
 

   

Abstract— in this paper, the channel capacity for different 

models of Poisson optical communication channels has been 

derived. The closed form expression for the single input single 

output (SISO) Poisson channel -derived by Kabanov in 1978, 

and Davis in 1980- will be investigated. In addition, we derive 

closed form expressions for the capacity of the parallel Poisson 

channel and the capacity of the multiple access Poisson 

Channel (MAC).  The optimum power allocation is also 

derived for different models; results have been analyzed in the 

context of information theory and optical communications. 

 
Index Terms—MAC, Parallel Channels, Poisson Channels, 

Power Allocation, SISO. 

 

I. INTRODUCTION 

HE optical communications applications  at backbone as 

well as access networks dictates the need for finding 

closed form expressions of the information capacity. In 

particular, the capacity expressions of Poisson channels that 

model the application. Therefore, in this paper, we 

accomplish an information-theoretic approach to derive the 

closed form expressions for: the SISO Poisson channel 

already found by Kabanov [1] and Davis [2], the parallel 

multiple input multiple output (MIMO) Poisson channels, as 

well as for the MAC Poisson channel. Several contributions 

using information theoretic approaches to derive the 

capacity of Poisson channels under constant and time 

varying noise via martingale processes or via 

approximations using Bernoulli processes are in [1-5], to 

define upper and lower bounds for the capacity and the rate 

regions of different models in [6-7], to define relations 

between information measures and estimation measures [8], 

in addition to deriving optimum power allocation for such 

channels [4] [9]. However, this paper introduces a simple 

framework similar to [4] for deriving the capacity of Poisson 

with any model of consideration, in addition, it builds upon 

derivations for the optimal power allocation for SISO, 

Parallel, and MAC models, or any other Poisson channel 

model of consideration. 

In Poisson channels, the shot noise is the dominant noise 

whenever the power received at the photodetector is high; 

such noise is modeled as a Poisson random process. In fact, 

such framework has been investigated in many researches, 
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see [1-4], [6-10]. Capitalizing on the expressions derived on 

[1-2], [4] and on the results by [4], [8], we re-investigate the 

derivation process in a simple step by step way, we then 

obtain the optimal power allocation that maximizes the 

information rates.  

The paper is organized as follows,  Section I introduces 

the SISO Poisson channel, the notions used in the context of 

the paper, as well as the optimal power allocation that 

maximizes the capacity. Section II introduces the Parallel 

Poisson channel capacity expression as a normal 

generalization of the SISO setup, as well as the optimal 

power allocation. Section III introduces the MAC Poisson 

channel capacity as well as the optimal power allocation. 

Finally, we conclude the paper by some simulations and 

analytical results. 

II. THE SISO POISSON CHANNEL 

Consider the SISO Poisson channel P	shown in Fig.1. Let 

���� represent the channel output, which is the number of 

photoelectrons counted by a direct detection device (photo-

detector) in the time interval [0, T]. ���� has been shown to 

be a doubly stochastic Poisson process with instantaneous 

average rate ���� � �	. The input ���� is the rate at which 

photoelectrons are generated at time � in units of photons 

per second. And � is a constant representing the photo-

detector dark current and background noise.  
 

 

 

 

 

Fig. 1. The SISO Poisson channel model 

 

A. Derivation of the Capacity of SISO Poisson Channels  

 

Let 	��
� be the sample function density of the 

compound regular point process ���� and 	��
|�
� be the 

conditional sample function of ���� given the message 

signal process ���� in the time interval [0,T]. Then we have, 

 

	��
|�
� 
 ��� ��������� �	���� ������������������ 	              (1) 

 

	��
� 
 ��� ���������� �	���� ������������������� 	                   (2) 

 

We use the following consistent notation in the paper, 

�����  is the estimate of the input ����.   is the expectation 

operation over time.  Therefore, the mutual information is 

defined as follows, 
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Theorem1 (Kabanov’78[1]-Davis’80 [2]): 

The capacity of the SISO Poisson channel is given by: 

  , 
 	-. �/ � �� log�/ � �� �	'1 4 -
.* �$%&��� 4															�5 � ��log	�5 � ��                                              (4) 

Proof:  

Substitute (1) and (2) in (3), we have, 
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And ���� 4 � log����� � ��

8  is a martingale from theorems 

of stochastic integrals, see [10], [4] therefore,  
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4 C������ � �� log������ � ��D	                                         (5) 

 

See [4] for similar steps. In [8], it has been shown that the 

term $%& '�������������* is the derivative of the mutual information 

corresponding to the integration of the estimation errors, it 

plays as a counter part to the well known relation between 

the mutual information and the minimum mean square error 

(MMSE) in Gaussian channels in [11]. 

 

The capacity of the SISO Poisson channel given in theorem 

(1) is defined as the maximum of (5) solving the following 

optimization problem subject to an average power 

constraint, 	max	 !��
; �
�                                                        (6) 

Subject to,     
H

  #� ����	9�	 I 	JK


8 +                                 (7) 

0 I ���� I JK 

With JK 
 /, / is the maximum power. However, we can 

easily check that the mutual information is strictly convex 

via its second derivative with respect to ����. Now solving 

max '�  A����� � �� log����� � ��B 4  C������ �

8

	�� log������ � ��D 4 O

 ?����@	*, with P as the lagrangian 

multiplier. The possible values of  A����� � �� log����� �

��B must lie in the set of all y-coordinates of the closed  

convex hull of the graph y= �Q � �� log�Q � ��. Hence, the 

maximum mutual information achieved using the 

distribution		�� 
 /� 
 1 4 	�� 
 0� 
 R.	Where 0 I R I1,  so that  ?����@ 
 5. So, we must have  ?����@ 
∑����	��� . It follows that, 5 
 /	�� 
 /� 
 	R. Then, 

R 
 T
.. And then the capacity in (4) is proved.  

B. Optimum Power Allocation for SISO Poisson channels 

To solve (6) subject to (7) in the following form, 

max '-. �/ � �� log�/ � �� �	'1 4 -
.* �$%&��� 4

															�5 � �� log�5 � �� 4 O

5*                                  (8) 

Since (8) is concave with respect to K, using the lagrangian 

corresponding to the derivative of the objective with respect 

to K, and the Karush–Kuhn–Tucker (KKT) conditions, the 

optimal power allocation is the following, 

5∗ 
 �/ � ����'H�V�* �	�. log '1 � .
�* 4 �                       (9)	

III. THE MIMO PARALLEL POISSON CHANNEL  

Consider the MIMO parallel Poisson channel shown in 

figure (2). 

 

 

 

 

 

. 

. 

 

 

 

Fig. 2. The Parallel Poisson channel model 

  

Consider a 2-fold parallel Poisson channel, then, �H��� 
and �W��� are doubly stochastic Poisson processes with 

instantaneous average rates �1��� � �	and �2��� � � 

respectively.  

A. Derivation of the Capacity of Parallel Poisson 

Channels  

Let 	��H, �W� and 	��H, �W|�H, �W� be the joint density 

and conditional sample function of the compound regular 

point processes �H��� and �W��� respectively, given the 

message signal processes �H��� and �W��� in the time 

interval [0, T]. Then we have, 

 	��H, �W|�H, �W� 
 	��H|�H�	��W|2�                               (10) 

 	��H, �W� 
 	��H�	��W�                                                 (11) 

 	��H|�H�, 	��W|2�, 	��H�, and 	��W� are given by (1) and 

(2) respectively for each input �Y���. Therefore, the mutual 

information is defined as follows, 
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Theorem2:  

The capacity of the 2-input parallel Poisson channel is given 

P �1��� 
� 

�H��� 

P �Y��� 
� 

�W��� 
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by the sum capacity of the independent SISO Poisson 

channels as follows: 

, 
	-H.H �/1 � �� log�/1 � �� �	'1 4 -H
.H* �$%&��� 4

										�51 � �� log�51 � �� � -W
.W �/2 � �� log�/2 � ��                                         

							� '1 4 -W
.W* �$%&��� 4 �52 � ��log	�52 � ��          (13) 

Proof: 

Substitute (10) and (11) in (12), we have, 
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Following the same steps of the proof of theorem1, we can 

easily find that, 
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4 C��1���� � �� log��1���� � ��D � 	 A��2��� �
�� log��2��� � ��B 	4  C��2���� ��� log��2���� � ��D  (14) 

 

Hence, the maximum mutual information achieved  using 

the distribution of any input	Y such that 		��Y 
 /� 
 1 4	��Y 
 0� 
 RY.	Where 0 I RY I 1  so that  ?�Y���@ 
 5Y. 
So, we must have  ?�Y���@ 
 ∑�Y���	��Y� . It follows that, 

5Y 
 /Y	��Y 
 /Y� 
 	RY. Then, RY 
 T\
.\. Therefore, the 

capacity in (13) is proved.  

                               

B.  Optimum Power Allocation of Parallel Poisson 

Channels 

We need to solve the following optimization problem, 

max '-H.H �/1 � �� log�/1 � �� �	'1 4 -H
.H* �$%&��� 4

										�51 � �� log�51 � �� � -W
.W �/2 � �� log�/2 � �� 	�

'1 4 -W
.W* �$%&��� 4 �52 � �� log�52 � �� 4 O


 �51 �
52�*                                                                                  (15) 

Subject to, 
H

  #� �1��� I 	JK


8 +                                                        (16) 

H

  #� �2��� I 	JK


8 + 
0 I �1��� 	I JK ,  0 I �2��� I JK. 

 

Using the lagrangian corresponding to the derivative of the 

objective with respect to K, and the Karush–Kuhn–Tucker 

(KKT) conditions, the optimal power allocation follows the 

optimal power allocation for the SISO setup in (9).   See [9] 

for similar results related to optimum power allocation for a 

2-fold Parallel Poisson channel where the power constraint 

was the sum of both average input powers.                   

IV. THE MAC POISSON CHANNEL 

Consider the MAC Poisson channel shown in figure (2). 

 

 

 

. 

. 

 

Fig. 3. The MAC Poisson channel model 

Consider a 2-input MAC Poisson channel, then, �H��� is a 

doubly stochastic Poisson processes with instantaneous 

average rates �1��� � �2��� � �.  

A. Derivation of the Capacity of MAC Poisson Channels  

Let 	��H� and 	��H|�H, �W� be the joint density and 

conditional sample function of the compound regular point 

processe �H��� given the message signal processes �H��� in 

the time interval [0, T]. Then we have, 

 	��H|�H, �W� 

��� ��H�����W������� �	���� �����H�����W������������� 	                (17) 

 	��H, �W� 

��� ��H���� ��W���� ���� �	���� �����H���� ��W���� ���������� 	                (18) 

 

Therefore, the mutual information is defined as follows, 
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Theorem3: 

The capacity of the 2-input MAC Poisson channel is 

given by: 

, 
 ]51/ � 52
/ ^	�/ � �� log�/ � �� �		]1 4 51

/ ^�$%&��� 
�]1 4 52

/ ^�$%&��� 4 �51 � 52 � �� 
log	�51 � 52 � ��                                                           (20) 

 

Proof:  

Substitute (17) and (18) in (19), we have, 
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from theorems of stochastic integrals, see [10], [4] therefore,  
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4 C��1���� � �2���� � �� log��1���� ��2���� � ��D      (21)                      

 

The capacity of the MAC Poisson channel given in theorem 

(3) is defined as the maximum of (21) solving the following 

optimization problem subject to an average power 

constraint, 	max	 !��
; �
�                                                                 (22) 

Subject to,     
H

  #� �1��� � �2���	9�	 I 	J/


8 +              (23)                    

0 I �1��� I J/ 0 I �2��� I J/ 

 

Now, solving max '�  A��1��� � �2��� � �� log��1��� �

8

�2��� � ��B 4  _'�1���� � �2����� ��* log '�1����� �
�2���� � �*` 4 O


  ?�1��� � �2���@*, with P as the 

lagrangian multiplier. The possible values of  A��1��� ��2��� � �� log��1��� � �2��� � ��B must lie in the set of 

all y-coordinates of the closed convex hull of the graph 

y=�Q1 � Q2 � �� log�Q1 � Q2 � ��. Suppose that the 

maximum power for both inputs is JK1 � JK2 
 /.	Hence, 

the maximum mutual information achieved using the 

distribution		�� 
 /� 
 1 4 	�� 
 0� 
 R.	Where 0 I R I1  so that  ?�1���@ 
 51,  ?�2���@ 
 52. So, we must 

have  ?�1��� � �2���@ 
 ∑��1���	��1� � �2����	��2�. It 

follows that, 51 
 /	��1 
 /� 
 	R. 52 
 /	��2 

/� 
 	�1 4 R�.Then, R 
 TH

.  and 1 4 R 
 TW
.  And then the 

capacity in (20) is proved.  

Note that we also have 53 
 JK1	�0 I �1��� I J/� �JK2	�0 I �2��� I J/� 
 	JK1R � JK2�1 4 R), however, 53 is not considered in the capacity equations since we only 

need the maximum and the minimum powers for both �1��� 
And �2��� to get the maximum expected value.  

B. Optimum Power Allocation of MAC Poisson Channels 

To solve (22) subject to (23) in the following form, 

max ]'-H. � -W
. *	�/ � �� log�/ � �� �

		'1 4 -H
. * �$%&��� � '1 4 -W

. * �$%&��� 4 �51 � 52 �
��log	�51 � 52 � �� 4 O


 �51 � 52�^                            (24) 

Using the lagrangian corresponding to the derivative of the 

objective with respect to K, and the Karush–Kuhn–Tucker 

(KKT) conditions, the optimal power allocation is the 

solution of the following equation, 

51∗ � 52∗ 
 �/ � ����'H�V�* �	�. log '1 � .
�* 4 �        (25) 

 

The optimum power allocation solution introduce the fact 

that orthogonalizing the inputs via time or frequency sharing 

will achieve the capacity, therefore it comes the importance 

for interface solutions to aggregate different inputs to the 

Poisson channel.  

We can also differentiate (24) with respect to the maximum 

power / at which the capacity of the 2-input MAC Poisson 

channel is achieved with the optimal / is the solution of, �51 � 52�/W �	�51 � 52��/ � �51 � 52���/ �
��$%&	 ' �

.��* 
 0                                                              (26) 

V. DISCUSSION 

A. Mathematical Analysis  

The solutions provided in the paper show that the capacity 

of Poisson channels is a function of the average and peak 

power of the input. It can be easily seen that similar to the 

Gaussian Parallel channels; Poisson parallel channels have 

the characteristic that their throughput is the sum of their 

independent SISO channels. For the MAC Poisson channel, 

in [7] the authors tackle the capacity of MAC Poisson 

channels. However, they pointed out an interesting 

observation that we can also see here via theorem3; that is; 

in contrary to the Gaussian MAC, in the Poisson MAC the 

maximum throughput is bounded in the number of inputs, 

and similar to the Gaussian MAC in terms of achieving the 

capacity via orthogonalizing the inputs. We can also see that 

the maximum power is a function of the average power that 

both can be optimized to maximize the capacity. 

B. Simulation Analysis 

Fig.4. shows the capacity of the SISO, parallel, and MAC 

Poisson channels with respect to the average power and 

under a maximum power P=10, and dark current n=0.1, it 

can be easily noticed through the mathematical results as 

well as the simulations that the capacity of parallel Poisson 

channels is exactly double the capacity of the SISO Poisson 

channels if we consider the average power K1=K2=K and 

the maximum power constraint is met and equal for both 

channels, i.e. P1=P2=P. However, on the one hand, it is 

clear that at the low average power regime, the MAC 

Poisson channel capacity under same conditions lie between 

both channels. While it decays as the average power 

increases if inputs are not orthogonal.  

Fig.4. Capacity of Poisson Channels (photons/sec) versus 

the average power K. 

 

On the other hand, for a different setup where one input 

average power is lowest and the other input power is 

maximum, i.e. a time or frequency shared inputs, it turns out 

that the MAC capacity is higher than that of Parallel 

channel, this is due to the fact that the dark noise is much 

more influencing the Parallel setup than that in the MAC 

setup. On the other hand, compared to the Gaussian MAC, 
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similar situation exist; when equal powers are used, the 

capacity faces a decay to zero in the total achievable rate of 

the MAC, while when they differ i.e. orthogonal, the 

capacity moves into maximum.  

 

Fig. 5 shows the capacity of SISO, Parallel, and MAC 

Poisson channels with respect to the detector dark current, it 

shows that the capacity is a decreasing function with respect 

to n; however, for the MAC the capacity increases after a 

certain point with respect to n. We can also see via Fig. 4 

and Fig.5 that the main two factors in the MAC capacity is 

the orthognalization and the maximum power, while 

increasing the average power for one or the two inputs will 

not add positively to the capacity.  

 
Fig.5. Capacity of Poisson Channels versus the dark current 

n, (photons/sec). 

 

 

Fig. 6. Shows the optimum power allocation results, it can  

be deduced via the mathematical formulas as well as the 

simulations that the power allocation is a decreasing value 

with respect to the dark current for all Poisson channels. It 

means that the power allocation for the Poisson channels in 

some way or another follows a waterfilling alike 

interpretation in the Gaussian setup where less power is 

allotted to the more noisy channels [12]. However, it’s well 

known that the optimum power allocation is an increasing 

function in terms of the maximum power. 

 
Fig.6. Optimum Power Allocation versus the dark current n, 

(photons/sec). 

 

A. General Analysis 

Here, we will introduce some important points about the 

capacity of Poisson channels in comparison to Gaussian 

channels within the context of this paper. Firstly, in 

comparison to the Gaussian capacity, the channel capacity 

of the Poisson channel is maximized with binary inputs, i.e. 

[0, 1], while the distribution that achieves the Gaussian 

capacity is a Gaussian input distribution. Secondly, the 

maximum achievable rates for the Poisson channel is a 

function of its maximum and average powers due to the 

nature of the Poisson processes that follows a stochastic 

random process with martingale characteristics, while in 

Gaussian channels, the processes are random and modeled 

by the normal distribution. Thirdly, the optimum power 

allocation for the Poisson channels is very similar for 

different models depending on the defined power 

constraints, and in comparison to the Gaussian optimum 

power allocation; it follows a similar interpretation to the 

waterfilling, at which more power is allocated to stronger 

channels, i.e. power allocation is inversely proportional to 

the more noisy channel. However, although the optimal 

inputs distribution for the Poisson channel is a binary input 

distribution, the optimal power allocation is a waterfilling 

alike, i.e. unlike the Gaussian channels with arbitrary inputs 

where it follows a mercury-waterfilling interpretation to 

compensate for the non-Gaussianess in the binary input [13]. 

VI. CONCLUSION 

In this paper, we show via information theoretic approach 

that the capacity of optical Poisson channels is a function of 

the average and maximum power of the inputs, the capacity 

expressions have been derived as well as the optimal power 

allocation for different channel models. It is shown -through 

the limitation on users within the capacity of the Poisson 

MAC- that the interface solutions for the aggregation of 

multiple users/channels over a single Poisson channel is of 

great importance. However, a technology like orthogonal 

frequency division multiplexing (OFDM) for optical 

communications stands as one interface solution. While it 

introduces attenuation via narrow filtering, etc. it therefore 

follows the importance of optimum power allocation which 

can mitigate such effects, hence, we build up optimum 

power allocation derivations.  
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