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Abstract—In this paper the improvement of the established
training algorithm HILOMOT is presented. HILOMOT is a hierar-
chical tree-construction method based on the ideas of neuronal
networks and fuzzy-systems and an advancement of the well-
known LOLIMOT-Algorithm. During the training the input space
is divided into subregions with the help of validity functions.
This is done iteratively by splitting the current worst local
model, until an specified exit condition is reached. For every
subregion one local linear model is estimated by a weighted
least squares method. The main purpose is keeping the number
of local models low. Therefore the split position is optimized
during the training. The optimization problem is nonlinear, so
a gradient-based nonlinear local optimization method, called
Quasi-Newton method, is used. The main drawback of this
approach is its long calculation time. The most time consuming
part is the numerical calculation of the gradient done by the
finite difference technique.To avoid this problem the numerical
approach is replaced by the analytical gradient. This leads to
a significant reduction of the training time without decreasing
the approximation quality.

Index Terms—neuronal networks, fuzzy-logic, system identi-
fication, nonlinear optimization.

I. INTRODUCTION

MOST of the commonly used methods in automatic
control engineering require a well formulated model

of the system in order to be controlled. Many real pro-
cesses are too complex to use an analytical model. In
these cases the experimental modeling, called identification
is employed. Commonly used identification methods are
neuronal networks and neuro-fuzzy systems. A method based
on this ideas is the HILOMOT (HIerachical LOcal MOdel
Tree)-Algorithm [6], which can be seen as an advance-
ment of the well-known LOLIMOT (LOcal LInear MOdel
Tree)-Algorithm [5], [7]. In Contrast to LOLIMOT, which
uses orthogonal Gaussian membership functions for the
partition, HILOMOT uses arbitrarily orientated Sigmoids.
Consequently they are more flexible during the training
and a better indication of the nonlinear characteristics of
the process is afforded [3]. The price of a lager flexibility
is a required nonlinear optimization, which is necessary
in order to get the best segmentation of the input space
with respect to the training error. One way to improve the
performance of HILOMOT significantly in terms of training
time is the application of an analytical gradient instead
of a numerically derived gradient information. This paper
increases the performance of the algorithm by improving
this optimization procedure. Therefore, first a brief overview
of the mode of operation of the HILOMOT Algorithm is
given. Then the optimization of the split function used for
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partitioning is discussed and the difficulties are identified.
The implemented approaches to overcome this problems are
illustrated and the modifications are compared and evaluated
to the optimization method used in an empirical examination
so far. Different example processes are investigated.

II. PRINCIPLE OPERATION OF THE ALGORITHM

The basic idea of HILOMOT is the description of the
training data with local sub-models of polynomial type.
These local models are interpolated with so called validity
functions. The local models are linearly parameterized, i.e.
can be estimated with weighted least squares. In contrast
to the local models, the validity functions contain nonlinear
parameters. Therefore, these parameters only can be found
by iterative methods. Other algorithm like CART [2] or
LOLIMOT [5], [7] are popular methods that also follow this
strategy too. These algorithms are heuristic tree-construction
methods. They use heuristical approaches for finding the
structure parameters in contrast to the HILOMOT, which
performs a nonlinear optimization of its structure param-
eters. Therefore, they are much faster, but have a lower
flexibility concerning the split position and direction. The
general principle of all of them (Fig. 1) can be interpreted
as a fuzzy model in Takagi-Sugeno form, which are very
important for approximation strategies for nonlinear static
and dynamic processes [1], [4]. The global model output ŷ

Fig. 1. Local model network: The output ŷi of each local model is weighted
by its validity function Φi and summed up to the global model output ŷ.

is a superposition of weighted local models, where each of
the M local models is a rule in terms of fuzzy logic:

ŷ =
M∑
k=1

ŷk(x)Φk(z) . (1)
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Here, the local models ŷk are the associated rule consequents
and the validity functions Φk represent the rule premises,
with the vector z spanning the premise input space and the
vector x spanning the consequent input space. They result
from the input vector u of the real process, as illustrated in
Fig. 2. By dealing with independent input spaces for the rule
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Fig. 2. The input vector u of the general nonlinear model, can be assigned
to the premise (nonlinear) and/or consequent (linear) input space according
to their influence of the output behavior.

premises and consequents, it is possible to incorporate prior
knowledge about the nonlinear behavior between each input
and the output into the model structure. Each local model ŷk
is defined by its parameter vector wk and the vector x:

ŷk = x · wk . (2)

The parameters of the local models can be easily estimated
by an local or global least-squares method, if the validity
functions Φk are known. The local estimation of the param-
eter vector wk is:

wk =
(
XT ·Q

k
·X
)−1

·XT ·Q
k
· y . (3)

Here matrix Q
k

is a diagonal matrix including the weights
of the k-th local model, which are its validity function Φk,
and matrix X is the input matrix of the consequent input
space, whose columns represent one data point.

As mentioned in the introduction, HILOMOT uses sigmoids
as splitting functions in contrast to LOLIMOT, which applies
orthogonal gaussians. The arbitrary orientation of the sig-
moids in the premise input space is their advantage [3]. A
sigmoid is described by:

Ψ(z) =
1

1 + e(v0+z1·v1+...+znz·vnz)
, (4)

where vector v contains the parameters of the sigmoid and
the vector z spans the premise input space, whose number
of inputs is nz [5], [6]. A typical partitioning done over the
first training iterations of HILOMOT is shown in Fig. 3. A
split is realized by dividing the validity area of the worst
local model into two sub-models by a sigmoid Ψ1 and
its complementary function Ψ̃1. Each validity function is
a product of all sigmoid function along the path beginning
at the root and ending in the leafs. The complexity of the
global model increases in each iteration, which means that
a better approximation is achieved step by step. In order
to get a good approximation with as less local models as
possible, in each iteration the parameters of the new sigmoid
are optimized. To guarantee a good initialization for the
nonlinear optimization, all orthogonal splits are done in the
premises input space and the best one with respect to the
used global loss function is chosen as starting point. To

z

z

z

Fig. 3. Tapical tree structure: Splitting the worst local model in each
iteration. The validity function of each leaf results from the multiplication
of the all sigmoids functions along the path.

assess the optimization problem precisely, a closer look on
the properties of a sigmoid has to be taken. The parameters
of the sigmoid influence its position and steepness. The
position of the sigmoid corresponds to the position of the
split, which is taken during the training. The steepness spec-
ifies the smoothness of the transition between the adjoining
local models. In order to discuss these statements in detail,
Fig. 4 shows a schematic illustration of a two-dimensional
Sigmoid. The level curve at Ψ(u1, u2) = 0.5 of the sigmoid
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Fig. 4. Two-dimensional sigmoide with its parameters v0, v1 and v2.
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describes the splitting line, where the change of the bigger
validity between both local models is given. For a higher
dimensional premise input space the partitioning is done
by hyperplanes. The direction of the split is described by
the vector v∗ = [v1, v2, . . . vnz], which is called direction
vector. The difference between the parameter vector v and
the direction vector v∗ is the parameter v0. The orthogonal
distance of the hyperplane to the origin is described by
the ratio v0/‖v∗‖. With the direction and the distance the
position of the split is defined accurately. Another possible
representation can be done by vectors along the axes of
the premise input space. They define the intersection xj of
the splitting line with the corresponding axis. Here we got
two input dimensions and according to this the points x1

und x2, with x1 = v0/v1 and x2 = v0/v2. It is obvious
that the position of the sigmoid can be defined only by the
ratios of the parameters. The length of the vector specifies
the steepness of the sigmoid, and therewith the character
of the continuous transition between the local models. This
relationship is shown in Fig. 5. Here several one-dimensional
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Fig. 5. One-dimensional sigmoids with different transitions.

sigmoids are illustrated, that all have the same point of
intersection. The parameter vectors of the sigmoids differ
only in their length, whereupon the ratios between the single
parameters stay the same. The length of the parameter
vectors of the sigmoids increases along the direction of the
arrow. In summary, the ratio between the single parameters
indicates the position of the sigmoid, which is the same as
the position of the split and the length of the parameter
vector defines the steepness of the sigmoid, which describes
the smoothness of the transition between the adjoined local
models. In LOLIMOT, the choice of the parameters of the
gaussian results from heuristic geometrical considerations,
which are easy to perform [5]. HILOMOT however uses
arbitrary orientated sigmoids, whose nonlinear parameters
can not result from heuristically approaches. Thats why
they need to be optimized to reach a minimal number of
local models to describe the process. The optimization is
performed by the Quasi-Newton-Method, which belongs to
the group of nonlinear local gradient-based optimization
methods [5], [9]. Optimizing the parameter vector v leads
to a very steep slope and a very hard transition between the

local models. Using local estimation, this is the best solution
in terms of the considered loss function. A hard transition
is not intended. Therefore, the influence of the parameters
on the steepness of the sigmoid needs to be removed by
a standardization of the length of the vector v [6]. Hence,
a parameter κ is introduced, which directly influences the
sharpness of the transition:

κ =
20√

v · vT ·
√

∆c ·∆cT · σ

=
20

‖v‖ · ‖∆c‖ · σ
. (5)

Combined with Eq. (4) follows:

Ψ(z) =
1

1 + eκ·(v0+z1·v1+...+znz·vnz)

=
1

1 + eκ·(v0+z·v∗)
. (6)

The distance of the centers of the adjoined local models
∆c and the smoothness parameter σ, which is used to
calibrate the overall transition behavior, are responsible for
the steepness of the sigmoids [6]. The influence of the
parameter vector v on the steepness is abrogated by the
division with the norm of the vector included in κ.

III. PROBLEM STATEMENT AND APPROACHES

As mentioned before, the parameter κ neglects the in-
fluence of the parameter vector v on the smoothness of
the transition between the local models by normalizing it.
Thus, only the position of the split remains affected by the
vector v. Needing just the ratios of the parameters to define
the exact position, one parameter becomes redundant. If the
optimizer considers the whole vector v, it handles a over-
determined optimization problem. This proceeding causes a
long calculation time and possibly a worse result. To avoid
this, one parameter must be fixed during the optimization.
Generally it is irrelevant which parameter is chosen. A good
one is the offset v0, because it is clearly separated form
the premise input space matrix and the other parameters
in Eq. (6). By fixing the parameter v0, the problem is not
over-determined anymore and reduced by one dimension.
Hence, the performance of the optimizer and of the whole
algorithm increases. In order to optimize the parameters, the
Quasi-Newton-Method is used, which needs the gradient of
the loss function I . If an analytical gradient is not given,
a numerical approach is needed. The numerical calculation
of the gradient, which the Quasi-Newton-Method typically
uses, is done by the finite difference technique. Its drawback
among other issues is its high computational effort with
respect to number of parameters to be optimized [5], [9]. In
order to avoid this problem, an analytical gradient should be
implemented. The loss function appropriated by HILOMOT is
the NRMSE (Normalized Root Mean Squared Error):

I(θ) =

√
N∑
i=1

e2
i (θ)√

N∑
i=1

(yi − y)
2

. (7)

Therefore, the derivative of loss function I with respect to
the direction vector v∗ of the sigmoid needs to be calculated.
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This means the general equation of the gradient has to be
changed into:

g(θ) =
∂I(θ)

∂θ
= g(v∗) =

∂I(v∗)

∂v∗
. (8)

Here, the gradient consists of the derivatives with respect to
each sigmoid parameter. Thus, the j-th entry of the gradient
for the j-th sigmoid parameter can be specified by:

gj =

(
N∑
i=1

(yi − y)
2

)− 1
2

· ∂

∂vj

(
N∑
i=1

e2
i (vj)

) 1
2

, (9)

where N is the number of data samples, yi is the output
at the i-th data sample, y = 1

N

∑
yi the mean of all data

samples and ei(vj) = yi − ŷi(vj) is the error at the i-th
data sample. Because just the global model is addicted to
the vector v∗ Eq. 9 becomes:

gj = −F1 ·
N∑
i=1

ei ·
∂
(
ŷi(vj)

)
∂vj

, (10)

In Eq. (10) a placeholder F1 is used for a more compact
formulation:

F1 =

(
N∑
i=1

(yi − ŷ)
2

)− 1
2

·

(
N∑
i=1

e2
i

)− 1
2

. (11)

The estimation of the parameters of the local models is
performed by a weighted least squares approach and these
weights result from the validity areas of the local models [6].
Furthermore the normalization of the parameters is done,
which leads to additional terms in the gradient equation.
After considering this addictions the following expression
for each entry of the gradient results:

gj =
∂I

∂vj
=

− F1 ·
N∑
i=1

ei · Φ∗i ·
{

(ŷa,i(θ)− ŷb,i(θ)) ·
∂Ψi

∂vj

+Xi ·
(
XT ·Q

a
·X
)−1

·XT ·
∂Q

a

∂vj
·[

y − ŷ
a

]
·Ψi(θ)

−Xi ·
(
XT ·Q

b
·X
)−1

·XT ·
∂Q

a

∂vj
·[

y − ŷ
b

]
· Ψ̃i(θ)

}
. (12)

Φ∗i is the validity function of the local model, which is split.
ŷa,i and ŷb,i are the new local models arising out of the
currently worst local model by splitting. The split is done by
the sigmoid Ψi and its complementary function Ψ̃i:

Ψ̃i = 1−Ψi . (13)

Q
a

and Q
b

are the weighting matrices of the new local
models. The calculation of the derivatives of the weighting
matrix Q and of the sigmoids are done separately, because
the equation would be too long and confusing. The deriva-
tives of the weighting functions only vary in their sign:

∂Q
a

∂vj
= −

∂Q
b

∂vj
. (14)

Hence, it is just necessary to calculate the derivation of the
diagonal weighting matrix Q

a
as:

∂Q
a

∂vj
=


Φ∗1 · ∂Ψ1

∂vj
. . . 0

...
. . .

...
0 . . . Φ∗N ·

∂ΨN

∂vj

 . (15)

In Eq. (12) and (15) the derivative of the sigmoid needs
to be calculated. Eq. (16) shows the associated formula.
Because of the normalization of the parameter vector inside
the exponential function, the equation is not really well
formulated. Hence, two more placeholders are added in order
to achieve a shorter expression:

F2,i =
eκ(v0+Zi·v

∗)(
1 + eκ(v0+Zi·v∗)

)2 , (17)

and

F3 =
−20

σ
· (‖v‖ · ‖∆c‖)−2

. (18)

In Eq. 17 the matrix Z is the input matrix of the premise
input space and its i-th column Zi represent the i-th data
point. With the equations above, the derivative of each
parameter of the vector v∗ is clearly defined. This incorpo-
rates the derivative of the sigmoid and the derivative of the
weighting matrix. Obviously the calculation of the analytical
gradient depends on the number of data points. The formula
is analytical, but it is evaluated at discrete points. Thereby
its vulnerable to low number of data points or scattered data
points, which at worst causes the optimizer to crash. To
guarantee a robust modeling and therewith a deterministic
approximation, the orthogonal initial split has to be used, if
the nonlinear optimization fails.

IV. VALIDATION

To demonstrate the increased performance of the algorithm
by the modification explained in the last section, three
example processes are modeled and the results are compared
against each other. The examples are a symmetric hyperbola
and parabola, and the so called ”radcos”-function, which
was used during a dissertation to verify its results [8]. The
formula for two input dimensions of the ”radcos”-function
is

y = cos

(
9 ·
√
u2

1 + u2
2 + 2

)
+

1

2
· cos (11 · u1 + 2) + (19)

15 ·
(

(u1 − 0.4)
2

+ (u2 − 0.4)
2
)2

,

and Fig. 6 illustrates its curve progression. In the following,
two optimization methods will be compared. The first one
uses the reduced parameter vector for the optimization,
but with a numerical gradient. The second method in this
comparison employs the reduced parameter vector and the
proposed analytical gradient. By comparing these methods,
it is possible to get an idea which improvement is achieved by
this modification. The used quality criterions are the global
loss function of the training and the number of local models.
The limit of the NRMSE , which is used as the training error,
is 5% and the number of the local models is constrained to
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∂Ψi

∂vj
=− F2,i ·

κ · Zi,j + (v0 + Zi · v∗) ·
vj · ‖∆c‖‖v‖ − 2 · ‖v‖

‖∆c‖ ·
n∑
l=1

∆cl · 1
N ·

N∑
k=1

ul,k · Φ∗k · F2,k · κ · Zk,j

1
F3

+ 2 · ‖v‖
‖∆c‖ ·

n∑
l=1

∆cl · 1
N ·

N∑
k=1

ul,k · Φ∗k · F2,k · (v0 + Zk · v∗)

 . (16)
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Fig. 6. The ”radcos”–function with two input dimensions u1 and u2.

ten. Either the algorithms reach the error limit within the
permitted number of local models or the maximum number
of local models is used to gain the smallest possible NRMSE.
The error values in Table I result from the given training data
set. The quality of approximation is only slightly different

TABLE I
GLOBAL ERROR (NRMSE) OF THE TRAINING DATA SET IN PERCENT.

THE BEST VALUE IN EACH COMPARISON IS HIGHLIGHTED.

error [%] process num. grad anal. grad
2D hyperbola <5 <5
3D <5 <5
4D <5 <5
5D <5 <5
6D <5 <5
7D <5 <5
2D parabola 15.15 15.34
3D 24.84 24.77
4D 45.30 46.35
5D 59.93 59.80
6D 65.53 65.60
7D 70.42 70.62
2D radcos 18.05 17.30
3D 27.53 28.43
4D 37.9 38.33
5D 42.57 42.52
6D 44.76 44.93
7D 42.83 43.18

between both methods. It depends on the example, which
method delivers the best result. Regarding a separate data set,
which is used for validation, similar results can be observed,
as Table II shows. Likewise the training data, no arbitrative
differences in the quality of the approximation can be seen.
The effect of the usage of the analytical gradient on both
error values can be neglected. Regarding the computing time
shown in Fig. 7 and Table III, dramatical changes arise.

For all three examples for every dimension of the input

TABLE II
GLOBAL ERROR (NRMSE) OF THE TEST DATA SET IN PERCENT.

THE BEST VALUE IN EACH COMPARISON IS HIGHLIGHTED.

error [%] process num. grad anal. grad
2D hyperbola 5.38 5.41
3D 4.93 4.82
4D 9.61 9.60
5D 4.43 4.54
6D 4.89 4.92
7D 3.15 3.18
2D parabola 14.94 15.12
3D 24.91 24.83
4D 46.55 46.59
5D 61.02 61.00
6D 68.49 68.51
7D 74.01 73.35
2D radcos 11.08 12.85
3D 28.90 29.69
4D 38.97 39.11
5D 44.12 43.80
6D 46.71 47.15
7D 46.90 46.65

space the analytical gradient has the lowest computational ef-
fort. If the new implemented analytical gradient is used, the

TABLE III
COMPUTION TIME∗ IN SECONDS. THE BEST VALUE IN EACH

COMPARISON IS HIGHLIGHTED.

.

time∗[s] process num. grad anal. grad
2D hyperbola 0.52 0.45
3D 1.00 0.75
4D 1.34 0.6
5D 2.62 1.00
6D 3.24 1.00
7D 4.42 1.41
2D parabola 1.29 0.82
3D 2.51 1.12
4D 4.82 1.38
5D 7.05 2.34
6D 10.53 2.64
7D 19.79 3.29
2D radcos 1.64 1.08
3D 3.33 1.37
4D 6.02 1.70
5D 6.65 1.30
6D 11.69 2.75
7D 15.29 3.81

∗Windows 7 (64-Bit), Intel Core i7 M 620 @ 2,67 GHz, 4,00 GB RAM

computing time drops to 87% to 17% of the computing time
with the numerical approach. Hence, the taken arrangements
improve the performance of the algorithm considerably.

V. CONCLUSIONS

In this paper an improvement of the performance of
the HILOMOT-algorithm [6] by modification of the intern
nonlinear optimization is presented. Therefore the numerical
calculation of the gradient is replaced by the analytical
solution. First, the derivation of the loss function used in
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Fig. 7. Computing times of the three methods with 3 to 7 input dimensions for a) the hyperbola, for b) the parabola and for c) the ”radcos”-function.
The calculation was done by a computer using Windows 7 (64-Bit), Intel Core i7 M 620 @ 2,67 GHz with 4,00 GB-RAM.

HILOMOT, the NRMSE, with respect to the parameter of
the sigmoid is done. The next modification is the imple-
mentation of an analytical gradient of the loss function.
The analytical calculated gradient makes the finite difference
technique superfluous, which requires especially for high-
dimensional input spaces a high computational effort [5].
The empirical examination shows, that the new implemented
algorithm fulfills the expectations regarding the increase of
performance . The computing time is reduced significantly
and the quality of the approximation remains constant.
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