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Abstract—A predictive Bayesian model selection approach is
presented to discriminate coupled models used to predict an
unobserved quantity of interest (QoI). The need for accurate
predictions arises in a variety of critical applications such as cli-
mate, aerospace and defense. A model problem is introduced to
study the prediction yielded by the coupling of two physics/sub-
components. For each single physics domain, a set of model
classes and a set of sensor observations are available. A goal-
oriented algorithm using a predictive approach to Bayesian
model selection is then used to select the combination of single
physics models that best predict the QoI. It is shown that the
best coupled model for prediction is the one that provides the
most robust predictive distribution for the QoI.

Index Terms—Predictive Model Selection, Quantity of Inter-
est, Model Validation, Decision Making, Bayesian Analysis

I. INTRODUCTION

W ITH the exponential growth of available computing
power and the continued development of advanced

numerical algorithms, computational science has undergone
a revolution in which computer models are used to simulate
increasingly complex phenomena. Additionally, such simu-
lations are guiding critical decisions that affect our welfare
and security, such as climate change, performance of energy
and defense systems and the biology of diseases. Reliable
predictions of such complex physical systems requires so-
phisticated mathematical models of the physical phenomena
involved. But also required is a systematic, comprehensive
treatment of the calibration and validation of the models, as
well as the quantification of the uncertainties inherent in such
models.

While recently some attention has been paid to the prop-
agation of uncertainty, considerably less attention has been
paid to the validation of these complex, multiphysics models.
This becomes particularly challenging when the quantity of
interest (QoI) cannot be directly measured, and the compari-
son of model predictions with real data is not possible. Such
QoIs may be the catastrophic failure of the thermal protection
system of a space shuttle reentering the atmosphere or the
different performance characteristics of nuclear weapons in
order to maintain the nuclear stockpile without undergoing
underground nuclear testing.

In this paper, we present an intuitive interpretation of
the predictive model selection in the context of Bayesian
analysis. While the predictive model selection is not an new
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idea, see Refs.[1], [2], [3], here we emphasize the connection
between the QoI-aware evidence and the Bayesian model
averaging used for estimation. This new interpretation of
the Bayesian predictive model selection reveals that the best
model for prediction is the one which provides the most
robust predictive probability density function (pdf) for the
QoI.

The latest advances in Markov Chain Monte Carlo
(MCMC) [4] and estimators based on the k-nearest neighbor
[5] are used to compute the information theoretic measures
required in the problem of predictive selection of coupled
models. It is further argued that equivalence between pre-
dictive model selection and conventional Bayesian model
selection can be reached by performing optimal experimental
design [6] for model discrimination.

The structure of the paper is as follows: first the selection
problem of coupled models is stated in Section II. The con-
ventional Bayesian model selection is described in Section III
and the extension to QoI-aware evidence is derived in Section
IV. The model problem and numerical results are presented
in Section V and Section VI respectively. The conclusions
and future work are discussed in Section VII.

II. PROBLEM STATEMENT

Here we are interested in the prediction of a coupled
model. The problem of selecting the best coupled model in
the context of the QoI is to find the combination of single
physics models that best predict an unobserved QoI in some
sense, see Fig. 1. Thus at the single physics level, we have
two physics A and B, each with a model class set, MA and
MB , and a set of observations DA and DB respectively. The
cardinality of the two sets of model classes are |MA| = KA,
|MB | = KB , and the the definition of model classes in each
set is given by the state equations and measurement models
as follows,
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All the possible couplings of single physics models
yield the set of coupled model classes M = {Mij =
(MA

i ,M
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|M| = KAKB . The definition of a coupled model class
in this set is given by the state and measurement equation,
and in addition we also have the model for the QoI,
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Fig. 1. Predictive Selection for Coupled Models

Having the set of all the coupled models, the selection
problem becomes finding the best coupled model in the set,
M, for prediction purposes.

III. BAYESIAN MODEL SELECTION

In the context of M-closed perspective, the conventional
Bayesian approach to model selection is to choose the model
which has the highest posterior plausibility,

M∗ = argmax
M

π(M |D,M). (1)

Given the data at the single physics level, one can compute
the posterior model plausibility for all the models in theMA

and MB sets, as the product between evidence and prior
plausibility,

π(MA
i |DA,M) ∝ π(DA|MA

i ,M)π(MA
i |M). (2)

The evidence is obtained during the calibration process for
each single-physics models, and it is given by the normaliza-
tion constant in the Bayes rule, used to compute the posterior
pdf of model parameters,

π(θA
i |DA,MA

i ,M) =
π(DA|θA

i ,M
A
i ,M)π(θA

i |MA
i ,M)

π(DA|MA
i ,M)

.

With no data at the coupled level, one can easily obtained
the posterior plausibility for coupled models as,

π(Mij |D,M) = π(MA
i |DA,M)π(MB

j |DB ,M). (3)

Notice, that the best coupled model is given by coupling the
best models at the single physics level. Computationally this
is advantageous as there is no need to build all the possible
coupled models using the single physics models. Looking
at just two coupled models, we can say that we prefer
model M1 over model M2 if and only if π(M1|D,M) >
π(M2|D,M). This inequality can be recasted as the follow-
ing product of ratios:

π(D|M1)

π(D|M2)︸ ︷︷ ︸
Bayes factor

π(M1,M)

π(M2,M)︸ ︷︷ ︸
prior odds

> 1 (4)

The log-evidence is the trade-off between model complexity
and how well the model fits the data. In other words
the evidence yields the best model that obeys the law of
parsimony,

ln[π(D|M1)] =E [ln[π(D|θ,M1)]]

−KL

(
π(θ|D,M1) || π(θ|M1)

)
, (5)

where the model complexity is given by the Kullback-Leibler
divergence between posterior pdf and prior pdf of model pa-
rameters [4]. Therefore, this model selection scheme makes
use of the following information in choosing the best model:

( model complexity, data fit, prior knowledge ) .

Since it obeys Occam’s razor, we implicitly gain some
robustness with respect to predictions. However, if we have
two different QoIs that we would like to predict, it is not
obvious if the model selected under this scheme will be able
to provide equally good predictions for both QoIs. This is due
to the fact that the information about the QoI is not explicitly
used in the selection criterion. In the following sections, we
will present an extension of model selection scheme to also
account for the QoI, and discuss its implications.

IV. PREDICTIVE MODEL SELECTION

Given a model class set M = {M1,M2, . . . ,MK} (for
simplicity the double index will be ignored in the model class
notation), and a set of observations D = {d1,d2, . . . ,dn}
generated by an unknown model fromM, we are concerned
with the problem of selecting the best model to predict an
unobserved quantity of interest q. The selection of the model
which best estimates the pdf of the QoI is seen here as a
decision problem [3]. First one has to find the predictive
distribution for each model class and the selection of the
best model class is based on the utility of its predictive
distribution. Given all the available information, the Bayesian
predictive distribution conditioned on a model Mj is given
by:

π(q|D,Mj) =

∫
π(q|θj , D,Mj) π(θj |D,Mj) dθj (6)

where the posterior pdf for model parameters is computed
using Bayes rule.

...

M1

MK

Mj

Mtrue

θj

=1sj

=0s1

=0sK

Fig. 2. Assumption regarding the true model
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In the followings it is assumed that the true distribution of
the QoI is generated by a model Mj(θj) ∈ Mj , called the
true model, see Fig.2. Thus, the true pdf of the QoI can be
written as:

π(q|θ, s, D,M) =
K∑
j=1

π(q|θj , D,Mj)sj (7)

where θ = (θ1,θ2, . . . ,θK), s = (s1, s2, . . . , sK), and
sj = 1 if and only if the true model belongs to model class
Mj . Let Uq(θ, s,Mj) describe the utility of choosing the pdf
associated with model class Mj as the predictive distribution
of the QoI, q. Here the utility function is defined as the
negative Kullback-Leibler divergence of the true distribution
and the predictive distribution of Mj :

Uq(θ, s,Mj) =−KL

(
π(q|θ, s, D,M) || π(q|D,Mj)

)
(8)

The model that maximizes the following expected utility
(QoI-aware evidence) is the model of choice for predictive
purposes:

M∗ = arg max
Mj∈M

∫
Uq(θ, s,Mj)π(θ, s|D,M)dθds︸ ︷︷ ︸

Eθ,s[Uq(θ,s,Mj)]

(9)

With few mathematical manipulations, the expected utility
can be written as follows,

Eθ,s[Uq(θ, s,Mj)] =

∫
Uq(θ, s,Mj)π(θ|s, D,M)π(s|D,M)dθds

=

K∑
i=1

π(Mi|D,M)

∫
Uq(θi, si,Mj)π(θi|D,Mi)dθi (10)

= −
K∑
i=1

π(Mi|D,M)Eθi

[
KL

(
π(q|θi, D,Mi)||π(q|D,Mj)

)]

A. Interpretation of the expected utility for model selection

Consider now that only two model classes exist in our
model set M = {M1,M2}. We prefer model class M1 over
M2 and write M1 �M2 if and only if:

Eθ,s[Uq(θ, s,M1)] > Eθ,s[Uq(θ, s,M2)] (11)

Substituting Eq.(10) into Eq.(11) the following model
selection criterion can be derived:

R(M1||M2)

R(M2||M1)︸ ︷︷ ︸
Risk ratio

π(D|M1)

π(D|M2)︸ ︷︷ ︸
Bayes factor

π(M1,M)

π(M2,M)︸ ︷︷ ︸
Prior odds

> 1 (12)

where the numerator in the predictive risk ratio is given
by the following expressions. The denominator is obtained
by analogy with the numerator.

R(M1||M2) = Eθ1

[
KL

(
π(q|θ1, D,M1) || π(q|D,M2)

)]
−Eθ1

[
KL

(
π(q|θ1, D,M1) || π(q|D,M1)

)]
(13)

The model selection criterion in Eq.(12) can be interpreted as
the evidence of model class M1 in favor of model class M2,
and is composed of prior evidence given by the prior odds,
experimental evidence given by the Bayes factor and the pre-
dictive risk ratio which accounts for the loss of choosing the
wrong model. According to Trottini and Spezzaferri [3], the
expectations in the above ratio have the following meaning:

Eθ1

[
KL

(
π(q|θ1, D,M1) || π(q|D,M2)

)]
- the risk of choos-

ing model class M2 when the true model belongs to M1;

Eθ1

[
KL

(
π(q|θ1, D,M1) || π(q|D,M1)

)]
- even if we report

the distribution π(q|D,M1) when the true model belongs to
M1, there is a risk incurred due to the unknown value of θ1
that generated the true model. Comparing with the previous
model selection scheme, the following information is used
in this scheme to select the best model:

( QoI, model complexity, data fit, prior knowledge ) .

B. Calculation of the expected utility used for predictive
model selection

The calculation of the QoI-aware evidence in Eq.(10) is
challenging as we are dealing with high dimensional inte-
grals, and the number of samples in the posterior distributions
is dependent on the MCMC algorithms and computational
complexity of the forward model. Thus, we would like to
simplify this calculation. Starting from Eq.(10) the following
expression for the expected utility can be obtained:

Eθ,s[Uq(θ, s,Mj)] = −
K∑
i=1

π(Mi|D,M)

∫
π(θi|D,Mi)π(q|θi, D,Mi) log

π(q|θi, D,Mi)

π(q|D,Mj)
dθidq

= −
K∑
i=1

π(Mi|D,M)

∫
π(q,θi|D,Mi) log π(q|θi, D,Mi)dθidq+

∫
π(q|D,M) log π(q|D,Mj)dq (14)

Where the predictive pdf under all models is given by,

π(q|D,M) =
K∑
i=1

π(Mi|D,M)π(q|D,Mi). (15)

Since the first term in Eq.(14) is the same for all models Mj ,
for j = 1 . . .K, the optimization in Eq.(9) is equivalent with
maximizing the second term in Eq.(14), which is the negative
cross-entropy between the predictive distribution conditioned
on all the models and the predictive distribution conditioned

on the jth model:

M∗ = arg max
Mj∈M

−H
(
π(q|D,M), π(q|D,Mj)

)
(16)

By writing the optimization as a minimization instead of
a maximization and subtracting the entropy of the predictive
distribution conditioned on all the models, then one can
rewrite the model selection problem as,
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M∗ = arg min
Mj∈M

H

(
π(q|D,M), π(q|D,Mj)

)
−H

(
π(q|D,M)

)
= arg min

Mj∈M
KL

(
π(q|D,M)

∣∣∣∣∣∣∣∣π(q|D,Mj)

)
(17)

Thus, the best model to predict an unobserved quantity
of interest q is the one whose predictive distribution best
approximates the predictive distribution conditioned on all
the models. This is rather intuitive as all we can say about the
unobserved quantity of interest is encoded in the predictive
distribution conditioned on all the models. The predictive pdf
under all models being the most robust estimate of the QoI
for this problem.

This model selection scheme reveals that when the poste-
rior model plausibility is not able to discriminate between the
models, the prediction obtained with the selected model is the
most robust prediction we can obtain with one model. Thus
we are able to account for model uncertainty when predicting
the QoI. On the other hand, in the limit, for discriminatory
observations, when the posterior plausibility is one for one of
the models, the two selection schemes become equivalent.

V. MODEL PROBLEM

The model problem consists of a spring-mass-damper
system that is driven by an external force. The spring-mass-
damper and the forcing function are considered to be separate
physics such that the full system model consists of a coupling
of the dynamical system modeling the spring-mass-damper
system and a function modeling the forcing. In this model
problem, synthetic data are generated according to a truth
system.

A. Models

This section describes the models that will form the sets
of interest for the single physics. The models of the spring-
mass-damper system take the following form:

mẍ+ cẋ+ k̃(x)x = 0. (18)

The mass is assumed to be perfectly known, m = 1, and
the damping coefficient c is a calibration parameter. Model
form uncertainty is introduced through the spring models
k̃(x). Three models are considered: a linear spring (OLS), a
cubic spring (OCS), and a quintic spring (OQS), given by
the following relations:

k̃OLS(x) = k1,0 (19)

k̃OCS(x) = k3,0 + k3,2x
2 (20)

k̃OQS(x) = k5,0 + k5,2x
2 + k5,4x

4 (21)

The models of the forcing function are denoted f̃(t). Three
models are considered: simple exponential decay (SED),
oscillatory linear decay (OLD), and oscillatory exponential
decay (OED):

f̃SED(t) = F0 exp(−t/τ) (22)

f̃OLD(t) =

{
F0(1− t/τ) [α sin(ωt) + 1] , 0 ≤ t ≤ τ

0, t > τ
(23)

f̃OED(t) = F0 exp(−t/τ) [α sin(ωt) + 1] (24)

The coupling of the spring-mass-damper and the forcing
is trivial. Thus, only a single coupling model is considered,
and the coupled model is given by

mẍ+ cẋ+ k̃(x)x = f̃(t). (25)

There are three choices for k̃(x) and three choices for f̃(t),
leading to nine total coupled models.

B. The Truth System

To evaluate the two selection schemes: Bayesian model
selection, and predictive model selection, we can construct
the true system which will be used to generate data and
give the true value of the QoI. The comparison of the two
selection criteria will be done with respect to different subsets
of models, and the ability of the best model to predict the
true value of the QoI. The true model is described by OQS-
OED:

mẍ+ cẋ+ k̃OQS(x)x = f̃OED (26)

where m = 1, c = 0.1. The parameters for the spring model
are set to k5,0 = 4, k5,2 = −5, and k5,4 = 1. The true forcing
function is given by the following values for the parameters:
F0 = 1, τ = 2π, α = 0.2, ω = 2.

The QoI of the coupled model is assumed to be the
maximum velocity ẋmax = maxt∈R+ |ẋ(t)|. The observable
for physics A is given by the kinetic energy versus time:
1
2 ẋ(ti)

2 for i = 1, . . . , N . Note that this contains the same
information as the velocity except that it is ambiguous with
respect to the sign. The observable for physics B is given by
the force versus time: f(ti) for i = 1, . . . ,M . In both cases
simulated observations have been generated by perturbing
the deterministic predictions of the true model, with a log-
normal multiplicative noise with standard deviation of 0.1.

VI. NUMERICAL RESULTS

The inverse problem of calibrating the model parame-
ters from the measurement data is solved using MCMC
simulations. In our simulations, samples from the posterior
distribution are obtained using the statistical library QUESO
[7], [4] equipped with the Hybrid Gibbs Transitional Markov
Chain Monte Carlo method proposed in Ref. [8]. One
advantage of this MCMC algorithm is that it provides an
accurate estimate of the log-evidence using the adaptive
thermodynamic integration. Estimators based on k-nearest
neighbor are used to compute the Kullback-Leibler diver-
gence in Eq.(17), see Appendix. The use of these estimators
is advantageous especially when only samples are available
to describe the underlying distributions.

Three different scenarios are constructed to assess the
predictive capability of the models selected using the two
selections schemes: Bayesian model selection and predictive
model selection. All the uncertain parameters of the models
are considered uniformly distributed and the model error has
also been calibrated and propagated to the QoI.

Case 1. First, all the models are included in the two
sets, including the components used to generate the true
model. For oscillators the model class set is given by
MA = {MOLS ,MOCS ,MOQS} and for forcing function
MB = {MSED,MOLD,MOED}. A number of 10 mea-
surements have been considered for the oscillators and 61
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Fig. 3. Results for the three cases considered

for the forcing. Table I summarizes the results obtained after
applying the two approaches. On the first column and the first
row, under each model one can find the model plausibility
after calibration, and the first number in a cell gives the
plausibility of the corresponding coupled model. The number
in the parenthesis is the KL divergence used in the predictive
model selection.

In this case, the observations provided are enough to
discriminate the models at single physics level, oscillator
OQS and the forcing OED are selected in this case. Here, the
predictive model selection is consistent with the plausibility
based model selection. Notice that the true model belongs to
the model class OQS-OED, and the prediction of the selected
model covers the true value of the QoI, see Fig.3a.

One computational advantage is that when discriminatory
observations are available, one does not need to carry the
analysis on all the coupled models, just on the coupling of
the best single physics ones and still be in agreement with
predictive requirements. We argue that for very complex and
hierarchical systems, with multiple levels of coupling, such
a situation should be preferred and exploited by designing
experiments to collect measurements intended to discriminate
models.

TABLE I
RESULTS CASE 1

SED OLD OED*
0.00 0.00 1.00

OLS 0.00 0.00 0.00
0.00 (3.75) (3.36) (3.67)
OCS 0.00 0.00 0.00
0.00 (4.19) (3.91) (4.24)

OQS* 0.00 0.00 1.00
1.00 (1.15) (5.09) (0.00)

Case 2. For the second scenario we remove the forcing
that generated the true model. Now the sets of model
classes are given by MA = {MOLS ,MOCS ,MOQS} and
MB = {MSED,MOLD}. The same number of observations
are considered for the oscillators and 7 measurements for
the forcing models. The results are presented in Table II. As
before, we are able to discriminate the oscillators, however
we cannot say the same for the forcing models. This can
be seen in Fig. 3c, where we can see the prediction of the
observable with the two forcing models after calibration. The
data supports almost equally well both forcing functions.

In this case the two selection schemes yield two different
models: OQS-OLD for the Bayesian model selection and
OQS-SED for the predictive model selection, see Table II.
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Looking at their predictions for the QoI, Fig. 3b, we see that
the pdf provided by the model selected using conventional
Bayesian model selection doesn’t even cover the true value of
the QoI, whereas the one chosen by the predictive selection
scheme covers the true value of the QoI in the tail.

Thus, while the plausibility based selection ignores the
model uncertainty, the predictive selection approach yields
the model with the most robust predictive pdf for the QoI.
This prediction incorporates as much as possible model un-
certainty that one can obtain with just one model. Therefore,
the predictive approach is recommended in the case when
discriminatory observations are not available and one model
has to be chosen instead of model averaging, especially for
complex hierarchical systems.

TABLE II
RESULTS CASE 2

SED OLD
0.44 0.56

OLS 0.00 0.00
0.00 (6.77) (7.35)
OCS 0.00 0.00
0.00 (5.66) (7.23)

OQS* 0.44 0.56
1.00 (0.62) (1.64)

TABLE III
RESULTS CASE 3

SED OLD
0.48 0.52

OLS 0.05 0.06
0.12 (0.39) (0.82)
OCS 0.42 0.45
0.88 (0.37) (0.34)

Case 3. Lastly, we are not including in the model sets
any of the components that generated the true model. Thus,
MA = {MOLS ,MOCS} and MB = {MSED,MOLD}. In
this case only 5 observations are considered for the oscillators
and 4 for the forcing functions. We can see from Table III
that at the single physics level we are not able to discriminate
the oscillators or the forcing functions. For the coupled
models both approaches choose the same model OCS-OLD,
however looking at the predictions of all coupled models,
including their average prediction we see that all of them
give very low likelihood for the true value of the QoI.

In this case we emphasize that the prediction approach
has the same drawback as the Bayesian model selection and
Bayesian model averaging. Mainly, we are at the mercy of
our hypotheses and the only way to escape this case is to
generate additional hypotheses.

VII. CONCLUSIONS

In this paper, we have presented a model selection criterion
that accounts for the predictive capability of coupled models.
This is especially useful when complex/multiphysics models
are used to calculate a quantity of interest. It has been
shown that the prediction obtain with the model chosen by
the predictive approach, is the most robust prediction that
one can obtain with just one model. This is because in
part it incorporates model uncertainty, while conventional
Bayesian model selection ignores it. For discriminatory mea-
surements the Bayesian model selection and predictive model
selection are equivalent. This suggests that when additional
data collection is possible then designing experiments for
model discrimination is computationally preferred for com-
plex models.

APPENDIX

The approximation of the Kullback-Leibler divergence is
based on a k-nearest neighbor approach [5].

KL

(
p(x|Dn)

∣∣∣∣∣∣∣∣p(x|Dn−1)

)
≈ dX
Nn

Nn∑
i=1

log
νn−1(i)

ρn(i)
+ log

Nn−1

Nn − 1

where dX is the dimensionality of the random variable
X , Nn and Nn−1 give the number of samples {Xi

n|i =
1, . . . , Nn} ∼ p(x|Dn) and {Xj

n−1|j = 1, . . . , Nn−1} ∼
p(x|Dn−1) respectively, and the two distances νn−1(i) and
ρn(i) are defined as follows:

ρn(i) = min
j=1...Nn,j 6=i

‖Xi
n −Xj

n‖∞

νn−1(i) = min
j=1...Nn−1

‖Xi
n −X

j
n−1‖∞
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