed virtually Byte-by-Byte, it
is not surprising. Moreover, there is also no “caching effect”
observable, again, most likely due to the size of the segment
database. About 3—4% of battery power were consumed for
all the 5 consecutive experiments, with display switched on.
Samsung device was faster again, with unmeasurable battery
exhausting (which is expected since the speed of reading).
Still, 50 seconds are rather slow for everyday use, as the
application may be removed from memory any-time by the
OS. On the other hand, the performance of synthesis looks
fairly promising, especially for HTC. It is able to generate
speech more than 6 times faster than it can be played, with
about 4% of energy consumption for both devices (for 11
minutes of pure TTS runtime, with display being on as well)
— such behaviour could already be acceptable. Samsung was
slower in speech synthesis, most likely due to its slower FPU
(checked also by benchmark).

Surely, the lower the inventory size, the better performance
can be expected. The unclear issue pertaining to the reduc-
tion, carried out by lowering the number of unit candidates,
is, however, the quality of synthesized speech. It was not
examined during the experiment due to being unrelated to
the topic of the paper.

IV. CONCLUSION

It was shown that the ARTIC can run fairly well on devices
powered by Android OS. It encourages us that it can be
transferred (without significant effort) onto any of today’s
platforms supporting at least a basic set of standard C++
features.

It is also clear that the SUI approach should still be consid-
ered for its simplicity and small runtime requirements, even
contrary to HMM synthesis with much more complicated
signal decoder. Although it can be objected that the SUI-
generated speech sounds noticeably less natural than that
MUI-generated, the more background noise surrounds the
listener (i.e. on street, in shop, or when driving a car), the
less the difference is being focused on by listeners.

As regards the MUI version, mostly its initialization per-
formance suffers on the devices with slower storage memory
access. To some extend it can be overcome by a better
signal compression methods — the examples presented were
compressed about 4 times when compared to storing full
waveforms of speech units. We are close to finishing new
method achieving approximately 9 times compression, which
is expected to lead to 240 MB for full inventory or 160 MB
for the reduced inventory respectively. Moreover, a different
candidates reduction technique (e.g. [12]) can be used to
exclude rarely used unit candidates from the units inventory
more effectively. The impact of these methods on the quality
of synthetic speech, however, still needs to be addressed.

Regarding the planned application, introducing the need
of the transformation of ARTIC to platforms with limited
resources, it was shown that to employ ARTIC as the TTS
backend will not be virtually any obstacle.

REFERENCES

[1] http://en.wikipedia.org/wiki/Android_(operating_system) (online, ac-
cessed during June 2011).

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

[2]

[3

=

[4]

[5

[t}

[6

=

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

J. Matousek, D. Tihelka, and J. Romportl, “Current state of Czech text-
to-speech system ARTIC,” in Text, Speech and Dialogue, ser. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, vol.
4188, pp. 439-446.

Z. Krnoul, M. Zelezny, “Realistic face animation for a Czech Talking
Head,” in Text, Speech and Dialogue, ser. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2004, vol. 3206, pp. 603-610.
Z. Krioul, J. Kanis, M. Zelezny, L. Mller, “Czech Text-to-Sign Speech
Synthesizer,” in Text, Speech and Dialogue, ser. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2008, vol. 4892, pp.
180-191.

J. Matousek, D. Tihelka, J. Psutka, “Experiments with automatic seg-
mentation for Czech speech synthesis,” in Text, Speech and Dialogue,
ser. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2003, vol. 2807, pp. 287-294.

J. Matousek, J. Romportl, “Automatic Pitch-Synchronous Phonetic
Segmentation,” in Proceedings of 9*" Annual Conference of the In-
ternational Speech Communication Association INTERSPEECH 2008,
Brisbane, Australia, 2008, pp. 1626-1629.

J. Matousek, “On Minimizing the Size of Speech Unit Database in
Concatenative Speech Synthesis,” in Proceedings of 16t" Czech—
German Workshop on Speech Processing, Prague, CR, 2006, pp. 70—
76.

http://www.comscore.com/Press_Events/Press_Releases/2011/3/
comScore_Reports_January_2011_U.S._Mobile_Subscriber_Market_
Share (online, accessed during June 2011).

J. Romportl,J. Matousek, D. Tihelka,“Advanced Prosody Modeling”.
in Text, Speech and Dialogue, ser. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2004, vol. 3206, pp. 441-447.

D. Tihelka, J. Matousek, “Revealing the most Significant Deterioration
Factors in Single Candidate Synthetic Speech,” in Proceedings of 10t?
International Conference on Speech and Computer — SPECOM 2005,
Patras, Greece, 2005, pp. 171-174.

D. Tihelka, J. Matousek, “Unit selection and its relation to symbolic
prosody: a new approach,” in Proceedings of 9" International Con-
ference on Spoken Language Processing Interspeech 2006 — ICSLP,
Pittsburgh, USA, 2006, pp. 2042-2045.

D. Tihelka, “Corpus-based Approach to Unit Selection Speech Unit
Inventory Reduction in ARTIC TTS,” in Proceedings of 17t Czech—
German Workshop on Speech Processing, Prague, CR, 2007, pp. 160—
167.

J. Matousek, D. Tihelka, Z. Hanzlicek, “Reducing Footprint of Unit
Selection TTS System by Excluding Utterances from Source Speech
Corpus,” in Proceedings of 19t® Czech-German Workshop on Speech
Processing, Prague, CR, 2009, pp. 92-98.
http://www.crystax.net/android/ndk.php (online, accessed during June
2011).

J. Matousek, J. Romportl, “Recording and Annotation of Speech Cor-
pus for Czech Unit Selection Speech Synthesis,” in Text, Speech and
Dialogue, ser. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2007, vol. 4629, pp. 326-333.

J. Matousek, D. Tihelka, J. Romportl, “Building of a Speech Corpus
Optimised for Unit Selection TTS Synthesis.” in Proceedings of 6t
International Conference on Language Resources and Evaluation —
LREC 2008, Marrakesh, Morocco 2008.

D. Tihelka, J. Kala, J. Matousek, “Enhancements of Viterbi Search
for Fast Unit Selection Synthesis,” in Proceedings of 11th Annual
Conference of the International Speech Communication Association —
Interspeech 2010, Makuhari, Japan, 2010, pp. 174-177.

WCECS 2011

