
Adoption of Modern Techniques for the
Development Process of the Project Management

System PROMAN W®

Daniel Petrik, Oliver Moravcik, Tomas Skripcak

Abstract—This article is aimed at the process of re-engineering
the architecture of a long established information system and
the problems associated with adopting new techniques used as
a foundation for the new architecture. The article starts with a
brief description of the management system Proman W, which
has architecture that needs to be redesigned in order to fit the
current needs of customers. Following this we introduce the
requirements of the new architecture and describe the
decisions behind their implementation. Next we provide
insight on how the processes of adopting modern techniques
were handled in the re-engineering of the information system
Proman W. Finally the opportunities for further modifications
within the system’s architecture are initiated. The main goal
of this article is to provide an overview of the new technologies’
implementation process in the Proman W system’s
architecture and to point out aspects that we found important
to note whilst re-engineering the long running applications.

Keywords- MDA; MVVM; ORM; composite application;
testing;

I. INTRODUCTION

The software development field in industry is one of the
most rapidly changing branches in the world. Tools and
approaches used for developing information systems are
developing in order to provide better quality and
maintainability of software solutions. Well designed
architecture is the basic pre-requirement for a successful
information system which can dynamically react to the
changing requirements of the end users. But, as time passes,
each application becomes obsolete and the need for new
implementation is more urgent.

Manuscript received on 26th January 2011; revised on 16th March 2011.
Daniel Petrik. Autor is with the MMS SOFTEC Ltd., Hajdoczyho 1,

917 01 Trnava, Slovakia (e-mail: petrik@mms-softec.sk).
Oliver Moravcik. Author is with the Slovak University of Technology -

Faculty of Materials Science and Technology in Trnava, Paulínska 16,
917 24 Trnava, Slovakia (corresponding author to provide phone: +421 33
5511033; fax: +421 33 5511758; e-mail: oliver.moravcik@stuba.sk).

Tomas Skripcak. Author is with the Slovak University of Technology –
Faculty of Materials Science and Technology in Trnava, Paulínska 16,
917 24 Trnava, Slovakia (e-mail: tomas.skripcak@stuba.sk).

Development of a new version of a working application

can also be seen as the process of new techniques and the
adaptation of tools, in order to use and enhance knowledge
from an old system to a new one.

 Typical end users of software systems are usually
conservative thinkers. The re-engineering of a working
application has to be done carefully, one must bear this in
mind otherwise the transfer of the users’ skills to a new
version of the information system can be quite expensive.

A. History of Proman W

Proman W is an enterprise information system focused
on project and personal costs management, including budget
planning and balancing. This system can be easily integrated
with other enterprise applications e.g. accounting systems
(MACH, WinLine), enterprise resource planning systems
(SAP) or personal accounting systems (Best, PAISY,).
According to [3], Proman W can be characterized as a
sovereign application, which takes the users full attention
when working with it.

From an architecture perspective, Proman W was
designed as a client-server application with support for two
relational database management servers (MS SQL, Oracle).
Integrated development environment (IDE) Delhi (first rapid
application development which supports Object Pascal as a
programming language) was used for the implementation
itself. The first version of Proman W was released in 1999
and until last year it was regularly updated [17].

The old architecture of Proman W started to be a limiting
factor when it came to the implementation of the newly
required features of modern users. This is why, in 2008, a
decision was made to develop a new version of the system
based on current techniques and methodologies in the
software development industry.

B. Requirements

In order to design up to date and maintainable
architecture, bare bone techniques and tools have to be
chosen, these will be used in the whole life cycle of the
software product. According to analysis of recent trends in
software development and expectations from the resulting
system, we specified a group of requirements; these are
described in detail below. Figure 1 shows the graphical
representation of such a system.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

1) Managed application framework and IDE

With consideration to customer needs, Microsoft
Windows remains the target operating system. We were
looking for a mature application framework, which is
continuously developed, has good documentation and
enough resources that are available for developers. This is
important in order to make the process of adopting the new
framework easier and more fluent for developers, which will
also lead to a lower total cost of re-engineering. When it
comes to Windows development .NET [12], this is usually
the first candidate. We had a positive experience with the
development on .NET, which was mainly aimed towards
web applications. Focusing on this platform was the next
logical step. As .NET is a managed environment, it also
provides us with an opportunity to deliver an optimized
installation of a 32 and also a 64 bit version of the
application depending on a single code repository. Microsoft
Visual Studio 2008 [13] (later updated to 2010) was chosen
as the default IDE for .NET development.

Figure 1. Representation of new architecture depending on requirements

2) Model Driven Architecture (MDA)
The idea of MDA (sometimes called Model Driven

Development MDD) is to have a model of the application
captured in the platform independent manners (also called
platform independent model PIM). This means that, if the
model is well designed, it can be used as a base for each
platform specific model which can then be transformed by
implementing the designed system. A standard way to
express a PIM is by the use of a unified modelling language
(UML). PIMs are usually used for documentation generation
[18].

There are many Computer Aided Software Engineering
(CASE) tools on the market, which support ideas of MDA.
Some of them provide an option for the whole of the
software’s life cycle’s process management. In our case we
used a product called Enterprise Architect [19], it was
developed by the Sparx Systems Company. An important
feature for us was the synchronization of an independent
UML model with a source code repository. In order to stay
agile, at the beginning of the development, we needed an
automated translation of UML to the initial implementation

(code generation), afterwards when the model was refactored
into the code it was necessary to publish these changes back
to the UML model (reverse modeling).

3) Composite application design

Composition and modularity are principles which when
applied to well designed and loosely coupled function
blocks, allow for the reusability and convertibility of system
parts. The definition of a composite application is as follows:

 The term composite application expresses a
perspective of software engineering that defines an
application build by combining multiple modules
into a new application [22].

At the beginning, we were evaluating two possible

frameworks for creating rich composite applications.
Caliburn [5] developed by Rob Eisenber and Prism [14] (aka
Composite WPF) created by the Microsoft Patterns &
Practices team in order to provide guidelines for developing
a line of business (LOB) application with a new graphic user
interface (GUI) technology called Windows Presentation
Foundation (WPF). From a functional point of view they
both provided similar features, however as it was one of the
basic parts of developing the system, we concluded that
documentation and further support is not amongst the most
important attributes. Caliburn during that time simply did not
offer enough learning resources and the adoption process
would have had a long learning curve. On the other hand,
Prism had completed documentation with code examples and
a reference application. This turned out to be a large
advantage in the phases that followed.

4) Object Relational Mapping (ORM)

 Proman W can be classified as a Data-Driven
application. This is true for most of the LOB systems. From
a developer’s perspective, it is ideal to have a standard
method for persistent data manipulation. The relational
database server is used for backend data storage. Each
customer has his/her own preference regarding the database
server, mainly because they want to use the one which is
already in use and with which they have experience with. In
order to support multiple types of relational databases, we
decided to use ORM technology as a primary data
manipulation mechanism within the new version of the
system. It enables us to hide all data source specific details.
The object oriented domain model in the information system
can be directly used, by the utilization of ORM, with the
relational database server. According to [4], features which
are critical when a decision about which ORM technology
will be integrated into Proman W is made, were schema
generation and update ability, ease of integration, setup and
prototyping, reasonable transaction implementation (ideally
as one of a standard design pattern e.g. Unit Of Work [8])
and good query mechanism (Language Integrated Query aka
LINQ [11] is an advantage). Some simple tests were also
made in order to determine the performance of ORM
frameworks when dealing with large amounts of data.
According to information provided in [20] we had selected a
suitable ORM prototype testing application which was built

MDA (Platform Independent Model)

.NET (C#, Platform specific domain
model)

VS
SV
TFS

(tools)

Composite app ORM

Data Driven Application
(WPF as GUI framework)

Data Grid for data visualization

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

in order to find out how each of these frameworks will work
with data from the Proman W system. A summary of
impressions for each of the tested ORMs is as follows:

 Data Objects .NET [25]: ORM developed by the X-
tensive company was tested in version 3.9 (current
version 4.4 is its successor, but it was completely
rewritten). Data manipulation was not intuitive
enough. Performance was good and it also supports
schema generation and updates but its other features
do not correspond to initial costs. The
implementation of the Unit of Work design pattern is
also missing.

 Entity Spaces .NET [6]: This ORM does not support
schema generation and updates. It works with a
Database Model first approach, where the object
model was generated according to an existing
database model. Manipulation with data was
intuitive. A problem occurs when large amounts of
data have to be presented to the user. This
framework creates a complete object tree without
checking if all of the data will be really presented,
thus having a negative impact on performance.

 XPO for .NET [4]: ORM framework developed by
the Dev Express Company. It supports all required
features. Our prototype application for testing
purposes has not discovered any serious problems.
Later, during the process of implementing the new
version of Proman W, there were a few performance
issues which were solved.

5) Data visualization

For Data Driven Applications it is essential to present the
user with all kinds of complex structured data. The user
control used for this purpose is usually called Data Grid,
which displays data in a tabular format. In the beginning of
the new Proman W development there was no such user
control included in the WPF GUI framework, however
Companies like Infragistics [9] and Xceed [24] provide their
own implementation of Data Grid control with advanced
data manipulation functionalities, namely: hierarchical data
(in the form of a tree), searching, multi column ordering,
grouping, master-detail view, and automatic error
propagation from data objects). We have done some
experiment applications for the purpose of finding out how
the 3rd party UI components behave together with huge
amounts of data selected via the ORM framework. We found
out that a bottle neck in this process was created due to the
graphical representation (rendering) for each column and
row of dataset and not due to the operations on top of the
data as it was expected. The root of the problem is that
graphical elements are created for all rows of records and if
there is a million records it takes a significant amount of
time. To solve this issue in WPF, an approach called UI
virtualization is used. By definition, UI Virtualization is a
concept where UI elements are only created and maintained
when they are visible on the screen [23]. The resulting
performance then mainly depends on how each vendor
implements the UI virtualization internally. The Xceed Data
Grid provides a superior virtualization and was used as a

default Data Grid control in the new version of the Proman
W system.

6) Version Control

The last requirement was aimed at the tool which
supports the developer in his daily tasks. A centralized
version controlling system SVN (Subversion) [21] was used
at the beginning of the development process. After an
upgrade to the new version of Visual Studio, we found that
this changed our versioning system to the TFS (Team
Foundation Server) [15]. In addition to a centralized version
controlling, TFS also works like a continuous integration
system with an automated build process.

II. THE ADOPTION PROCESS

In this section we are outlining methods used in the re-
engineering of Proman W and describe how modern
techniques were adopted during the product development life
cycle.

A. UML model first approach

In order to make the development process more flexible,
we were using a combination of MDA and agile techniques.
We were using a UML class model of our information
system as a basis for the generation and implementation of
the domain model code via the CASE tool. As was stated
before, two methods of synchronization exist between the
implementation code and the UML model, this means that
changes are propagated between code and model. ORM
technology allowed us to automatically generate and also
update the database schema. All the processes are shown in
Figure 2. This approach proved to be very useful from the
beginning. It sped up the initial development and
maintenance of the working modules.

Figure 2. A combination of the agile MDA in the process of Proman W
development.

B. New GUI framework and modular design

We decided to use WPF as the default GUI framework in
Proman. WPF has a completely new way of dealing with
GUI composition. When the re-engineering of Proman
started, WPF was a relatively new technology and as we
know only a few companies had started to use it for the
development of LOB applications. The following is a list of

MDA

Domain
Model

MS
SQL

Oracle

ORM
Abstraction

Two way
synchronization

Edit /
Update
Schema

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

the most important aspects learned during development,
which should be considered.

1) UI patterns

With WPF, it is more natural to design an application
according to the Model-View-Controller (MVC), Model-
View-Presenter (MVP) or Model-View-View Model
(MVVM, sometimes also called Model-View-Presentation
Model) [7]. Prism, which was used as guidance for creating
composite modular applications, has support for these
architectonic design patterns. First Proman modules were
developed according to MVP, later we switched to MVVM,
which fits better to the WPF architecture.

2) Simple CRUD modules (create, read, update, delete)

prototiping)
When designing an interactive paradigm in Proman W,

we discovered that some of the interaction paradigms used in
the old system did not have implementation in WPF. It was
necessary to look on new interaction conventions for end
users. For this purpose we started development with simple
modules with basic CRUD functionality. Here we
experimented with possible interaction options and at the end
established a convention for designing a common UI for
every Proman module.

3) Asynchronuos operations execution

Introduction of a data abstract layer in the form of ORM
together with a more complex, loosely coupled architecture
of a composite application has a negative effect on the
performance of some operations. This is why we have to
include a paradigm of an asynchronous operation in the new
design of the Proman W system. In WPF it is possible to
separate the GUI thread from a working thread so long as the
running operations do not block GUI and working with the
application is more fluent.

C. Convention over Configuration

Convention over Configuration is a technique focused on
simplifying a development task. It is quite common that
developers are trying to deliver their solutions of problems as
general as possible. This means that in order to use such a
general solution, it is necessary to configure it for specific
needs. However, the Convention over Configuration
technique is defined by specific rules used as a standard for
development tasks (e.g. naming convention of modules,
handling user interaction, validation, etc.). When these rules
are respected, it is much easier to automate configuration
according to them. At the end it leads to better code
implementation, where the developers do not need to take
care about the common infrastructure configuration while
writing code based on convention. From our experience, the
use of convention can rapidly shorten the development time
needed for the introduction of a new prototype module in our
composite application oriented system.

Figure 3. Continuous way for automated testing [1]

D. Test Driven Development (TDD)

In the context of TDD, having reasonable testing sets are
essential. The problem is that developers need to learn how
to write good tests. This is very important otherwise it could
result in a situation where the maintenance of tests takes
much more time than the maintenance of the actual product.
According to [1] it is possible to have a whole complete test
set by the continuous reduction of manual testing and the
introduction of other types of automated tests. This process is
shown in Figure 3. We are comfortable with this method and
in our opinion it is a good way for starting to produce TDD
in the correct matter.

III. FEATURE READY ARCHITECTURE

By implementing our set of architecture requirements we
are able to make a significant adaptation on the demand.
Following is a list of options, which will most likely be
required by the end users in the future:

 Change of presentation layer: web based
applications are more popular in the LOB field of
information systems. MVVM architectonic design
pattern used in Proman W, enabled to change View
component, so the WPF presentation layer can be
replaced with e.g. web based Silverlight technology
or HTML 5.

 Flexible data manipulation: usage of ORM does not
only hide low level SQL details of the relational
storage system, its abstraction allows us to work
with data in different formats, e.g. in the context of a
web rich client application, where the system is
actually running on the client side, we need to have

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

access to data via a standard web protocol. ORM
supports OData protocol [2][16]. This flexibility is
especially useful when dealing with data-driven
applications like Proman W.

 Complete automated testing: one of our future plans
is the full automation of tests (unit, functional,
integration, and scenario) in our system. Loosely
coupled architecture is the basis and necessary
condition in order to make this task possible.

IV. CONCLUSION

The aim of this article is to describe the process of re-
engineering the architecture of the obsolete data driven
application Proman W. The main requirements for the final
information system’s architecture were outlined and reasons
behind the architecture’s decisions were analyzed. The
adoption of new development techniques in the process of
re-engineering a long term running application is difficult.
We provide a description of how this process was handled
whilst developing the new version of Proman W and we
pointed out a few important aspects which should be taken
into account while re-engineering that contains changes in
the basis of the architecture’s components, such as the
application and GUI framework. The resulting
implementation of the information system allows for easier
maintenance and loosely coupled relations between
application components, this makes Proman W ready for
further changes.

REFERENCES
[1] M. Bussa, „Evolution of Automated Testing,“ [Online 2011], [cit.

2011-03-22]. Available on the Internet
<:http://www.matthewbussa.com/2011/01/evolution-of-automated-
testing.html.>.

[2] Codeplex, “eXpresss Persistent Object Toolkit,” [Online 2011], [cit.
2011-03-23]. Available on the Internet <:http://xpo.codeplex.com/.>.

[3] A. Cooper, R. M. Reimann “About Face 2.0,” Wiley, 2003, Indiana,
p. 504, ISBN: 978-0-764-52641-1.

[4] DevExpress, „eXpress Persisten Objects,“ [Online 2011], [cit. 2011-
03-09]. Available on the Internet
<:http://www.devexpress.com/Products/NET/ORM/.>.

[5] R. Eisenberg, „Calibrun,“ [Online 2011], [cit. 2011-03-14].
Available on the Internet <:http://www.caliburnproject.org/.>.

[6] Entity Spaces, „Persistance layer and business objects for .NET,“
[Online 2011], [cit. 2011-03-09]. Available on the Internet
<:http://www.entityspaces.net/Portal/Default.aspx.>.

[7] M. Fowler, „GUI Architectures,“ [Online 2006], [cit. 2011-03-15].
Available on the Internet
<:http://martinfowler.com/eaaDev/uiArchs.html.>.

[8] M. Fowler, „Unit of Work,“ [Online 2002], [cit. 2011-01-09].
Available on the Internet
<:http://martinfowler.com/eaaCatalog/unitOfWork.html.>.

[9] Infragistics, „WPF Controls,“ [Online 2011], [cit. 2011-03-22].
Available on the Internet
<:http://www.infragistics.com/dotnet/netadvantage/wpf.aspx#Overvie
w.>.

[10] P. H. Kuaté, T. Harris, C. Bauer, G King, “NHibernate in Action,”
Manning, 2009, p. 400, ISBN: 978-1-932394-92-4.

[11] F. Marguerie, S. Eichert, J. Wooley, “LINQ In Action,” Manning,
2008, p. 576, ISBN: 1-933988-16-9.

[12] Microsoft, „Microsoft .NET,“ [Online 2011], [cit. 2011-02-20].
Available on the Internet <:http://www.microsoft.com/net/.>.

[13] Microsoft, „Visual Studio,“ [Online 2010], [cit. 2011-02-20].
Available on the Internet
<:http://www.microsoft.com/visualstudio/en-us/.>.

[14] Microsoft patterns & practices, „Prism,“ [Online 2010], [cit. 2011-
03-04]. Available on the Internet
<:http://compositewpf.codeplex.com/.>.

[15] Microsoft, „Team Foundation Server,“ [Online 2010], [cit. 2011-03-
22]. Available on the Internet <:http://msdn.microsoft.com/en-
us/vstudio/ff637362.>.

[16] Open Data Protcol [Online 2011], [cit. 2011-03-23]. Available on the
Internet <:http://www.odata.org/.>.

[17] D. Petrik, O. Moravcík, “Innovation of the Software Product
PROMAN W,” International Workshop Innovation Information
Technologies – Theory and Practice, 2010, Dresden, pp. 55-58,
ISBN: 978-3-941405-10-3.

[18] J. D. Poole., “Model-Driven Architecture: Vision, Standards And
Emerging Technologies,” ECOOP Worshop on Metamodeling and
Adaptive Ojbect Models , 2001, p. 15.

[19] Sparx systems, „Enterprise Architect,“ [Online 2011], [cit. 2011-02-
21]. Available on the Internet <:http://www.sparxsystems.eu/.>.

[20] I. Stanek, “Objektově-relační mapování pro platformu .NET,” České
vysoké učení technické, diploma thesis, Praha, 2008, p. 107.

[21] Tigris, „Subversion,“ [Online 2005], [cit. 2011-03-01]. Available on
the Internet <:http://subversion.tigris.org/.>.

[22] Wikipedia.org, „Composite application,“ [Online 2011], [cit. 2011-
03-11]. Available on the Internet
<:http://en.wikipedia.org/wiki/Composite_application.>.

[23] WPF Wiki, „Virtualization,“ [Online 2010], [cit. 2011-03-30].
Available on the Internet
<:http://www.wpfwiki.com/(X(1)S(wxor0z451rijnueg2yavyu55))/Def
ault.aspx?Page=WPF%20Q4.3&AspxAutoDetectCookieSupport=1.>.

[24] Xceed, „XCEED DataGrid for WPF,“ [Online 2011], [cit. 2011-03-
22]. Available on the Internet
<:http://www.xceed.com/Grid_WPF_Intro.html.>.

[25] X-tensive, „DataObjects .NET 3.9,“ [Online 2011], [cit. 2011-03-
09]. Available on the Internet

<:http://x-tensive.com/Products/DO39/Default.aspx.>.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol I
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-18210-9-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011

