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Algorithm for Automatic Analysis of Free
Vibrations of Uniform Bernoulli-Euler Beams
with Attachments
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Abstract— The algorithm and computational program for
automatic analysis of free vibrations of uniform Bernoulli-
Euler beams with attachments have been presented. The
considered attachments are: translational and rotational
springs, concentrated mass, linear undamped oscillator and
additional support elements. The Lagrange multiplier method
has been used to formulate and solve the free vibration
problem. The exact solution of the free vibration problem of
the beam without attachments has been taken into account for
the formulation of the free vibration problem of the combined
system. The sample numerical example is presented to show
the results obtained by using the created computational
program.

Index Terms— automatic analysis, combined system, free
vibration, uniform Bernoulli-Euler beam with attachments

I. INTRODUCTION

The problem of free vibrations of uniform Bernoulli-
Euler beams with attachments has been investigated by
many authors and hence only a few selected references are
given here [1]-[12]. The authors of these works have used
the various methods to obtain analytical solutions or
solutions in closed form. A broad overview of other works
concerning the subject is given in the mentioned papers and
in [13], [14]. Thus, this paper is limited to discuss only the
parts described therein and is accompanied by other
publications which have been identified as extending
subject of research in the context of the method of
formulating and solving problems of free vibrations of the
analyzed type of complex systems.

In this paper the algorithm and computational program
for automatic analysis of free vibrations of uniform
Bernoulli-Euler beams with attachments have been
presented. The Lagrange multiplier method presented in [7]
and the output shown in [13], [14] have been used to
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formulate and solve the problem of free vibrations of those
types of complex systems.

Il. THE FORMULATION AND SOLUTION OF THE PROBLEM

The considered system is shown schematically in Fig. 1.
In Fig. 1a the system consisting of a uniform Bernoulli-
Euler beam, translational and rotational springs,
concentrated mass, linear undamped oscillator and
additional supports against the beam translation or rotation
is considered. The beam without the additional elements is
the base system which must satisfy any arbitrary chosen
boundary conditions, which can be obtained by the proper
number and location of the considered support elements.

According to the procedure described in the paper [7] the
kinetic and potential energies including all elements of the
system before their connection, as shown in Fig. 1b, can be
formulated. Thus, with respect to the Bernoulli-Euler beam
theory the kinetic and potential energies can be expressed in
the form:

10 =2 e )P(’C ’)} d, ®

V() == j El(x ){Oﬂy(’“ I)} dx, @

where y(x,?) is the lateral displacement of the beam at the
point x, pA(x) is the mass per unit length, pi/(x) is the mass
moment of inertia per unit length and p is the mass density.

On the basis of solution of the free vibration problem of
beam with the specific supporting and without any
attachments, the lateral displacement y(x,7) is expressed as
follows

Y0 =Y H@EQ, @

where Y{(x) denotes the i-th transverse vibration mode and
&(#) function of time.

Substituting expression (3) into equations (1) and (2), one
obtains:
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Fig. 1. Computational scheme: a) the system consisting of Bernoulli-Euler beam with discrete elements, b) components of the system prior to their connection

1 n 2
V(0= EZ;K@ : ©) Missing in formula (8) the values of g, are calculated for
. the considered case from the equation
where:
cos SLcosh SL =1, 9)
L
M. =| pA(x)Y?(x)dx, 6 . .

! -[J AT (x)dx ©) The set of computed values of 5, one can find also in the

2 2 cited paper [2].

K = J.:EI(x){a Y () } d 0

ox Using the expression (8) and including (9) one can

determine, based on (6) and (7), the values of coefficients
Introduced coefficients A/; and K; can be defined for the A7, and K; for the beam under consideration in the form [14]:
beam free at both ends. Using the solution of boundary

value problem of such a beam, one can obtain the functions M. = pAL
.= m.
Yi(x) for this case as ! P v (10)
K = EI
Y,(x) = c0os B.x +cosh f.x + A (11)
- CS)Sh’B"L + CPS@LJ(sin Sx+sinh Bx)’ 8)
sinhBL  singL where the dimensionless quantities m; and k; have been
introduced:
where f*=pAw’l(EI) and w is the natural frequency of the
considered beam.
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—cos B Lsinh B.L + The Lagrangian for the system may be written as
2 +3|nhﬁiL;sm2/3,L+ N )
cosh B.Lsin L L=T-V+Y> [, (18)
1 |+coshBLsinpL+ =
m, =1+ ——<+cospg,Lsinh §.L + . (12)
B.L . Sin28,L +sinh24,L + where 4, is the Lagrange multiplier and R is the number of
4 the attachments in the system. In the considered case R = 6,
cos2fL—cosh2fL according to the scheme in Fig. 1.
*7i 2 Using Lagrange’s equations for the system one obtains:
—2sin B.Lsinh .L INg -agrange's equatt y I
k=(BL) + ME+KE-SAb =0 i=12 (19a)
—cos S Lsinh B.L+ it féf_zl: i T5 BTG I
sin2B.L—sinh23L ~
-7+ A 2 AL, |+ Kz, + 4, =0, (19b)
+cosh S.Lsin B.L mz,+1,=0, (19c)
—cosh gLsin L+ -
+(B,LY{~cos B Lsinh SL+ - (13 Co+4 =0, (19d)
N sin2B,L+sinh28.L N K, (z;-z)+ 4, =0, (19)
4 Mz+K,(z-z,)=0, 19
cos2f5L—cosh2fL ulz=z) 19
i 2 + .
+2sin B.Lsinh B.L where:

_JY(x,) dlar=1,2,45
where b"r_{Y,-'(xr) dlar=36 } (20)

_cosh L | Cos BL
7 sinhgL  singL’

(14)  and the function Y(x,) is defined by (8).
In order to solve the free vibration problem and determine
the natural frequency w the harmonic solution of equations
Initially, the beam and the additional elements of the  (19) is assumed in the form:
system are considered to be unconnected (see Fig. 1b).
Based on (4) and (5_) the total Kinetic energy T of all £=Ae™, i=12,..n, (21a)
components can be written as S

2, =Ze™, k=124, (21b)

n . _ jot
T= %ZM@Z +%mz'22 +%Mz’z (15) 0y =P’ (21c)
i1 z=Ze’"" | (21d)
A=Ae™ r=12..R. (21e)

and the total potential energy ¥ in the form

12 1 1 1 Substituting (21) into (19) the amplitudes 4,, Z;, @, and
v ZEZK,-@Z +§K212 +EC(P§ +EKM (z—z,)°. (16)  Z can be determined as the functions of Lagrange’s
=1 multiplier amplitudes 4,. After appropriate transformations

one obtains:
The mathematical description of the combined system
consisting of a beam and attached to it additional r
components that are connected to the beam in cross-sections Z Ab,
with coordinates x;, (k = 1, 2, ..., 6), as shown in Fig. 1a, = (22a)
. . i 2 !
must be completed by constraint equations that can be K, —w"M,
written in the following form: 1
Z = —EAl , (22b)
fi=y(x)-z=0, (17a) 1
fo=3(5) -2, =0, (17) L=t (22c)
=y'(x)—-, =0, 17c
f3=Y' (%) -0 (17¢) @=L 4, (22d)
Sa=y(x)-2,=0, (17d) C
=y(x.)=0, 17e
Js y,(s) (17¢) Zoaf - L), (226)
fe='(x)=0. (17f) K, Mo
1
The constraint functions f, (k = 1, 2, ..., 6) are also Z:W/Lt- (22f)
defined through these relationships.
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Substituting (22) into the constraint equations (17), one
obtains the system of R equations which can be written in
matrix form as

CA=0, (23)
where the vector A = [Ay, Aj, A3, Ay, As, AG]T, and C is a

square matrix of size equal to the number of attachments in
the model. In the present case C has the form

_Cu +e (G Cis Cuy Cis Cis 1
Cun Cptse Gy Co Cys Co
C- Gy G GCut+e Gy Css Cs ,
Cy Cp Cio Cute, Cp Cas
Ce Ce, Ces Coy Gt Gy
| Ca Ce Ces Cos Cos  Cost+ & |
(24)

where the following coefficients have been introduced:

o b.b.
C, =y —*r 25a
kr ; K,» _ C()ZM[ ( )
g :% , (25h)

1
&, =— — (25c¢)
& :% , (25d)
&y = Ki—# , (256)
M (4]

85 = 0 s (25f)
& =0. (250)

For non-trivial solution of the system of equations (23)
the determinant of the matrix C must be zero, it means

detC=0, (26)

that is the equation for computation of the eigenfrequency w
of the combined system. In this equation the coefficients C,,
characterize the beam as the base system’s element and the
coefficients ¢, characterize the additional elements attached
to the beam. A number of attachments determines the size of
the matrix. Therefore, for any system consisting of the beam
connected with arbitrary number of attachments, it is
possible to create the system of equations in the form (23),
directly. The previously presented formulation and solution
is valid for every such combined systems.

Therefore, in order to determine a new set of equations of
the form (23), according to the number of additional
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elements (attachments) connected with the beam to create
the complex system, a square matrix of form (24) and the
size equal to the number of attachments in the model can be
determined. Each matrix element depends on the coefficient
C;- and the type of attachment characterized by the
coefficient g. Thus, having defined the matrix C the natural
frequencies of the considered continuous-discrete system
can be determined from the equation of the form (26).

Additionally, after calculation of the frequency values of
the complex system under consideration the mode shape
corresponding to each determined frequency w, can be
computed. After suitable transformations, based on the
derived formulas, the function Y(x) describing the i-th
mode shape of the complex system can be written as

” ZR: 4, (wk )bir

Y, (x)=) =L—————
k() IZ_; Ki—a)lfM

1

Y (x),

(27)

where Y,(x) denotes the i-th transverse vibration mode of the
beam without the attachments in the form (8).

It should be noted that to determine, based on the formula
(27), the mode shape of the beam as part of a complex
system, it is necessary to solve the properly created set of
equations, separately for each of the previously identified
natural frequency ;. Needed for this purpose sets of
equations can be derived as the transformed system of
equations obtained from the equations (23). To obtain the
appropriate equations, one of the Lagrange multipliers
should be chosen as a permanent independent and then the
remaining (R - 1) amplitudes 4,(w;) of Lagrange multipliers
can be calculated based on equations (23) as the function of
the one selected. In the formula (27) the amplitude A,(wy)
represent amplitudes 4, determined from the modified set of
equations corresponding to the frequency of «;, which
corresponds to the mode shape defined by (27). Therefore,
the determining the frequency value @, and the
corresponding to them amplitudes of the Lagrange
multipliers A,(w;) allows one to fully describe the free
vibrations of the complex system on the basis of the
described formulae.

For completeness, it is important to notice that the form
of coefficients Cj,. is obtained for the uniform Bernoulli-
Euler beam free at both ends and without any attachments.
To obtain the proper supporting of the beam in any
considered combined system, apart from the attachments
composing the system, the proper number and location of
the additional discrete elements characterized by &, (k=5,6)
should be added. These elements enable one to define the
proper supporting for any arbitrary chosen classic beam
support.

Additionally, it is important to notice that for the whole
description of the mathematical model under consideration
also the so called mode shapes of the beam as the rigid body
must be taken into account. So the final computations of the
coefficients C,. should be done with the consideration of
these modes.
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I1l. THE ALGORITHM FOR AUTOMATIC ANALYSIS OF FREE
VIBRATIONS OF THE SYSTEM

CStart>

// Number (n) of serie terms /

Calculation of
invariable coefficients for the system:

BiL (9), m; (12), k; (13)
Beam parameters:
dimensions and material constants

l

Calculation of the values:
M;(10), K, (11)

Number (R) of attachments,
including attachments representing beam support

i=1()(R)

Type of attachments (g,)
and connection point’s coordinates (x,)

|Fill in element of C (24) matrix |
|

l

|Calculati0n of free vibration frequencies (26)‘

| Calculation of the Lagrange multipliers (23)]

[Calculation of mode shapes (27)|

/ Frequency values and the mode shapes //

CStop>

Fig. 2. The scheme of the algorithm.

On the basis of the mathematical model presented in
chapter 2 the algorithm (Fig. 2) for automatic analysis of
free vibrations of the complex systems has been created. In
Fig. 2, beside the descriptions of calculated system
parameters, the proper number (in parenthesis) of
calculation formula is marked according to the numbering
used in previous description of the model. The proposed
algorithm enables one to analyze the free vibrations of any
arbitrary chosen complex system consisting of elements
taken to compose the considered in this work continuous-
discrete system. Using the proposed algorithm the analysis
of the free vibrations of complex system of considered type
can be done automatically. After defining the system
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parameters the formulation and solution of the free vibration
problem is done numerically on the basis of build in
mathematical model.

IV. THE SAMPLE RESULTS OF NUMERICAL CALCULATIONS

On the basis of the presented mathematical model and the
algorithm the program for numerical automatic analysis of
free vibrations of the complex system has been worked out.
The program enables one to determine the chosen number
of eigenfrequency values and mode shapes for defined
complex system according to the proposed algorithm. In
Fig. 3 the sample results of numerical calculations obtained
by using the program for the chosen configuration of the
complex system have been presented.

The accuracy of the numerical results increases with the
increase of the number » which defines the number of
considered terms of series according to the formula (3).
According to the increase of the number n the cost of
numerical calculation also increases. So the proper value of
this number should be chosen to get the lower cost and
required accuracy. In practice, as it has been proved in [14]
for similar calculations, even quit low number is suitable to
obtain the results with satisfactory accuracy. It is important
to remember that it is necessary to choose such number n
that enables one to obtain the calculated eigenfrequency
value for the complex system lower than the value for the
last included in the calculation eigenfrequency of the beam
without any attachments. These frequencies can be
determined from the equation (9).

V. CONCLUSIONS

The algorithm and computational program for automatic
analysis of free vibrations of complex systems have been
worked out. The program enables one to analyze free
vibrations of any arbitrary chosen complex system
consisting of uniform Bernoulli-Euler beam with any
number of attachments like: translational and rotational
springs, concentrated mass, linear undamped oscillator and
additional support elements. Using the proposed algorithm
the analysis can be done automatically. After defining the
system parameters the formulation and solution of the free
vibration problem is done numerically on the basis of build
in mathematical model. The formulation and solution of the
problem has been based on the Lagrange multiplier
formalism.

The important feature of the proposed model is that the
mathematical model is created by using the analytical
solutions. The numerical procedure for determining the
frequency values allows one to determine the frequency
values and corresponding mode shapes with required
accuracy which can be improved by increasing the number
of terms of the series considering during the calculation
process. This number is a user defined parameter of the
calculations.

The proposed algorithm can be easily improved for other
continuous-discrete systems consisting of one continuous
element connected with any number of discrete elements.

WCECS 2012



Proceedings of the World Congress on Engineering and Computer Science 2012 Vol 11
WCECS 2012, October 24-26, 2012, San Francisco, USA

= =18l x|
clelal
= [y Bearm par ameters
o Crons sed
1 Densty
1y Length
1 Yeung's moduus
Sugport
am
Y]
B e
&M
& e [ ]
= ¥l somg Fay £
W et =P ] G K =8 e
=i Marmonic cscllator
g Costoic rant____
A c *
Frequrey 1 [
Frequency 2 ||s\nm?s
Show
Frequercy T [roraTaem
Frequercy & [
Frequercy & im 77
Frequency & E=EC
Input data Maotes | Qutput data | e 2 e
Fraquercy B =)
Frequency 3 Imm
Fraquercy 10 [1aeraneane
G|

Fig

(1]

[2]

(3]

[4]

[5]

6]

[71

(8]

[]

[10]

[11]

[12]

. 3. Sample results of numerical analysis of free vibrations.
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