
 

 
Abstract—The present paper describes the structure and the 

design aspects of a robust PID controller for higher-order 
systems. A design scheme that combines deadbeat response, 
robust control, and model reduction techniques to enhance the 
performances and robustness of PID controller is presented. 
Unlike conventional deadbeat controllers, the tuning 
parameters are reduced to one cascade gain which yields a 
practical tuning method. The design scheme is illustrated on a 
pitch-axis autopilot design of an Unmanned Aerial Vehicle 
(UAV). Computer simulations show that the proposed method 
improves time-domain response performances and exhibits 
stronger robustness property to conquer system uncertainties. 
 

Index Terms— deadbeat controller, higher-order systems, 
robust control, UAV flight control system 
 

I. INTRODUCTION 

HE integration of an autopilot in the control loop of an 
UAV airframe provides complete set of avionics which 
enable the UAV to autonomously complete its mission. 

This electronic system is generally designed to provide 
intelligent and autonomous flight Navigation and Control 
(N&C) system to conventional airframes (stable fixed wing 
with aileron-elevator-rudder control surfaces and engine 
throttle control) for autonomous navigation between 
predefined waypoints. Most of modern autopilots 
incorporate control law algorithms to meet the demanding 
requirements of flight maneuvers with high performance 
and to successfully accomplish the mission of autonomous 
flight. 

In recent years, considerable research into the design of 
algorithms for UAV autopilots using modern control theory 
has been completed. A large number of control algorithms 
have been developed for onboard N&C systems. Most of 
these systems include some nonlinear terms [1-3], 
evolutionary algorithms [4-8], or optimization techniques 
[9]. Despite their success, only a small number of 
implementations of these systems have been reported and it 
appears that there is not much enthusiasm to use them due to 
their complexity, nonlinear nature, and computation cost.  
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On the other hand, PID autopilots have been successfully 
integrated as real-time control and online navigation 
systems for UAVs. This is not only due to their simple 
structure and easy implementation, but also to their adequate 
performances. However, for successful implementation of 
such controllers, and without requiring complex 
mathematical development, parameter adjustment or tuning 
procedure is needed if enhanced performance is to be 
achieved through the operating envelope.  

The tuning process, whereby the optimum values for the 
controller parameters are obtained, is a critical challenge. 
Many studies were conducted to find the best way for tuning 
PID parameters in order to get adequate performances such 
as fast response, zero steady-state error, and minimum 
overshoot/undershoot [10,11]. Even though there are only 
three parameters, PID parameter tuning is a difficult process 
because it must satisfying complex criteria within the 
limitations of system actuators. Also, the traditional PID 
controller only works for lower-order systems and lacks 
robustness against large system parameter uncertainties. 
This is due to the insufficient number of parameters to deal 
with the independent specifications of time-domain 
response such as settling time and overshooting [12].  

In practice, an UAV autopilot uses a combination of PID 
feedback and feedforward controllers, such as in case of 
Kestrel Autopilot [13], to generate the control efforts of 
conventional control surfaces and engine throttle. There are 
about fifteen flight modes of an UAV such as manual, 
homing, altitude, and targeting modes. The control strategy 
is based upon the use of cascading controllers for which 
multiple PID controllers are incorporated into one 
input/output loop. Cascading controllers that link the output 
from one PID unit as the input to another PID unit are 
useful for more complex missions and maneuvers.  As for 
an autonomous flight the autopilot of an UAV should be 
correctly configured and tuned for each flight mode, this 
control strategy yields a great number of parameters and 
requires more efficient tuning procedure. 

Manual trail-and-error or analyze-and-iterate methods 
require a large amount of time and manpower for repetitive 
adjustments through computer simulations and flight tests to 
achieve the desired performances.  Although PID parameter 
optimization techniques provide an optimal controller and 
efficiently shape the desired system dynamics, these 
techniques require expansive computation cost. Hence, 
designing control algorithms capable to assure high 
performance and robustness with minimum cost is highly 
recommended. For this purpose, we propose, in this paper, a 
mathematical-based framework for designing robust PID 
controllers for a class of higher-order systems. The 
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proposed strategy combines the deadbeat step response, the 
multi-step design system proposed in [12], and model 
reduction techniques in one procedure design. The resulting 
control system improves time-response dynamic properties, 
ensures robustness against large parameter uncertainties, 
and presents an efficient tuning tool with reduced number of 
tuning parameters. 

In the following sections, we formalize the proposed 
framework mathematically, extend the design system 
proposed in [12] to cover arbitrary Linear Time Invariant 
(LTI) systems, and show the efficiency of the proposed 
control scheme for the design and implementation of robust 
PID controllers. The control loop used for illustration is the 
longitudinal flight control system of an UAV.  

II. ROBUST DEADBEAT CONTROLLER DESIGN AND 

IMPLEMENTATION 

The deadbeat response is defined as having the following 
time domain performances 

1. Zero Steady-State Error (Zero-SSE). 
2. Controllable settling time Ts. 
3. Minimum rise time Tr90 (0-90% of the step height). 
4. Percent Overshoot (P.O) and Percent Undershoot 

(P.U) less than 2%. 
To design a control system that assures these performances 
we consider the following LTI system  
 

ሻݐሺݕሻݏሺܦ ൌ   ܰሺݏሻݑሺݐሻ                            ሺ1ሻ 
where   

 ܰሺݏሻ ൌ  ∑ ܾݏ


ୀ                             ሺ2ሻ  

ሻݏሺܦ   ൌ  ∑ ܽݏ


ୀ                            ሺ3ሻ  
 
where ݊ is the degree of the system dynamics, ݕሺݐሻ is the 
output of the system, ݑሺݐሻ is the control input, and ܽ  ሺ݆ ൌ

1, . . , ݊ሻ  and ܾ ሺ݅ ൌ 1, . . , ݉ሻ are the system and control 
parameters, respectively.  
Assumption 1: The orders n and m are known and ݊   ݉. 
Assumption 2: ܦሺݏሻ is a Hurwitz polynomial, and 

ܰሺݏሻ and ܦሺݏሻ are coprime. 
Assumption 3: the relative degree of the system (1) with 
respect to its output ݕሺݐሻ is given as 
 

ߩ ൌ ݊ െ݉  1                                    ሺ4ሻ 

A.  Deadbeat Controller Design 

For an nth-order LTI system such as (1), the deadbeat robust 
controller, as proposed in [12], is applied through the 
following two cell closed-loop control  

 

 

 

Fig. 1.  Basic structure of the robust deadbeat control loop 

 
In this design,  the system (1) is actuated by the following 
control law 

ሻݏሺݑ   ൌ ሻݏሺݑ   ሻ                                    ሺ5ሻݏሺݑ
 
where ݑሺݏሻ  is the portion of the control signal generated 
by a cascade PID controller as follows 
 

ሻݏሺݑ ൌ ሻݏሻ݁ሺݏሺܩܭ ൌ  ܭ ܰሺݏሻ
ሻݏሺܦ

݁ሺݏሻ                                

                          ൌ ܭܭ
ሺݏଶ  ݏܺ  ܻሻ

ݏ
݁ሺݏሻ

ሺ6ሻ 

 
and ݑሺݏሻ is an output feedback control introduced by 
means of the following variable feedback gain  
 

ሻݏሺݑ ൌ ሻݏሺݕሻݏଶሺܪ  ൌ  ሻ                                ሺ7ሻݏሺݕܭ
 
The error ݁ሺݏሻ is defined as the difference between the 
reference input control ݎሺݏሻ and the output ݕොሺݏሻ of an 
additional derivative controller ܪଵሺݏሻ  
 

݁ሺݏሻ ൌ ሻݏሺݎ  െ   ሻ                                ሺ8ሻݏොሺݕ
 
The structure of ܪଵሺݏሻ depends on the number of poles of 
the transfer function  ܩሺݏሻܩሺݏሻ as follows 
 

ሻݏଵሺܪ ൌ ݊ ݎ݂                                1  ൌ 2            

ሻݏଵሺܪ ൌ  1  ݊  ݎ݂                   ݏଵܭ ൌ   4 ݎ 3

ሻݏଵሺܪ ൌ  1  ݏଵܭ  ݏଶܭ
ଶ     ݂ݎ  ݊ ൌ 5           

     ሺ9ሻ 

 
where ݊ equals the number of poles in ܩሺݏሻܩሺݏሻ transfer 
function. The cascade gain K is introduced in order to deal 
with higher-order plants, to compensate the nonlinearities, 
and to be able to independently specify the desired 
performances such as overshoot and settling time. The 
different parameters and gains in the control loop shown in 
Fig. 1. are determined by setting the characteristic equation 
of the equivalent closed-loop transfer function equal to the 
following deadbeat equation 
 

ݏ  ݏଵ߱ߙ
ିଵ  ଶ߱ߙ

ଶݏିଶ  ⋯ ߱

       ሺ10ሻ 

 
where the coefficients ߙ are determined from the following 
table depending on  ݊ number  
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TABLE I 
DEADBEAT COEFFICIENTS AND RESPONSE TIMES 

Order np ߙଵ ߙଶ ߙଷ ߙସ ܶ′ଽ ܶ′௦ 

2nd 1.82 ----- ----- ----- 3.47 4.82 

3rd 1.90 2.20 ----- ----- 3.48 4.04 

4th 2.20 3.50 2.80 ----- 4.16 4.81 

5th 2.70 4.90 5.40 3.40 4.84 5.43 

 
ܶ′ଽ and ܶ′௦ are, respectively, the rise time and the settling 
time of the deadbeat step response. The normalized 
frequency ߱is given as follows 
 

 ߱ ൌ  
்ᇱೞ

ఓ ೞ்
                                  ሺ11ሻ 

 
where ௦ܶ is the desired settling time, and ߤ is a positive 
constant generally selected to be 0.8  ߤ  0.95. 
 

B.  Deadbeat Controller Implementation 

First, the characteristic equation ሺݏሻ of the closed-loop 
transfer function is found from  
 

ሻݏሺܩ ൌ  
ሻݏሺݍ

ሻݏሺ
ൌ

ሻݏሺܩሻݏሺܩܭ

1  ሻݏଶሺܪሻݏሺܩ  ሻݏଵሺܪሻݏሺܩሻݏሺܩܭ
ሺ12ሻ 

 
which yields 
 

ሻݏሺ ൌ ሻݏሺܦሻݏሺܦ   ሻݏሺܦ ܰሺݏሻܪଶሺݏሻ        

                                          ܭ ܰሺݏሻ ܰሺݏሻܪଵሺݏሻ
      ሺ13ሻ 

 
Selecting the feedback ܪଵሺݏሻ as  
 

ሻݏଵሺܪ   ൌ 1  ∑ ݏܭ
ିଶ

ୀଵ
வଶ

                             ሺ14ሻ 

 
the development of (13) yields 
 
ሻݏሺ ൌ ܭ ܰሺݏሻ ∗ ∑ ݏܾܭ

ାଵ
ୀିଶ

ୀିଶ

                                        

 ሺܭ ܰሺݏሻ  ሻݏܭ ∗ ∑ ܾݏ
ଵ

ୀିଶ                          

  ሺܭ ܰሺݏሻ  ሻݏܭ ∗ ܾ  ܭ ܰሺݏሻܾ ∑ ݏܭ
ଵ

ୀିଶ

ሺ15ሻ  

with 

ܰሺݏሻ ൌ ݏሺܭ 
ଶ  ݏܺ  ܻሻ                    ሺ16ሻ 

 
From (15), it is clear that to apply the deadbeat controller as 
proposed in [12], the orders higher than ݊ should be 
eliminated. This results in the following conditions  
 

ܾ ൌ ݅ ݎ݂  0  0                                 ሺ17ሻ 
 
Hence, the relative degree of the system (4) should be ߩ ൌ
݊. In other words, to apply the controller (5) to an arbitrary 
LTI system such as (1), an order-reduction or zero-
cancellation phase is needed.   

III.  REAL TIME CLOSED-LOOP CONTROL OF AN 

UAV 

An UAV autopilot is designed to assure different levels 
of autonomy known as autopilot modes. These modes are 
classified into three categories [13]: 1-) standard modes 
such as manual, takeoff, land, and home modes, 2-) 
advanced modes such as targeting, deep stall, and PID 
modes, 3-) payload modes such as gimbal control and 
camera view modes. These autonomy capabilities allow the 
user to change autopilot behavior depending on the 
requested maneuvers. In addition, there is a pilot-in-the-loop 
mode which gives the user direct control of the aircraft 
using Radio Controlled (RC) mode for gain tuning, 
algorithm development, and cases where manual flight is 
required.  
To be able to perform an autonomous flight, UAVs have to 
be tuned for different flight loops which are classified with 
respect to the relative degree as follows 
Inner loops (=1): yaw rate, roll rate, and pitch rate.  
Outer loops (>1):  roll, pitch, yaw, pitch-airspeed, throttle-
airspeed, throttle-altitude, and pitch-altitude.  

Depending on the input-output relations, these loops are 
grouped into control blocks for which the control efforts are 
generated by cascading controllers using a combination of 
feedback and feedforward controls such as in Kestrel 
autopilot structure [13]. Assuming that all control blocks 
have access to the necessary sensor information, the 
following figure depicts the cascade structure of one of 
these blocks (Elevator-waypoints block control) 
 

Fig. 2.  Waypoint-elevator control block diagram of an UAV autopilot 
 

From the figure above, it is clear that many PID 
controllers have to be tuned to successfully complete   an 
autonomous flight.  This consumes a vast amount of man 
power and time (three tuning parameters for each PID), and 
needs a great number of flight tests over the operating 
range. In addition, fastness and robustness are required 
because each control block incorporates many control loops 
and uses many sensor measurements (UAV parameters). In 
order to cope with these challenges, we present in the 
following section a multistep design procedure that reduces 
the tuning effort and ensures fastness and robustness. 
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IV. ROBUST DEADBEAT CONTROLLER DESIGN 

FOR AN UAV AUTOPILOT 

In order to perform the control system design, it is 
necessary to start with an intended model of the system, and 
then proceed to the control design. Flight dynamics of fixed-
wing aircrafts are well understood and reasonably extended 
to model the dynamics of UAVs which are characterized by 
a set of coupled and strongly nonlinear differential 
equations. However, under special circumstances and with 
specific assumptions such as straight steady flight and zero 
cross product, the use of small perturbation theory yields 
linear and decoupled into lateral and longitudinal equations 
of motion. In the present study, the longitudinal flight 
control of an UAV is considered for controller design and 
validation. 
 

A.  Longitudinal Flight Dynamics of an UAV 

  The longitudinal flight mode, is embodied by the X-force, 
Z-force, and pitch moment equations as follows 
 

࢟ሻݏሺࡴ ൌ 
ሻݏሺࢎ

ሻݏሺࢎ

ሻݏெሺࢎ

 ࢟ ൌ  ሺ18ሻ                      ࢾ

with 

ሻݏሺࢎ ൌ ቂቀ
ݑ݉
ݍܵ

ݏ െ ೠቁܥ     െ           ഀܥ

                             െ݉݃ܿݏΘୣ െ ቃݏܥ
                 ሺ19ሻ 

 

 

ሻݏሺࢎ ൌ ቈെܥೆ  ቆ൬
ݑ݉
ݍܵ

െ
ܿ. ܥ ሶഀ

ݑ2
൰ ݏ െ          ഀቇܥ

              െ ቆ
ݑ݉
ݍܵ


ܿ. ܥ
ݑ2

ቇ ݏ െ Θୣ݊݅ݏ݃݉

ሺ20ሻ 

 

ሻݏெሺࢎ ൌ െܥெೠ
            ൬െ

ܿ. ெܥ ሶഀ

ݑ2
ݏ െ ெഀܥ

൰     

ቆ
௬ܫ
ܿݍܵ

ଶݏ െ
ܿ. ெܥ

ݑ2
ቇݏ

  ሺ21ሻ 

 

 ൌ  ఋ൧࢈  ఋ࢈ൣ ൌ ൦

ഃܥ
ഃܥ  

ഃܥ
ഃܥ  

ெഃܥ
ெഃܥ  

൪                         ሺ22ሻ 

and 

തݑ  ൌ  
ݑ െ ܷ
ܷ

           

തߙ ൌ  
ݓ
ܷ
           

ߠ̅ ൌ ߠ  െ    ߠ

                                ሺ23ሻ 

 
The variables ݑ and ݓ are the change of velocity 
components in x and z direction, respectively, ܷ is the 
steady state flight velocity, ߠ is the actual pitch angle, and 
 ሻ is theݏሺࡴ  is the trim pitch angle. The matrixߠ
longitudinal flight matrix, and ࢈ఋ and ࢈ఋ are the 
aerodynamic and thrust control vector, respectively. The 
input and output variables are defined as follows 
 

ࢾ ൌ ሾߜ  ߜ௧ሿ                                    ሺ24ሻ 

 
࢟ ൌ ሾ ݑത    ߙത    ̅ߠሿ்                           ሺ25ሻ  

 
where ߜ and ߜ௧ are elevator angle and thrust angle 
deflection, respectively.   

 

B.  Longitudinal Deadbeat Autopilot Design  

In this section, the deadbeat controller derived above is 
analyzed in terms of agility and robustness against 
parameter uncertainties. The UAV model that we use here 
for control design and simulation is the model given in [10-
11] for which the nominal pitch-axis transfer functions with 
respect to the elevator deflection are given as follows  
 

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ሻݏതሺݑ

ሻݏሺߜ

ሻݏതሺߙ

ሻݏሺߜ

ሻݏሺߠ̅

ےሻݏሺߜ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ሻݏሺࢎۍ

ሻݏሺࢎ

ےሻݏெሺࢎ
ۑ
ۑ
ۑ
ۑ
ې
ି

ۏ
ێ
ێ
ێ
ێ
ۍ
ഃܥ

ഃܥ

ெഃܥ
ے  
ۑ
ۑ
ۑ
ۑ
ې

                     ሺ26ሻ 

 
For a steady state flight velocity 
ܷ ൌ 12 ݉/ sec  ሺ472.44 ݅݊/ܿ݁ݏሻ, the nominal system 
transfer function ̅ߠሺݏሻ ⁄ሻݏሺߜ  is given as follows 
 

ఋܩ
ఏഥ ሺݏሻ ൌ

ሻݏሺߠ̅
ሻݏሺߜ

                                                                            

ൌ
ଶݏ1.423  ݏ0.134  1.839

ସݏ0.02424  ଷݏ0.0683  ଶݏ0.1  ݏ0.0859  0.0836

ሺ27ሻ 

 
The following figure depicts the open-loop time-domain 
response of (27) to a step unit elevator deflection 

 
Fig. 3.  Open-loop pitch angle response to a step unit elevator deflection. 

 
In order to achieve the deadbeat system implementation 

requirements (17), the order reduction technique presented 
in [14] was used and several model reduction schemes were 
examined. The best results were obtained with the following 
reduced model  
 

ሻݏୀଷሺܩ   ൌ
21.9976

ଷݏ0.81698  ଶݏ0.89665  ݏ1.0275  1
   ሺ28ሻ 
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The control objective is to assure a pitch angle path 
tracking with overshooting/undershooting less than 2%, 
maximum settling time of 2 second, and robustness against 
large parameter uncertainties. To successfully meet these 
performances, the proposed multistep design procedure is 
applied as follows.  
First step: The cascade gain ܭ is set equal to 1 (the only 
tuning parameter) and the characteristic equation of the 
deadbeat transfer equation is constructed from table 1 with 
݊ ൌ 4,  ௦ܶ ൌ ߤ ,ܿ݁ݏ 2 ൌ 0.8 and ߱ ൌ  .ܿ݁ݏ/݀ܽݎ 3.00625
Matching up this equation with (28) yields the following 
five nonlinear algebraic equations with six unknown design 
parameters  
 

ە
ۖ
۔

ۖ
ۓ

0.817  Kୡ ∗ 21.998 ∗ Kଶ ൌ 1
0.897    21.998KୡKଵ  21.998KୡXKଶ ൌ  6.614

1.028   21.998Kୡ  21.998KୡXKଵ  21.998KୡYKଶ ൌ 31.631
1    21.998ka    21.998KୡX   21.998KୡYKଵ ൌ  76.074

21.998KୡY ൌ 81.677

  

 
Second step: The nonlinear algebraic equations above are 
solved for different values of ܭ. Test and selection process 
is conducted on the reduced system (28). The best results 
were obtained with the following design parameters 
 

TABLE II 
DEADBEAT DESIGN PARAMETERS FOR THE REDUCED SYSTEM 

Parameter Value 
Kc 1.0000 
X 1.4540 
Y 3.7130 
Ka 1.0390 
K1 0.2478 
K2 0.0083 

 
Third step: The selected controller is now applied to the 
original system (26), and the cascade gain K is tuned until 
the desired performance requirements are achieved.  

To measure the efficiency and robustness of the 
controller, a desired pitch angle ̅ߠ ൌ 22 ݀݁݃ is selected as 
illustration example. Computer simulations are conducted 
with nominal, +100% over-estimated, and 75% under-
estimated system parameters. The following figures show 
the time-domain responses, control efforts, and tracking 
errors obtained 

 

 

 
Fig. 4.   Responses, control efforts, and tracking errors for an UAV pitch 
angle flight control system. 

 
The following table summarizes the results of cascade gain 
tuning and time domain performances of the three systems 
above. 
 

TABLE III 
TIME-DOMAIN RESPONSES FOR DESIGN METHOD APPLIED TO 

NOMINAL AND UNCERTAIN SYSTEMS 

Parameter 
uncertainties 

K P.O 
[%] 

P.U 
[%] 

Tr90 

[sec] 
Ts 

[sec] 

Nominal 0.77 0.00 0.55 1.134 1.472 

100% increase 0.73 0.00 0.90 1.150 1.467 

75% decrease 0.84 0.00 0.18 1.167 1.620 

 
To check the ability of the designed controller to force an 

UAV to follow an arbitrary command, the same design 
parameter values shown in table 2 are used for an arbitrary 
pitch angle command pattern tracking. Again, the cascade 
gain K is tuned and the final values that correspond to the 
desired response are found to be as follows  
 

TABLE IV   
TIME-DOMAIN RESPONSES FOR DESIGN METHOD APPLIED TO 
PATH TRACKING WITH NOMINAL AND UNCERTAIN SYSTEMS 

Parameter 
uncertainties 

K P.O 
[%] 

P.U 
[%] 

Nominal 0.72 0.00 <1% 

100% increase 0.70 0.00 <1% 

75% decrease 0.76 0.00 <1% 
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The responses and needed control sequences for a pattern 
tracking mission are shown in the following figures 
 

 

 
Fig. 5.  Responses and control efforts for a pitch angle command sequence.   

 
The results above show that a high closed-loop 

performance response with high robustness against large 
parameter uncertainties can be obtained with the proposed 
control framework. The designed deadbeat controller is also 
able to successfully perform tracking tasks under complex 
criteria within the limitations of system actuators.  
 

V. CONCLUSION 

A new strategy to design robust PID controller for 
uncertain higher-order systems is presented in this paper. 
The formal mathematical concepts of deadbeat control 
approach are developed and a new feature of robust 
deadbeat system is successfully implemented within an 
effective control framework. Computer simulations show 
that, for LTI systems, impressive time-domain performances 
and robustness to modeling uncertainties can be obtained 
with the proposed control strategy. Since the controller 
parameters are computed in advance and the tuning 
procedure is limited only to the cascade gain, the framework 
also provides an efficient and practical way for real-time 
PID parameter tuning. 
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