
 

 
Abstract— The algorithm and computational program for 

automatic analysis of free vibrations of uniform Bernoulli-
Euler beams with attachments have been presented. The 
considered attachments are: translational and rotational 
springs, concentrated mass, linear undamped oscillator and 
additional support elements. The Lagrange multiplier method 
has been used to formulate and solve the free vibration 
problem. The exact solution of the free vibration problem of 
the beam without attachments has been taken into account for 
the formulation of the free vibration problem of the combined 
system. The sample numerical example is presented to show 
the results obtained by using the created computational 
program. 

 
Index Terms— automatic analysis, combined system, free 

vibration, uniform Bernoulli-Euler beam with attachments 
 

I. INTRODUCTION 

The problem of free vibrations of uniform Bernoulli-
Euler beams with attachments has been investigated by 
many authors and hence only a few selected references are 
given here [1]–[12]. The authors of these works have used 
the various methods to obtain analytical solutions or 
solutions in closed form. A broad overview of other works 
concerning the subject is given in the mentioned papers and 
in [13], [14]. Thus, this paper is limited to discuss only the 
parts described therein and is accompanied by other 
publications which have been identified as extending 
subject of research in the context of the method of 
formulating and solving problems of free vibrations of the 
analyzed type of complex systems. 

In this paper the algorithm and computational program 
for automatic analysis of free vibrations of uniform 
Bernoulli-Euler beams with attachments have been 
presented. The Lagrange multiplier method presented in [7] 
and the output shown in [13], [14] have been used to 
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formulate and solve the problem of free vibrations of those 
types of complex systems. 

II. THE FORMULATION AND SOLUTION OF THE PROBLEM 

The considered system is shown schematically in Fig. 1. 
In Fig. 1a the system consisting of a uniform Bernoulli-
Euler beam, translational and rotational springs, 
concentrated mass, linear undamped oscillator and 
additional supports against the beam translation or rotation 
is considered. The beam without the additional elements is 
the base system which must satisfy any arbitrary chosen 
boundary conditions, which can be obtained by the proper 
number and location of the considered support elements. 

According to the procedure described in the paper [7] the 
kinetic and potential energies including all elements of the 
system before their connection, as shown in Fig. 1b, can be 
formulated. Thus, with respect to the Bernoulli-Euler beam 
theory the kinetic and potential energies can be expressed in 
the form: 

 

  





L

b dx
t

txy
xAtT

0

2
),(

)(
2

1
)(


 , (1) 

  









L

b dx
x

txy
xEItV

0

2

2

2 ),(
)(

2

1
)(




, (2) 

 
where y(x,t) is the lateral displacement of the beam at the 
point x, A(x) is the mass per unit length, I(x) is the mass 
moment of inertia per unit length and  is the mass density.  

On the basis of solution of the free vibration problem of 
beam with the specific supporting and without any 
attachments, the lateral displacement y(x,t) is expressed as 
follows 
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 where Yi(x) denotes the i-th transverse vibration mode and 
ξi(t) function of time. 

Substituting expression (3) into equations (1) and (2), one 
obtains: 
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where: 
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Introduced coefficients Mi and Ki can be defined for the 

beam free at both ends. Using the solution of boundary 
value problem of such a beam, one can obtain the functions 
Yi(x) for this case as 
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where β4=ρAω2/(EI) and  is the natural frequency of the 
considered beam.  

 
Missing in formula (8) the values of i are calculated for 

the considered case from the equation 
 

 1coshcos LL  . (9) 

 
The set of computed values of i one can find also in the 

cited paper [2].  
 
Using the expression (8) and including (9) one can 

determine, based on (6) and (7), the values of coefficients 
Mi and Ki for the beam under consideration in the form [14]: 
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where the dimensionless quantities mi and ki have been 
introduced: 
 

Fig. 1.  Computational scheme: a) the system consisting of Bernoulli-Euler beam with discrete elements, b) components of the system prior to their connection

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012



 

 




























































































LL

LL

LL
LL
LL

LL

LL
LL

L
m

ii

ii

i

ii

ii

ii

ii

ii

ii

i

i
i


















sinhsin2
2

2cosh2cos
4

2sinh2sin
sinhcos

sincosh
sincosh

4

2sinsinh
sinhcos

1
1

2

, (12) 

 

 

 

































































































LL

LL

LL
LL
LL

LL

LL
LL

L

Lk

ii

ii

i

ii

ii

ii

ii

ii

ii

i

i

ii





















sinhsin2
2

2cosh2cos
4

2sinh2sin
sinhcos

sincosh
sincosh
4

2sinh2sin
sinhcos

2

3

4

, (13) 

 
where 
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Initially, the beam and the additional elements of the 

system are considered to be unconnected (see Fig. 1b). 
Based on (4) and (5) the total kinetic energy T of all 
components can be written as 
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and the total potential energy V in the form 
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The mathematical description of the combined system 

consisting of a beam and attached to it additional 
components that are connected to the beam in cross-sections 
with coordinates xk (k = 1, 2, ..., 6), as shown in Fig. 1a, 
must be completed by constraint equations that can be 
written in the following form: 

 
 0)( 111  zxyf , (17a) 

 0)( 222  zxyf , (17b) 

 0)( 333  xyf , (17c) 

 0)( 444  zxyf , (17d) 

 0)( 55  xyf , (17e) 
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The constraint functions fk (k = 1, 2, ..., 6) are also 

defined through these relationships. 

The Lagrangian for the system may be written as 
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where r is the Lagrange multiplier and R is the number of 
the attachments in the system. In the considered case R = 6, 
according to the scheme in Fig. 1. 

Using Lagrange’s equations for the system one obtains: 
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and the function Yi(xr) is defined by (8).  

In order to solve the free vibration problem and determine 
the natural frequency ω the harmonic solution of equations 
(19) is assumed in the form: 
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Substituting (21) into (19) the amplitudes Ai, Zk, 3, and 

Z can be determined as the functions of Lagrange’s 
multiplier amplitudes Λr. After appropriate transformations 
one obtains: 
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Substituting (22) into the constraint equations (17), one 

obtains the system of R equations which can be written in 
matrix form as 

 
 0CΛ , (23) 

 
where the vector  = [Λ1, Λ2, Λ3, Λ4, Λ5, Λ6]

T, and C is a 
square matrix of size equal to the number of attachments in 
the model. In the present case C has the form 
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where the following coefficients have been introduced: 
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For non-trivial solution of the system of equations (23) 

the determinant of the matrix C must be zero, it means 
 
 0det C , (26) 

 
 
that is the equation for computation of the eigenfrequency ω 
of the combined system. In this equation the coefficients Ckr 
characterize the beam as the base system’s element and the 
coefficients εk characterize the additional elements attached 
to the beam. A number of attachments determines the size of 
the matrix. Therefore, for any system consisting of the beam 
connected with arbitrary number of attachments, it is 
possible to create the system of equations in the form (23), 
directly. The previously presented formulation and solution 
is valid for every such combined systems.  

Therefore, in order to determine a new set of equations of 
the form (23), according to the number of additional 

elements (attachments) connected with the beam to create 
the complex system, a square matrix of form (24) and the 
size equal to the number of attachments in the model can be 
determined. Each matrix element depends on the coefficient 
Ckr and the type of attachment characterized by the 
coefficient k. Thus, having defined the matrix C the natural 
frequencies of the considered continuous-discrete system 
can be determined from the equation of the form (26).  

Additionally, after calculation of the frequency values of 
the complex system under consideration the mode shape 
corresponding to each determined frequency k can be 
computed. After suitable transformations, based on the 
derived formulas, the function Yk(x) describing the k-th 
mode shape of the complex system can be written as 
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where Yi(x) denotes the i-th transverse vibration mode of the 
beam without the attachments in the form (8). 

It should be noted that to determine, based on the formula 
(27), the mode shape of the beam as part of a complex 
system, it is necessary to solve the properly created set of 
equations, separately for each of the previously identified 
natural frequency k. Needed for this purpose sets of 
equations can be derived as the transformed system of 
equations obtained from the equations (23). To obtain the 
appropriate equations, one of the Lagrange multipliers 
should be chosen as a permanent independent and then the 
remaining (R - 1) amplitudes Λr(ωk) of Lagrange multipliers 
can be calculated based on equations (23) as the function of 
the one selected. In the formula (27) the amplitude Λr(ωk) 
represent amplitudes Λr determined from the modified set of 
equations corresponding to the frequency of k, which 
corresponds to the mode shape defined by (27). Therefore, 
the determining the frequency value k and the 
corresponding to them amplitudes of the Lagrange 
multipliers Λr(ωk) allows one to fully describe the free 
vibrations of the complex system on the basis of the 
described formulae.  

For completeness, it is important to notice that the form 
of coefficients Ckr is obtained for the uniform Bernoulli-
Euler beam free at both ends and without any attachments. 
To obtain the proper supporting of the beam in any 
considered combined system, apart from the attachments 
composing the system, the proper number and location of 
the additional discrete elements characterized by k (k=5,6) 
should be added. These elements enable one to define the 
proper supporting for any arbitrary chosen classic beam 
support.  

Additionally, it is important to notice that for the whole 
description of the mathematical model under consideration 
also the so called mode shapes of the beam as the rigid body 
must be taken into account. So the final computations of the 
coefficients Ckr should be done with the consideration of 
these modes. 
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III. THE ALGORITHM FOR AUTOMATIC ANALYSIS OF FREE 

VIBRATIONS OF THE SYSTEM 

 

 
On the basis of the mathematical model presented in  

chapter 2 the algorithm (Fig. 2) for automatic analysis of 
free vibrations of the complex systems has been created. In 
Fig. 2, beside the descriptions of calculated system 

parameters, the proper number (in parenthesis) of 
calculation formula is marked according to the numbering 
used in previous description of the model. The proposed 
algorithm enables one to analyze the free vibrations of any 
arbitrary chosen complex system consisting of elements 
taken to compose the considered in this work continuous-
discrete system. Using the proposed algorithm the analysis 
of the free vibrations of complex system of considered type 
can be done automatically. After defining the system 

parameters the formulation and solution of the free vibration 
problem is done numerically on the basis of build in 
mathematical model. 
 

IV. THE SAMPLE RESULTS OF NUMERICAL CALCULATIONS 

On the basis of the presented mathematical model and the 
algorithm the program for numerical automatic analysis of 
free vibrations of the complex system has been worked out. 
The program enables one to determine the chosen number 
of eigenfrequency values and mode shapes for defined 
complex system according to the proposed algorithm. In 
Fig. 3 the sample results of numerical calculations obtained 
by using the program for the chosen configuration of the 
complex system have been presented.  

The accuracy of the numerical results increases with the 
increase of the number n which defines the number of 
considered terms of series according to the formula (3). 
According to the increase of the number n the cost of 
numerical calculation also increases. So the proper value of 
this number should be chosen to get the lower cost and 
required accuracy. In practice, as it has been proved in [14] 
for similar calculations, even quit low number is suitable to 
obtain the results with satisfactory accuracy. It is important 
to remember that it is necessary to choose such number n 
that enables one to obtain the calculated eigenfrequency 
value for the complex system lower than the value for the 
last included in the calculation eigenfrequency of the beam 
without any attachments. These frequencies can be 
determined from the equation (9). 

 

V. CONCLUSIONS 

The algorithm and computational program for automatic 
analysis of free vibrations of complex systems have been 
worked out. The program enables one to analyze free 
vibrations of any arbitrary chosen complex system 
consisting of uniform Bernoulli-Euler beam with any 
number of attachments like: translational and rotational 
springs, concentrated mass, linear undamped oscillator and 
additional support elements. Using the proposed algorithm 
the analysis can be done automatically. After defining the 
system parameters the formulation and solution of the free 
vibration problem is done numerically on the basis of build 
in mathematical model. The formulation and solution of the 
problem has been based on the Lagrange multiplier 
formalism.  

The important feature of the proposed model is that the 
mathematical model is created by using the analytical 
solutions. The numerical procedure for determining the 
frequency values allows one to determine the frequency 
values and corresponding mode shapes with required 
accuracy which can be improved by increasing the number 
of terms of the series considering during the calculation 
process. This number is a user defined parameter of the 
calculations. 

The proposed algorithm can be easily improved for other 
continuous-discrete systems consisting of one continuous 
element connected with any number of discrete elements. 

 
Fig. 2.  The scheme of the algorithm. 
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Fig. 3.  Sample results of numerical analysis of free vibrations. 
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