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A Production-Transportation Problem Casted
with Piecewise Linear Concave Costs

Alireza Ghahal anc Mohsen Mosle

speaking, they formulated the PTP as a piecewise linear cost
Abstract—Production-transportation problem (PTP) is a hetwork flow (PLCNF) problem with concave cost
typical Linear Programming (LP) problem in the modern  primitives and applied the strong inequalities by means of a
economic society. This problem is usually formulated as set of polymatroid cuts to tighten its LP relaxation.
piecewise linear concave cost functions for both production and Transformation to the LP formulation from MIP modeling
transportation cost. This paper studies the application of three by virtue of relaxation techniques has drawn significant
different Mixed Integer Programming (MIP) models for the  aention in recent years [4]-[9]. It could be remarked that
piecewise linear cost function formulation in PTP and compares problem of a make-to-order manufacturing with delivery

their solution efficiencies. A strong relaxation is admitted to due date and the transportation cost has been supposed to be
improve the efficiency of solution searching. Moreover, in order P pPp

to guarantee considerable computational savings, cutting-plane & d€creasing convex function versus the transportation time
algorithm is adapted during the solution searching. The MIP in most of the literature on the concave and fixed-charge

models tend to the same optimal cost more specifically for cases.
higher number of commaodities, but they seemingly differ with In this paper, we take account of a multicommodity PTP
respect to computational complexity. with piecewise linear (modified all unit discount) transp-
ortation cost and nonlinear production cost. To fulfill
customer demands in a make-to-order fashion, three cost-
effective MIP models as transportation cost functions
offered in [4] are accommodated. As the branch-and-bound
LP relaxation method seems rather inefficient for the
problem at hand due to its excessive number of yielded
S one of the challenging problems in economics argbnstraints and variables, a set of polymatroid cuts are
marketing world, PTP focuses on scheduling thadmitted to tighten the relaxation [5]. It is well worth
commodity production and the following transportatiormentioning that the MIP modeling has been narrowed down
in order to minimize the total cost. The PTP investigatiofy the Multiple Choice Model in [3], whereas this work
emanated from the work on basis of minimum concave cqgtends to probe all three MIP models, derive their LP
network flow problems. Guisewite and Pardalos [1] probe@mylation with strong relaxation, find the feasible
some algorithmic developments for the problems ang, iions using cutting-plane algorithm, and ends up

relevant applications in the fields of production, inventor)éomparing their respective optimal cost convergence and
planning and communication network design. Anome{omputational efficiency

soundly keen analysis on modeling the ordering COStThe rest of this paper is arranged as follows. IniG@ed,

functions and degenerate inventory, where stock degradation . .
rates depend upon both the stock’s exchange history and"! _explaln the PTP problem, structure and modeling. Next,

period of production, was conducted in [2]. As the inventor‘{ye introduce different 'MIP models: In Section IV, we sketch

costs are nonlinear and correspond to the age of the stO& Strong LP relaxation formulation for encountered MIP

and the period in which it is seized, they set forth a simplB°dels. Subsequently, cutting-plane approach to strengthen

heuristic for this NP-hard lot-sizing problem. However, théelaxation will be presented. In Section VI, we provide

inventory cost has not been coped with in plenty of literatugémulation results. Finally, we conclude the paper and raise

by virtue of the fact that the broadly adopted make-to-ordéPme upcoming study avenues.

manufacturing strategy has dramatically mitigated the system

inventory cost. Shu, Li, and Zhong went over the PTP in Il. PTPFORMULATION

such a make-to-order supply chain network. Having o

considered the outsourcing facility at each stage of te Description

supply chain, they introduced the less-than-truckload (LTL) As briefly enumerated, PTP includes both commodity

transportation cost structure into the model [3]. Technicallyroduction stages and transportation modes. This work takes
up a network topology with four stages, one source node and

AIirZ;:UZCr:Z;arrieCizivmthJL:E/e 1E3Iiiirlic;;alrevai;iid éc;JriusLtlteiZ’Enz?r%;érinone sink node as pictured in Fig. 1. Each stage has three sites
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I.  INTRODUCTION
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Fig. 1. PTP network compendium 0 5 10 15

The cost from one site to another site (the weight of each

20X

line) is different. There is no cost when products get into the Fig.3. Variable cost per unit workload for production sites

source node or leave out the sink node. For each site, there
are K types of jobs need to be produced and transported.
Each jolk also has its workload, i.eVy, . Since production

cost and transportation cost are coupled in the network,
virtual sites are added to the network to clearly illustrate
these two procedures shown in Fig. 2 at which the two grey
nodes are source and sink nodes. The black nodes on
stage indicate the production site§) @nd the white nodes
are virtual sitesl] added for transportation. The dotted lines
show the procedures of production, while the solid lines
show the procedures of transportation with incurred costs of
Cerij andCyy;, respectively. With this cost decoupling set up,
it is far much easier to formulate the PTP problem as an LP

|

Stage 2

Stage 3 Stage 4

Fig. 4. PTP network with a series of arcs representing variable
production cost

problem.

B. Production Cost LetR denote the total dotted arcs after expansion; namely,
The production unit cost at each production jsiterolves WK 4K
. . . I I

a fixed cosF, and a variable cost. F,_ gets constant for R = ceil ' ; 2

each type of task, Whi|3]!jk depends on the total workload

where L is the load of job before a jump in the variable

of taskk allocated to the site(wf).The stepwise charac- production cost occurs; namely, in Fig.l4= 5 andR = 3

teristic of vjk with respect tow;‘ is shown in Fig. 3. Thus,

the cost per unit is C. Transportation Cost

with production capacity exemplified in third stage.

The production cost is a piecewise linear concave
U =F, +ij' Q) function. Let C, be the transportation cost amdenote the

The functionvj"(x) can be better linearized by imparting

additional production arcs in the network shown in Fig. 4. G (h)= min{G(h),G(Hi+l)},

The number of arcs needs to be sought for depends on the

existing workload Wijkof jobk at sitej of stage , the new \jith immediate definition of

added workload of jok at sitej of stage isV\/ijk.

0 h=0
c O<h<H,;
(o Ah H <h<H
—( Ghy =1  hem
Cog Boh H, <h<H,
Sgel O Szl Bah H,<h<H,,
n n n+1
O Source and Smk nodes
’ Production sites whereg, > B,> B,>---> 3, and B, H; =c.

O Virtual nodes

Fig. 2. PTP Network with virtual nodes

D. Optimization Problem
The PTP attempts to minimize the total cost including
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total amount of workload to be shipped so that

®3)

(4)
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pI’OdUCtIOI’] and tranSpOI’tatlon cost. The LP problem can Where, in all expressiongs and yS are load variable on

be formed as ) . S
segmens and binary value, respectively” is binarized as

min > " qu\}<>qk+2fi[iwkxik] ys:{t ZSV:O

|
i=1 k=1 i=1 k=1
st AkxK =pX, (5) and f®is cost gap between segmerit and segmery i.e.,

I K

gxk< 1 k= 12.K i=12..1, Fo=( 5+ ) —(f 5L+ 55,

B. Multiple Choice Model

where . . . . .
The cost function for MIP formation with Multiple Choice
K : the set of jobs. Model is
| : number of arcs per stage per production site.
k 9 ares per s7age per b q3=Y ¢+ 13y, 7)
C* : per unit production cost of jdb S
w* : total workload of jotk planning to be allocated. conditioned to
x¢ : fraction of the total workload of jok currently.
) ) bsl s—l<zs<bs s
being allocated for stage . y =z2°=Dhy
f, :piecewise linear transportation coshétion at stage Z y* <1
S
y*[0{0,1}.

I1l.  MIP MODELS FOR THEPIECEWISELINEAR COST
FUNCTION o
C. Convex Combination Model

After the PTP formulation, the PLCNF problem needs to The cost of load that lies in segmestis a convex

be reformed with MIP models. Three MIP models [4] are o e s
taken into analysis in this paper. To illustrate these thr&@Mbination of the cost of two endpoiriss, andb®, of
models, the notation of each segment of concave cG§dmens i.e.,

function is shown in Fig. 5. )
_ S S. S S| S
A. Incremental Model 9(x) _ZS:'“ Cf Sch™)+AXf°+cD®), (8)

The cost function for MIP formulation with Incrementalgnditioned to

Model is 1. ys.s

R X=Y (4 DT +1%%)
dR=> c2%+f%°, (6) Z

S ’us_'_/]s:ys

Zyssl

x=Y» z° °
Z us, A° 20, y° 0{0,1},

S

conditioned to

(b= b y* < z5<(bS-b%h) y® where 1° and A° are weights on the two endpoints} * and

y*0{0,1}, b*®, respectively.

A IV. FORMULATION OF TRANSPORTATIONCOST FUNCTION
WITH MIP MODELS AND STRONGLP RELAXATION

a(x) , After laying our foundation with linearization of
/A/: transportation cost function and resorting to LP formulation,
cS still the relaxation is not quite computationally efficient
! (solvable in polynomial time). This gives rise to introducing
i a set of polymatroid cuts as an active constraint to tighten
' the LP relaxation [5]. The procedure follows the MIP
: formulation for either model.

Rdl

P

- [

- .

- |

- .
e !
1

1

fS

bsL b; > X A. PTP with Incremental Model
The transportation cost function of each arc can be
Fig.5. Notation of each segment (slope, fixed cost, and ~ couched as

breakpoint S S f
reakpoints) f (z W) = min Z (897g * fqUq ©
k=1 9=1
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Q K
st z A :Zwkxik,
g=1 k=1
(Mq_ Mq—l) Uq+l S ZqS(Mq - Mq_l)uq,
uq 0{0,1}, z, 20, Ug,
where in this notation

fq =( fq + aqu—l) =( fq—l +a,4M q—l)-

The cost function after relaxation is

K Q .
QW) =min > (a7 + fqu
k=1 q=1
(10)
K

Q
st ZZq :ZWkXik,
g=1 k=1
(Mg= Mgq) Uy €24 (Mg = Mg,)ug,

Dizgsy wminQ y, ¥), 0SO{L2.,Q,
s Kk gs

Ug 2 0, z, 2 0, tag.

B. PTP with Multiple Choice Model

In this transportation postulation, the transportation cost

function of each arc can be formed as

K Q
QW) =min > (a2 + fquq) (11)
k=1 g=1
st Dy,
q
K
%= W,
q k=1
M, U,sz,< My,
u,0{0, 3, Og
The cost function after relaxation [3] is
K Q
QW) =min D" (a7 + fquq) (12)
k=1 g=1

st Y=Yk
Yz<> wmn(Q y, k), 012+, Q
IS K @S

%2Q %2Q aq

C. PTP with Convex Combination Model

In this paradigm, the transportation cost function of each

arc can be formed as

K Q
O WX =mInY 1 daM g + )+ Ag@Mq + ) (13)
k=1

o
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Q K

- Kk

st. Z(Mq_l—Mq),uq—Zw X s
g=1 k=1

Hq+Aq=Yq

Q
D ye<t
g=1

iuq 1/]q 2 01 yq D{Ovl}v Dq
The cost function after relaxation after some
simplifications is

K Q
f (Zm}(xik) = minZy {aMgq + f +A,@Mq + fy)
k=1 o1

(14)

Q K
St Y (Mg M) g = > W,

g=1 k=1
luq + /1q = yql
Q
qu <1
g=1
Z(MM— M) Ky sZM min(z ¥ f), 0SO{L2..,Q}
s Kk gs

Uy Aq 2 0, Yq 20, g

V. CUTTING-PLANE ALGORITHM

Aggregating the linear pieces of each modeling to rQeet
of them, the number of constraints is exponentially lar@e (2
x]) in either LP relaxation. As such, cutting- plane algorithm
primarily used to solve a large-scale logistics application is
executed to facilitate the optimal solution searching [3]. For
the specific Multiple Choice Model, it evolves upon three
steps:

1) Initialize S= {1, 2} and § = . Enumerate all the
constraint according to.Sand pass the entire
formula into the LP solver to obtain the optimal
solution {u™, z™, X Oq, i, K.

2) If the § denotes the optimal solution of the
separation sub-problem in theh iteration, and

dowlmin (3 uf x®) =Dz 20
k s @s
(polymatroid inequalities hold true), then, the
solution in the current iteration is the optimal
solution; otherwise continue with st8p
3) Identify a valid inequality fo&*. Then, add this
inequality into the original problem. Defirg ;=
S* U S, t=t+1, then invoke first step for the next

iteration.

VI. SIMULATION RESULTS ANDDISCUSSION

Three MIP models for solving PTP with conventional and
strong relaxation using cutting-plane algorithm were Imple-
mented. In addition, we solved the IP problem using a
branch-and-bound method as a benchmark for our results.
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Input parameters for experiments are randomly generated TABLE IV
with ranges defined in Table I. COMPUTATIONAL RESULTS FORSTRONG LP RELAXATION OF CONVEX

. . . COMBINATION MODELING WITHQ=5AND K=5,10
The results for strong relaxation with cutting-plane

; ; . Variables Processing time C
algorithm are shown in Tables II-IV, ther@y,, C,,. and Workload | Step © cc
C.care the optimal costs obtained without LP relaxation for K=5 | K=10 | K=5 K=10 | K=5 | K=10
Incremental Model, Multiple Choice Model, and Convex 10 5 1260| 1680 21.04]  18.84 746 1799
Combination Model, respectively. (Refer to (9), (11), (13)) 20 5 | 1620] 21600 30.36] 39.49 1680 1958
Cyn, Cuycand Cl.are respective costs with stron 20 5 | 1980| 2640 5542 3549 2234 1685
relaxation and cutting-plane algorithm. (Refer to (10), (1250 0 | 12601 168d 27771 3034 2433 2042
(14).) The _ entitled ‘Workload’, ‘Step’ and ‘Variables % To 1800l 2200 6613 8318 304 3ebL
columns point to the total workload planned to be allocated

. K . . . 100 10 | 2160 2880 109.12 133.23 45B®@0330
for each job &), the step level change in the job size

before a jump in production cost occuty,(and the total L . . .
jump in p . £9,( The only significant variance between their solution

number of variable of the LP relaxations for the Incrementaall, roaches is their computational burden of performance

Multiple Choice and Convex Combination formulation. PP P P ’

: . . _Fig. 6 represents the processing time of strong LP
The LP relaxations of the Incremental, Multiple Chmcet‘elaxations for three MIP models with = 10 andQ = 5.

and Convex Combination formulations are equivalent in th]eh -
. ) . . These values are in the matter of seconds, whereas the
sense that any feasible solution of either LP relaxation

reconciles a feasible solution to the others, with the Iea%l?tlmal IP solution took about half an hour to get proved out

: . - in all likelihood. It is worth pointing out that the Incremental
0, =
disparity case of nearly 4%, excluding the &t for K=10. Model exhibits the worst solve time for the workload of 100,

whereas the Multiple Choice Model [3] beats the Convex
Combination Model, not touched on in there. We have
conducted the experiments on a PC wBhCPU of 2.13

TABLE |
RANDOM INPUT GENERATION

Parameter wj f; H, H, H, GHz and 4 GB RAM running the Windows 7 64-bit
Range | [L10] | [1020] | [510] | (1020] (2040] | Operating system.
Parametel We employed therALMIP as a complementary toolbox
A B P for MIP solving; getting integrated to the Matlab® built-in
Range | [23]1 |1, B] |05 8] toolboxes.One of the basic ideas iVALMIP is to rely on
external solvers for the low-level numerical solution of
TABLE I optimization problem. It concentrates on efficient modeling
COMPUTATIONAL RESULTS FORSTRONG LP RELAXATION OF MULTIPLE of high_|eve| a|g0rithms_
CHOICEMODELING WITHQ=5AND K =5, 10 The optimal cost convergence comparison between
Variables Processing time c nonrelaxed problems passed_ _throu_gh the toolbox and
Workload | Step (s) Me strongly relaxed ones is exhibited in Table V, thereby
K=5 | K=10 | K=5 K=10 | K=5 | K=10 |revealing that these three MIP models have almost the same
10 5 1080 1680 17.76 19.13 71p 13iperformance on optimal solution searching. However, on
20 5 | 1620] 2160 2757 2790 1546 sopgontrary to improper processing time of the Incremental
o z Tosol 2620 3138 3e6d iz 445g/lodel, the gap between its solutions turr_13 qut to be the
smallest one in average (1.131) #r= 5, viz., its strong
50 10 | 1260 168¢ 27.15 305 2188 438 rmulation tends to a much tighter bound than other MIP
80 10 | 1800 24000 33.82] 414 27%6  289fodels.
100 10 | 2160 2880 37.81] 38.0 4126 825 _ _ o
W Multiple Choice  O/ncremental @ Convex Combination
250
TABLE Il
COMPUTATIONAL RESULTS FORSTRONG LP RELAXATION OF INCREMENTAL - 200 &
MODELING WITHQ=5AND K =5,10 o
E
Variables Processing time| Ci, = 150
Workload | Step (s) £
K=5 | K=10 | K=5 K=10 | k=5 [ K=10 3 100
10 5 | 1260| 1680 18.75] 18.61 64 188 & 50
20 5 | 1620 2160 26.16] 27.2 1456 288 A A .f‘\ i f\ \
A/ \J/\ ‘ ) \ ‘ \ \
30 5 | 1980 2640 35.82 32.74 1832 286 0
50 10 | 1260| 1680 25.05 29.6 1878  37B 10 0 0 * %0 100
80 10 | 1800 2400 32.32] 3244 23]5 46 Warkload {unit)
100 10 | 2160 2880 3842 277.05 3383 767> o ]
Fig. 6. Average processing time of strong LP relaxation of three
MIP models with K= 10 andQ = 5.
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TABLE V

[10] Bertsimas, Dimitris and J. N. Tsitsiklidntroduction to Linear

OPTIMALITY TIGHTNESS FORDIFFERENTSTRONGLY RELAXED MIP
MODELS WITHK =5 AND K =10

Workload Cn /Ciy Cuc ! Cie Cec ! Cle
K=5 K=10 K=5 K=10 K=5 K=10
10 1121 1.152] 1153 1.179p 1161  1.184
20 1132 1.141] 1116 1.168 1172  1.196
30 1141 1.176] 1.131 1.182 1.178  1.198

On the other hand, it is somehow remarkable that the
Convex Combination Model is much likely the worst
convergence case that is most important to bear in mind in
view of its widespread applicability. These statements thus
constitute worthy modeling inferences favoring one type of
MIP models over the others.

VIL.

In this paper, we considered a multistage PTP with
piecewise linear transportation cost and nonlinear production
cost. Three MIP models for solving PTP with strong
relaxation adapting cutting-plane algorithm were sketched
and run through. We distinguished that the disparity between
the LP relaxation and the MIP is unlikely to be evident (less
than 19%), and that the Multiple Choice Model outperforms
other MIP models with respect to the computational
complexity as the problem size and the number of
commodities increase. We recommend constructing a
globally dispersed multistage supply chain network with in-
house production plants and outsourcing facilities that
designates the PLCNF together with some extended forcing
constraints through a so-called Lagrangean heuristic to bring
out any improvement over the current work.

CONCLUDING REMARKS
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