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Abstract—Up to now tools used for machining of concrete are
in general not adapted to the particular machining processes.
As in mass production tool wear and production time are very
cost sensitive factors, filling this lack is of great interest. This
paper proposes a geometrical simulation model describing the
forces affecting the workpiece as well as the chip removal rate
and the wear rate of the used diamond in dependency of the
process parameters. On the long run this model will help in
determining the optimal process parameter settings in situations
where material and hole diameters are given.

Because the machined materials are in general abrasive usual
discretized simulation methods like Finite Elements Models are
inappropriate for describing the process behavior. In contrast,
our approach assumes both material and diamond grain as tes-
sellations of microparts connected by predetermined breaking
points. The process is then iteratively simulated where in each
iteration the forces are computed by interpreting the collisions
of pairs of workpiece and grain microparts as force impacts.

After fitting the model to a series of real experiments based
on a Statistical Design of Experiments the model is shown to
reflect the real process behaviour very well.

Index Terms—numerical simulation, machining, DOE, re-
gression analysis.

I. INTRODUCTION

TOOL wear and machining time represent two dominant
cost factors in cutting processes. To obtain durable tools

with increased performance these factors have to be opti-
mized, which demands the investigation of the interactions
between tool and workpiece. Unlike ductile materials such
as steel, aluminum or plastics, material characteristics for
mineral substrates like concrete are difficult to determine due
to their strongly inhomogeneous components, the dispersion
of the aggregates and porosities, the time dependancy of
the compression strength etc. (see [5]). As a result of
the brittleness of mineral materials and the corresponding
discontinuous chip formation, there are varying engagement
conditions of the tool which leads to alternating forces and
spontaneous tool wear by diamond fracture.

Despite the manifold of concrete specifications, tools for
concrete machining are still more or less standardized tools
which are not adapted to the particular machining applica-
tion. The following analysis is carried out in a subproject
of the Collaborative Research Center SFB 823. In non-
percussive cutting of mineral subsoil such as trepanning,
diamond impregnated sintered tools dominate the field of
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machining of concrete because of the diamonds’ mechan-
ical properties. These composite materials are fabricated
powdermetallurgically. Well-established techniques like cold
pressing with a following vacuum sintering process or hot-
pressing, which is a very productive manufacturing route,
are used for industrial mass production. The described
powdermetallurgical fabrication process implies a statistical
dispersion of the the diamonds embedded in the metal matrix.
Additionally, the composition and allocation of different
hard phases, cement and natural stone grit in the machined
concrete are randomly distributed. Because of these facts,
the exact knowledge of the machining process is necessary
to be able to investigate for appropriate tool design and
development.

To obtain a better understanding of these highly complex
grinding mechanisms of inhomogeneous materials, which
can not be described by physical means, statistical methods
are used to take into account the effect of diamond grain
orientation, the disposition of diamonds in the metal matrix
and the stochastic nature of the machining processes of brittle
materials. The first step to gain more information about the
machining process is the realization of single grain wear tests
on different natural stone slabs and cement.

A. Experimental Setup

To gain information about the fundamental correlations
between process parameters and workpiece specifications,
single grain scratch tests have been accomplished. Within
these, isolated diamond grains, brazed on steel pikes have
been manufactured (see Fig 1) to prevent side effects from
the binder phase or forerun diamond scratches as they occur
in the grinding segments in real life application. To pro-
vide consistent workpiece properties high strength concrete
specimens of specification DIN 1045-1, C80/90 containing
basalt as the only aggregate had been produced. Besides these
the two phases, cement binder and basalt were separately
prepared as homogeneous specimens for an analysis of the
material specific influence on the wear.

To eliminate further side effects such as hydrodynamic
lubrication, interaction of previously removed material and
adhesion, the experiments have been carried out without any
coolant. The brazed diamond pikes had been attached to a
rotating disc which in turn had been mounted to the machine
(see Fig. 2) to simulate the original process kinematic. Pa-
rameters for the experimental design were chosen according
to common tools and trepanning processes. To guarantee
constant depth of cut the rotatory motion of the diamond pike
had been superimposed by a constant feed which generated a
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Fig. 1. Sample Before and After Brazing.

Fig. 2. Scratch Test Device on Basalt.

helical trajectory. To generate a measureable diamond wear,
a certain distance had to be accomplished. Therefore a total
depth of cut of 250 µm had been achieved in every test.

II. SIMULATION MODEL

The general aim of the project at hand is the optimization
of the machining process w.r.t. production time, forces af-
fecting the workpiece and tool wear. For this aim knowledge
about the relationships between adjustable process param-
eters, measurable covariates and the outcome is inevitable.
Then optimal strategies and parameter settings can be derived
from this knowledge. As the real machining experiments are
very time consuming and expensive it is of primary interest
to develop a realistic simulation model. This model then can
be used for the derivation and testing of such strategies and
settings before verification in real processes.

Many proposals for the simulation of grinding processes
had been made in the past, see e.g. [3] and [8] for overviews.
These proposals in general are combinations of models of
temperature, energy, topography, wear and forces. While
the common approaches model the topography of tool and
workpiece on regular grids, in our work we consider both the
diamond grain and the workpiece as a complete tessellation
of stochastically distributed microparts. The connections of
these microparts are seen as predetermined breaking points,
at which chip removals and break-outs will occur. As mi-
crofracture is the dominant wear mechanism in grinding (see
[9]) and due to the abrasivity of the considered materials this
point of view seems more straightforward and suitable for the
process under study.

With the tessellations of grain and workpiece a geometric
simulation is then performed where the affecting forces in
each simulation step are determined in dependance of the
sizes and shapes of the intersecting microparts. By doing so

Fig. 3. Different Diamond Grain Shapes.

(a) (b)

Fig. 4. Edge Lengths and Reductions (a) and Delaunay Tessellation (b) of
Simulated Diamond Grain.

- in contrast to the usual way of static force computation
based an phenomenological equations and assuming fixed
force ratios - time series of the forces can be simulated
directly and validated and calibrated by fitting the model
parameters statistically to a series of real experiments.

A. Modeling of Diamond Grain and Workpiece

The Modeling of the diamond grain is obtained by first
determining its vertices by assigning the values of two
parameters controlling for size and shape of the grain. There
the shape of the grain is assumed to be given by the 14-sided
body that is formed when the corners of a cube are flattened
(see Fig. 3).

The first parameter kk specifies the half of the cube’s
edge length in mm, while the parameter vk is given by the
reduction of the edge length resulting of the flattening of
each corner (see Fig. 4a).

Within the modeling the grain is assumed to consist of
microparts which may flatten or disrupt during the machining
process. For simplicity it is further assumed, that these
microparts have the shapes of simplices. The corresponding
grain structure is simulated by randomly generating np;k
points in the interior of the grain and then computing the
three-dimensional Delaunay Tessellation (see [2]) of the
union of these points and the diamond’s vertices (see Fig.
4b). Beside np;k the statistical distribution of the points has
to be specified, where all following results are based on the
uniform distribution.

The workpiece is modelled equivalently, while the sim-
plices in this case state the chips cutted from the material
during the machining process. As for the chips higher vol-
umes can be assumed than for the microparts of the diamond,
the vertex density has to be set correspondingly lower. In the
single grain scratch experiments under consideration exclu-
sively circular scratch paths have been produced. Hence the
workpiece is reduced to a ring covering the produced scratch
path due to computation time. The workpiece’s geometry is
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correspondingly fully described by the parameters inner and
outer diameter di;w and da;w and it’s height hw. The numbers
ns;k and ns;w of diamond and workpiece simplices can not
in general be derived from the point numbers np;k and np;w
but depend on the specific tessellations.

B. Process Simulation

The position of the workpiece stays constant during the
whole process and lies centered around the origin parallel to
the xy-plane, where the lower side is marked by z = 0. The
2.5-fold of the diamond edge length is assigned to the ring
width, so with drilling diameter dp inner and outer diameter
compute to di;w = dp−2.5kk and di;w = dp+2.5kk. For the
determination of the grain it is first centered around the origin
in all dimensions and successively turned around all axes by
the angels αx, αz and αy , which changes the nk = np;k +24
grain vertices Sk ∈ IRnk×3 to

S′
k = SkRxRzRy with Rx =

(
1 0 0

0 cosαx −sinαx

0 sinαx cosαx

)
,

Rz =

(
cosαz 0 sinαz

0 1 0

−sinαz 0 cosαz

)
, Ry =

(
cosαy −sinαy 0

sinαy cosαy 0

0 0 1

)
.

The grain is finally moved to its starting position by
shifting all grain vertices along the x-axis by dp and along
the z-axis by the starting height hk;0:

S0
k =


s′k11 + dp s′k12 + hk;0 s′k13

...
...

...
s′knk1

+ dp s′knk2
+ hk;0 s′knk3

 .

Beside dp in mm the depth of cut ap in µm/r and the
cutting speed vp in rpm form the process parameters. With
sample rate rp in Hz at the beginning of each iteration i the
actual position of the grain can be determined by turning the
grain vertices around the z-axis and shifting them along the
same axis:

Si
k = Si−1

k

 cosαr 0 sinαr

0 1 0

−sinαr 0 cosαr

−


0 ar 0

...
...

...
0 ar 0


with αr = (2πvp)/(60rp), ar = (apvp)/(60000rp).

Next in each iteration the matrix Ws of intersection
volumes of all pairs of grain and workpiece simplices is
computed, where the (l, j)th entry of Ws reflects the intersec-
tion volume of the lth grain simplex with the jth workpiece
simplex.

C. Workpiece Affecting Forces

In the following for each workpiece simplex intersecting
at least one grain simplex it is determined, which force
affects it. For this purpose first the total mass mk;j =∑

l:ws;lj>0 wk;lρk of all grain simplices that intersect the ac-
tual workpiece simplex j is computed from the grain simplex
volumes wk;l and the diamond density ρk. By interpreting
the collision of workpiece and grain simplices as a force
impact the force affecting the jth workpiece simplex can

Fig. 5. Geometric Distribution of Forces on Collision of Grain and
Workpiece Simplex.

be simulated by assuming the relation Fij = (vpmk;j)/td,
where the constant td is another parameter of the simulation
model.

How the workpiece affecting force Fij distributes in radial
and normal direction depends on the geometrical properties
of the involved simplices. In this context for simplicity only
the largest grain simplex is considered and the vertices of
this simplex as well as those of the workpiece simplex
are projected to the vertical plane parallel to the cutting
direction. In this projection the angle γk between the vector
orthogonal to the cutting direction and that vertex of the
grain simplex, that contacts the workpiece simplex first, is
computed. After determining the corresponding angle γw
the normal and radial forces can be computed by Fn;ij =
Fijsin[max(γw, γk)] and Fr;ij = Fijcos[max(γw, γk)] (see
Fig. 5).

The total forces affecting the workpiece in iteration i are
then given by

Fn;i =
∑

j:
∑ns;k

l=1
ws;lj>0

Fn;ij and Fr;i =
∑

j:
∑ns;k

l=1
ws;lj>0

Fr;ij .

D. Tool Wear

In general due to the high grade of the diamond it can be
assumed, that the actual workpiece always loosens from its
bond. But since according to experience also disruptions of
the diamond occur it is further assumed, that the involved
diamond simplices break out, whenever the mass of the hit
workpiece simplex exceed their own mass by a specific factor
µk, i.e. when the inequality ww;jρw > µkmk;j holds. If the
inequality condition is not fulfilled the diamond simplices
are supposed to continuously flatten, which is simulated
by shifting the vertex closest to the workpiece towards
the opposite triangle in orthogonal direction by a specific
percentage ηk.

The material removal rate of the workpiece and the wear
rate of the diamond at the end of each iteration is then given
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Fig. 6. Simulated Machined Workpiece and Diamond Grain.

compute (Sk, Sw)
S0
k ← SkRxRzRy + (dp, hk, 0)⊗ 1nk

for i = 1→ imax do
Si
k ← Si−1

k Rr − (0, ar, 0)⊗ 1nk

compute intersection volumes Ws

for j = 1→ nw do
mk;j ←

∑
l:ws;lj>0 wk;lρk

compute (γw, γk)
γ ← max(γw, γk)
Fij ← (vpmk;j)/td
(Fn;ij , Fr;ij)← Fij(sinγ, cosγ)
if ww;jρw > µkmk;j then

remove diamond simplices l : ws;lj > 0
else

reduce heights of diamond
simplices l : ws;lj > 0 by ηk

end if
remove workpiece simplex j

end for
(Fn;i, Fr;i)← (

∑
j Fn;ij ,

∑
j Fr;ij)

end for

Fig. 7. Pseudocode Representation of Simulation Model.

by the change of the corresponding volumes. Figure 6 shows
an exemplary view of a machined workpiece and a diamond
grain, for better visualization in unrealistic proportions.

Figure 7 shows a pseudocode representation of the pro-
posed simulation model.

E. Model Fitting

For the estimation of the unknown model parameters the
results of a series of 93 single grain scratch experiments
are available. The series was planned by a statistical Design
of Experiments, where the process parameters vp, ap and
dp have been varied. Table I contains the used levels of
these factors. Because the diameter dp is not adjustable
continuously, a Central Composite Design (CCD) of vp
and ap had been repeated for each of the four diameter
levels. By means of a stepwise forward-backward-selection
based on the Akaike Information Criterion ([1]) taking into
account linear, quadratic and two-fold interaction effects of
the process parameters on the averaged forces the following
models could be derived:

TABLE I
FACTOR LEVELS OF THE CCD

Factor Levels

dp 50 80 110 130
ap 3.75 5 7.5 10 11.25
vp 346 525 900 1275 1454

TABLE II
PREDEFINED AND FIXED PARAMETERS OF THE SIMULATION MODEL

Parameter Status Value

rp Predefined 10000
ρw , ρk Predefined 2, 3.52
kk , vk Predefined 1, 0.7

αx, αz , αy Predefined π/4, π/4, π/4
np;w/mm3 Fixed 10
np;k/mm

3 Fixed 500

TABLE III
FACTOR LEVELS OF THE 33-DESIGN

Factor Levels

µk 5 15 25
ηk 0.01 0.025 0.04
td 10 55 100

ˆ̄Fn = 44.025− 0.524dp − 0.351a2p + 0.062dpap
ˆ̄Fr = −5.204 + 0.007vp + 2.425ap

−0.187a2p − 0.00009vpdp + 0.007dpap.

The regressors of these models are all significant on a
level of 5%, the R2s are 0.181 and 0.236. The low goodness
of fit has to be seen in the context of the relatively high
reproduction variance, due to which the R2 values are limited
by 0.652 and 0.628.
The fit of the simulation model was obtained by minimizing
the quadratic deviations of simulated and measured forces in
dependance of the model parameter µk, ηk and td. Table II
lists the remaining parameters, which can be derived from the
geometrical and physical properties of tool and workpiece or
had been fixed.

For the determination of the parameter values a two-
step procedure is chosen. First a full factorial 33-Design
(see table III) for the model parameters is constructed and
replicated for each of the process parameter settings of the
cube of the CCD. Following this combined design in total
33 · 23 = 216 experiments are simulated. Next a quadratic
model of the squared force deviation in dependance of the
model parameters is fitted. By minimizing the correspond-
ing model equation the model parameters are estimated by
µk = 10.638, ηk = 0.036 and td = 39.8.

In the second step, the model calibration, process param-
eter dependant scale terms sr(vp, ap, dp) and sN (vp, ap, dp)
are introduced to adjust the remaining systematic model devi-
ations. These scale terms represent the mean ratios between
modelled and simulated forces Fr;M /Fr;S and Fn;M /Fn;S

and are obtained by fitting the models Fr;M /Fr;S =
(vp, ap, dp)βr + εr and Fn;M /Fn;S = (vp, ap, dp)βn + εn.
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Fig. 8. Comparison of the Empirical Distribution Functions of Measured
(Black) and Simulated (Gray) Radial Forces.

Fig. 9. Response Surfaces of the Regression Models for Fn Based
on Measured (Lower Surface) and Simulated (Upper Surface) Data and
Measured (Gray) and Simulated (Black) Data Points.

The application of the calibrated model is performed by
first applying the simulation model with known, predefined
and estimated parameter values and then multiplying the
resulting force time series by the scale terms.

F. Results

Following the procedure described in the last section for
each row of the CCD a process had been simulated. The
comparison between the empirical distribution functions of
measured and simulated forces do not show severe differ-
ences, as can be seen in Figure 8 at the example of Fr.

For further evaluation of the results the force regression
models based on measurements and simulations are com-
pared, where the nominal regressors are provided by the fit
to the real data. Figure 9 shows a visual comparison of the
results for Fn.

Apparently both response surfaces are very close to each
other and simulated and measured data vary in comparable
ranges. A similar picture can be generated for Fr. To decide,

TABLE IV
RESULTS OF THE JOINT REGRESSION MODELS OF SIMULATED AND

MEASURED FORCE DATA. COEFFICIENTS SIGNIFICANT ON A LEVEL OF
5% BOLD.

Model for Fn Model for Fr

Regressor Coefficient p-Value Coefficient p-Value

Intercept 42.666 <0.0001 -9.184 0.0031
vp 0.0055 0.0079
ap 3.671 <0.0001
dp -0.4934 0.0003
a2p -0.3399 0.0018 -0.253 <0.0001
vpdp -0.00006 0.01
apdp 0.0599 0.0005 0.00406 0.106
IF -1.0435 0.8868 -2.956 0.3358
IF vp -0.00254 0.2277
IF ap 1.048 0.2143
IF dp 0.02635 0.8419
IF a

2
p 0.0027 0.9801 -0.0587 0.3413

IF vpdp 0.000035 0.102
IF apdp -0.00048 0.9774 -0.00031 0.2114

Fig. 10. Comparison of Cross-Over Residuals for Fr Based on Measured
(Gray) and Simulated (Black) Data.

whether the differences between the models are significant,
joint models for simulated and measured forces are fitted. For
these models, an indicator variable IF measuring if a specific
data point had been measured (IF = −1) or simulated
(IF = +1) is introduced. The variable IF is included into
the joint models as well in main effect as in interaction with
all contained regressors. The results of these joint models are
shown in table IV.

Obviously the influence of IF in both models is neither
in main effect nor in any interaction significant. This results
confirms the assumption, that for both simulated and mea-
sured forces the same models hold.

Finally the residuals of the regression models are inves-
tigated. There the residuals are determined cross-over by
computing the deviations between the predictions for the
measured forces based on the model of the simulated data
and vice versa. Figure 10 shows the residuals for Fr, for Fn

a similar picture can be obtained.
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The residuals neither show a structure along the corre-
sponding dependant variable nor any systematic differences
between the residuals based on simulations and measure-
ments can be seen.

So it can be stated that the forces obtained by simulations
as intended show a similar behavior as the real force data,
so that the model can be assumed to be adequate for further
application in the closer investigation of the machining
process.

III. CONCLUSION

By the proposed simulation model based on Delaunay
Tessellations of diamond grain and workpiece an efficient,
flexible and valid method for the determination of the ma-
terial removal rate, the tool’s wear and the forces affecting
the workpiece with given process parameters has been intro-
duced.

In the next project phases this model will be successively
extended for the application in multi-grain and multi-phase
concrete machining processes. Therefore the grain orienta-
tion that has been kept constant during this work will be
explicitly taken into account as a covariate within the fitting
procedure. Furthermore the heterogeneity of the material
will be modelled by allowing for local variation of the
properties of the workpiece simplices. All model extensions
will be accompanied by validations and calibrations based on
statistical designs of experiments. The application in practice
then will be the opportunity to derive the best process
parameter settings as well as grain type, size and density
in specific situations where typically workpiece material and
hole diameter are given and to quantify uncertainty by giving
interval estimators for the interesting outcome.

ACKNOWLEDGMENT

This work has been supported in part by the Collaborative
Research Center Statistical Modelling of Nonlinear Dynamic
Processes (SFB 823) of the German Research Foundation
(DFG), within the framework of Project B4, Statistical Pro-
cess Modelling for Machining of Inhomogeneous Mineral
Subsoil.

REFERENCES

[1] H. Akaike, “A new look at the statistical model identification,” in IEEE
Transaction on Automatic Control, vol. 19, pp. 716-723, 1974.

[2] C. B. Barber, D. P. Dobkin, and H. T. Huhdanpaa “The Quickhull
algorithm for convex hulls,” in ACM Trans. on Mathematical Software,
vol. 22, no. 4, pp. 469-483, 1996.

[3] E. Brinksmeier, J. C. Aurich, E. Govekar, C. Heinzel, H.-W. Hoffmeis-
ter, J. Peters, R. Rentsch, D. J. Stephenson, E. Uhlmann, K. Weinert,
and M. Wittmann “Advances in Modeling and Simulation of Grinding
Processes,” in Annals of the CIRP: Manufacturing Technology, vol. 55,
no. 2, pp. 667-696, 2006.

[4] B. Brook “Principles of Diamond Tool Technology for Sawing Rock,”
in Int. J. Rock Mechanics & Mining Sciences, vol. 39, no. 1, pp. 41-58,
2002.

[5] B. Denkena, D. Boehnke, B. Konopatzki, J.-C. Buhl, S. Rahman,
and L. Robben “Sonic analysis in cut-off grinding of concrete,” in
Production Engineering, vol. 2, no. 2, pp. 209218, 2008.

[6] J. D. Dwan, ‘Production of Diamond Impregnated Cutting Tools,” in
Powder Metallurgy, vol. 41, no. 2, pp. 84-86, 1998.

[7] J. Konstanty, and A. Bunsch “Hot Pressing of Cobalt Powders,” in
Powder Metallurgy, vol. 34, no. 3, pp. 195-198, 1991.

[8] H. K. Tönshoff, J. Peters, I. Inasaki, and T. Paul “Modelling and Sim-
ulation of Grinding Processes,” in Annals of the CIRP: Manufacturing
Technology, vol. 41, no. 2, pp. 677-688, 1992.

[9] F. W. Pinto, G. E. Vargas, K. Wegener “Simulation for optimizing
grain pattern on Engineered Grinding Tools,” in Annals of the CIRP:
Manufacturing Technology, vol. 57, no. 1, pp. 353-356, 2008.

Proceedings of the World Congress on Engineering and Computer Science 2011 Vol II 
WCECS 2011, October 19-21, 2011, San Francisco, USA

ISBN: 978-988-19251-7-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2011




