
An Optimized Numerical Method for Solving the
Two-Dimensional Impedance Equation

C. M. A. Robles G. IAENG, Member, A. Bucio R. and M. P. Ramirez T. IAENG, Member.

Abstract—We study an optimized numerical method for
solving the forward problem of the two-dimensional Impedance
Equation. Based upon elements of the modern Pseudoanalytic
Function Theory, its performance is tested employing sinusoidal
conductivity functions within the unit circle. Then a collection of
experimental data are displayed for illustrating its effectiveness.
The work closes with a brief discussion of the contribution to
the Electrical Impedance Tomography problem.

Index Terms—Computational method, Electrical Impedance
Equation, Pseudoanalytic Function Theory.

I. INTRODUCTION

THE elements of the modern Pseudoanalytic Function
Theory [7], have been successfully applied for sorting

out the forward problem of the Impedance Equation in the
plane

div (σ grad u) = 0, (1)

where σ is the conductivity and u is the electric poten-
tial. Specifically, when σ can be expressed as a separable-
variables function, it is possible to approach the general
solution of (1) in asymptotic form, harnessing Taylor series
in formal powers [2].

Nevertheless, the application of this technique may have
some restrictions when dealing with engineering problems,
because the conductivity functions rising from experimental
models, in general, do not posses a separable-variables
structure. An alternative for overpassing this restriction was
posed in [9], where it was shown that, under certain circum-
stances, every physical-rising conductivity distribution, can
be considered a limit case of a piecewise separable-variables
function.

The relevance of efficiently solving the forward problem
for (1), if we are to solve the Electrical Impedance Tomog-
raphy problem (also called inverse problem), was widely
exposed in a variety of works, among which [12] is one of
the most important. In this sense, the results posed in [8], and
subsequently rediscovered in [1], are indeed very significant,
because they allowed to sift out the rink for approaching the
general solution of the Impedance Equation in the plane.

After publishing these works, many interesting papers,
dedicated to numerically solving the Dirichlet boundary
value problem of (1) in the plain, have achieved to approach
the solutions with considerable accuracy (see e.g. [6]).

The main contribution of this work is to propose an
efficient numerical method, whose algorithm displays an ad-
equate valance between the computational cost and accuracy.
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We shall remark once more that many of the existing methods
are highly accurate, but they engross the usage of computa-
tional resources, and also impose mathematical restrictions
that locate them far away from engineering applications. The
method posed in the following paragraphs may avoid these
problems, becoming appropriate for, e.g., analysing Electrical
Impedance Tomography problems upcoming from clinical
cases.

Hence, we first broach a simplified numerical method for
solving (1) at the boundary of some domain in the plain [3].
This is done by approaching elements of a complete set of
solutions for a Vekua equation [11], fully equivalent to (1).
Then we examine a special class of examples, in order to
illustrate the effectiveness of the method, lodging an expla-
nation of its performance through a set of control parameters.
The conclusions contain the arguments that might justify the
viability of employing this new technique.

II. PRELIMINARIES

According to the Pseudoanalytic Function Theory posed
in [2], let us consider a pair of complex-valued functions
(F,G) that fulfil the condition

Im
(
FG

)
> 0, (2)

where F denotes the complex conjugate of F :

F = ReF − iImF.

Thus, any complex function W can be expressed by the
linear combination of F and G:

W = φF + ψG,

where φ and ψ are real-valued functions.
A pair (F,G) that heeds (2) is named a generating

pair. This concept allowed L. Bers to introduce the (F,G)-
derivative of a function W :

∂(F,G)W = (∂zφ)F + (∂zψ)G, (3)

where ∂z = ∂
∂x − i

∂
∂y , and i2 = −1. This derivative will

only exist if
(∂zφ)F + (∂zψ)G = 0, (4)

where ∂z = ∂
∂x + i ∂

∂y .
Moreover, when introducing the notations

A(F,G) =
F∂zG−G∂zF

FG− FG
, B(F,G) =

F∂zG−G∂zF

FG− FG
,

a(F,G) =
G∂zF − F∂zG

FG− FG
, b(F,G) =

F∂zG−G∂zF

FG− FG
; (5)

the equation (3) can be written as

∂(F,G)W = ∂zW −A(F,G)W −B(F,G)W, (6)
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forasmuch (4) attains

∂zW − a(F,G)W − b(F,G)W = 0. (7)

Concretely, the notations (5) are called the characteristic
coefficients of the generating pair (F,G). The expression (6)
is referred as the (F,G)-derivative of W , and (7) is the Vekua
equation [11].

Remark 1: The functions

F = p, G =
i

p
, (8)

where p is a non-vanishing real-valued function, within some
domain Ω, makes up a Bers generating pair since they satisfy
(2), and their characteristic coefficients are:

A(F,G) = a(F,G) = 0,

B(F,G) = −∂zp
p , b(F,G) = −∂zp

p .
(9)

Definition 1: Let us suppose that (F0, G0) and (F1, G1)
are two generating pairs with the form (8), and let their
characteristics coefficients (5) fulfil the relations

B(F0,G0) = −b(F1,G1).

Then (F1, G1) will be called a successor pair of (F0, G0),
and (F0, G0) will be a predecessor of (F1, G1).

Definition 2: Let us consider a set of generating pairs
{(Fn, Gn)} , n = 0,±1,±2, ... such that each (Fn, Gn) is
a predecessor of (Fn+1, Gn+1). The set will be then called
a generating sequence. If (F,G) = (F0, G0), we say that
(F,G) is embedded into {(Fn, Gn)}. Furthermore, if there
exist a number k such that (Fn+k, Gn+k) = (Fn, Gn), we
assert that the generating sequence is periodic, with a period
of magnitude k.

Remark 2: Let us consider a generating pair of the form
(8). If p is a separable-variables function

p = p1(x) · p2(y), (10)

the pair will be embedded into a periodic generating se-
quence, with period k = 2, being

Fm = p1(x)p2(y), Gm =
i

p1(x)p2(y)
,

when m is even, and

Fm =
p2(y)
p1(x)

, Gm = i
p1(x)
p2(y)

,

when m is odd.
The concept of the (F0, G0)-integral was also introduced

by professor L. Bers [2].
Definition 3: The adjoint generating pair (F ∗0 , G

∗
0) corre-

sponding to (F0, G0) with the form (8), is defined as:

F ∗0 = −iF0, G∗0 = −iG0. (11)

Definition 4: The (F0, G0)-integral of a complex valued
function W is defined as:∫ z

z0

Wd(F0,G0)z = F0Re
∫ z

z0

G∗0Wdz +G0Re
∫ z

z0

F ∗0Wdz.

Specifically, since the (F0, G0)-integral of the (F0, G0)-
derivative of W reaches∫ z

z0

∂(F0,G0)Wd(F0,G0)z = W − φ(z0)F0 −ψ(z0)G0, (12)

and considering that [2]

∂(F0,G0)F0 = ∂(F0,G0)G0 = 0,

the integral expression (12) can be considered the (F0, G0)-
antiderivative of the function ∂(F0,G0)W .

We refer the reader to the specialized literature [2] and [7],
for a detailed description about the existence of the (F0, G0)-
antiderivative. Hereafter, when this concept is evoked, every
complex-valued function will be (F0, G0)-integrable by def-
inition.

A. Formal Powers

Professor L. Bers [2] generalized the classical result for
expanding any analytic function in Taylor series, for the set
of the so-called Pseudoanalytic Functions, by midst of what
he introduced as formal powers.

Definition 5: The formal power Z(0)
m (a0, z0; z) with com-

plex constant coefficient a0, center at z0, depending upon z,
formal exponent 0, and corresponding to the generation pair
(Fm, Gm), is expressed as:

Z(0)
m (a0, z0; z) = λmFm + µmGm,

where λm and µm are real constants, fulfilling the condition

λmFm(z0) + µmGm(z0) = a0.

The higher exponents of the formal powers are defined
according the recursive formulas

Z
(n+1)
m+1 (an, z0; z) =

= (n+ 1)
∫ z

z0
Z

(n)
m (a0, z0; z)d(Fm,Gm)z.

(13)

Dwell that these integrals operators are indeed (Fm, Gm)-
antiderivatives, and every formal power of the set{

Z(n)
m (an, z0; z)

}∞
n=0

,

is an (Fm, Gm)-pseudoanalytic function [2].
Employing the previous statements, L. Bers proved that

any (Fm, Gm)-pseudoanalytic function can be expressed in
Taylor series in formal powers

W =
∞∑

n=0

Z(n)
m (an, z0; z); (14)

where
an =

1
n!
∂

(n)
(Fm,Gm)W (z0).

In this purport, this is an analytical representation of the
general solution for the Vekua equation (7).

B. The two-dimensional Impedance Equation

Let us consider the two-dimensional case of the Impedance
Equation (1), and let us suppose that the conductivity σ could
be expressed in terms of a separable-variable function:

σ = σ1(x) · σ2(y).

Introducing the notations

W =
√
σ

(
∂

∂x
u− i ∂

∂y
u

)
, p =

√
σ2(y)
σ1(x)

; (15)
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the Impedance Equation can be written as a Vekua equation

∂zW −
∂zp

p
W = 0. (16)

Furthermore, as it was elegantly stated in [5], the set{
ReZ(n)

m (1, 0; z) |Γ, ReZ(n)
m (i, 0; z) |Γ

}∞
n=0

, (17)

conforms a complete system for approaching solutions of
the Dirichlet forward problem for (1). Here Γ represents the
boundary of the domain Ω, where the formal powers are
defined.

In other words, let

u(n) (1, 0, z) = ReZ(n)
m (1, 0; z) |Γ,

u(n) (i, 0, z) = ReZ(n)
m (i, 0; z) |Γ;

n = 0, 1, 2, ...
(18)

If a boundary condition u|Γ is provided, we can always
approach it asymptotically

lim
N→∞

N∑
n=0

(
αnu

(n) (1, 0, z) + βnu
(n) (i, 0, z)

)
= u|Γ,

(19)
where αj and βj are real numbers.

This procedure proved its effectiveness in several works
(see e.g. [5], [6] and [10]), where the numerical approaches
achieved highly accurate results.

Referring the reader to [9], where it was proven that any
physical-rising conductivity function, could be considered the
limit case of a piece-wise separable-variables function, we
will explain the method for numerically approaching a finite
set of formal powers with the form (17), in order to solve
the forward problem for (1).

III. FORMAL POWER APPROACHING

Attaching the modern Pseudoanalytic Function Theory
studied in [7], to the classical results of [2], we present
an improved numerical method that, based onto a previous
proposal [3], possesses a higher degree of accuracy and
numerical stability. Our explanations will be perform consid-
ering the formal powers with coefficients an = 1, because
not any important methodological variation takes place when
considering an = i.

Thence, let us consider a collection of K + 1 points

{r [k]} , k = 0, 1, ...,K;

equidistantly located in a closed interval [0, 1]. If the interval
[0, 1] coincides with a radius R of the unit circle, whose
center is z0 = 0, with some specific angle θ ∈ [0, 2π), we
will immediately obtain a collection of points allocated in
the plane:

{(x[k], y[k])} , k = 0, 1, ...K;

constructed according to the rule

x[k] = r[k] cos(θ); y[k] = r[k] sin(θ).

Thus the formal powers over such radius R can be
approached employing the recursive expressions:

Z(n+1)[k] = AF [k]·

·Re
k∑

q=0

(
G∗[q]Z(n)[q] +G∗[q + 1]Z(n)[q + 1]

)
∆z[q]+

+ AG[k]·

·Re
k∑

q=0

(
F ∗[q]Z(n)[q] + F ∗[q + 1]Z(n)[q + 1]

)
∆z[q],

(20)
where

∆z[q] = x[q + 1]− x[q] + i (y[q + 1]− y[q]) ,

and A is a factor that warrants the numerical stability of the
method (see [4]). This is, it possesses a direct influence in
the convergence and steadiness of the numerical calculations.
More precisely, for the examples examined further, we will
fix A = 8. The absence of the sub-index m in the formal
powers shown above, indicates that they all belong to the
same generating pair.

In order to display the mathematical operations in an
algorithmic format, it will be convenient to denote the
operations described in (20) as

Z(n+1)[k] = B
[
Z(n)[k]

]
.

It is clear that this procedure can be performed for a variety
of radii {Rs} , s = 1, 2, ..., S; each one associated to an
angle θs belonging to the set{

θ1 = 0, θ2 =
2π
S
, θ3 =

4π
S
, ..., θS =

2(S − 1)π
S

}
.

We shall also remark that the numerical method was fully
developed in GNU C, employing an AMD R© CPU ATHLON
64-4800 R© at 2.50 GHz.

The Algorithm 1 summarizes the programming details for
numerically approaching N formal powers, over S number
of radii, and considering K + 1 points per radius.

Algorithm 1 Boundary value problem solver
S ← 1000; (Number of radii)
N ← 40; (Maximum number of Formal Powers)
K + 1← 1001; (Number of points per radius)
while s = 1→ S do

while n = 1→ N do
while q = 0→ K do
Z(n+1)[k] = B

[
Z(n)[k]

]
;

end while
end while

end while
function ORTHONORMALIZATION

(Classical Gram-Schmidt Orthonormalization Process)
end function
function APPROACH BOUNDARY CONDITION;∑N

n=0

(
αnu

(n) (1, 0, z) + βnu
(n) (i, 0, z)

)
end function
save ORTHOGONAL SYSTEM;
save COEFFICIENTS;
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Fig. 1. σ = (2 + cos(2π̂x)) (2 + sin(2π̂y)).

Fig. 2. σ = (2 + cos(16π̂x)) (2 + sin(16π̂y)).

IV. EXPERIMENTAL AND RESULTS

According to the statements reported in [10], for bet-
ter illustrating the results obtained employing the method
summarized in the Algorithm 1, we selected a conductivity
function σ given by a sinusoidal form:

σ = (2 + cos(2τ π̂x)) (2 + sin(2τ π̂y)) , τ = 1, 8; (21)

where
π̂ = 3.1416, (22)

since it is not convenient to use a closer approach for the
number π, as it will be explained further. This case requires a
high degree of accuracy when solving the Dirichlet boundary
value problems [10]. The Figure 1 displays the conductivity
inside the unitary circle when τ = 1, whereas Figure 2 plots
the case when τ = 8.

As the boundary condition, we shall impose an exact
solution of (1):

u = 2√
3

arctan
(

1√
3

tan (π̂x)
)

+

+ 2√
3

arctan
(

1√
3

+ 2√
3

tan (π̂y)
)
.

(23)

corresponding to the case when

σ = (2 + cos(2π̂x)) (2 + sin(2π̂y)) .

The reason for employing the truncate value (22), is the
indetermination of the exact solution (23) when π̂ → π.

Fig. 3. Approach with τ = 8, N = 20, S = 200, K = 200.

It is easy to verify that the exact solution (23) can not be
extended for the cases when τ = 2, 8. Nonetheless, we will
continue using it as the boundary condition, for analysing
the remaining conductivity functions, in order to stablish a
parameter of comparison for examining the behaviour of the
method.

For the numerical approached solution at the boundary Γ,
we will employ the notation

uapp =
N∑

n=0

(
αnu

(n) (1, 0, z) + βnu
(n) (i, 0, z)

)
. (24)

Thus, the absolute error can be introduced as

E =
(∫ 2π

0

(u|Γ − uapp)2dl
) 1

2

, (25)

where u|Γ is in fact the exact solution (23), valued at the
perimeter of the unitary circle, and l ∈ [0, 2π).

We compute a set of examples using the conductivities
(21), considering different maximum numbers of formal
powers N , radii S, and K+1 points per radius, whose main
results are displayed in the Tables shown bellow.

In order to provide a basic qualitative illustration of the
performance, the Figure 3 plots the approached solution for
τ = 8, N = 20, S = 200, and K = 200; whereas Figure
4 displays the case when τ = 8, N = 160, S = 1000, and
K = 200.

For the first case, the total error was E ∼ 1.7791; and
for the second case we had an error of E ∼ 0.0035. It
is remarkable that almost no difference can be appreciated
between the curves displayed in Figure 4, corresponding to
the approached solution uapp and the boundary condition
u|Γ.

A quantitative perspective is provided in the Tables I and
II. The Table I contains the data reached when fixing τ = 2,
that, as a matter of fact, corresponds to the case of the Figure
1. Here, it is possible to appreciate that when decreasing
the number S of radii, K + 1 points per radius, and N
formal powers, the absolute error E increases, as it could
be expected.

Beside, the Table I illustrates that a relatively low number
N of formal powers, can adequately approach the boundary
condition u|Γ; whereas the increment of points per radius
K + 1 does not significantly impact the diminution of the
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Fig. 4. Approach with τ = 8, N = 160, S = 1000, K = 200.

TABLE I
BRIEF RELATION AMONG PARAMETERS OF THE OPTIMIZED METHOD

AND THE ABSOLUTE ERROR E

Radii Points Formal Powers Error Time
S K + 1 N E t (seconds)

1000 1001 40 0.0060 4724.90

1000 1001 35 0.0185 4173.71

1000 1001 30 0.0247 3531.44

1000 1001 25 0.0106 2951.68

1000 1001 20 0.1178 2743.682

800 1001 20 0.1196 3103.35

600 1001 20 0.1427 1507.72

400 1001 20 0.1173 1015.52

200 1001 20 0.0889 481.13

200 801 20 0.0889 308.94

200 601 20 0.0889 180.47

200 401 20 0.0889 78.98

200 201 20 0.0889 20.38

absolute error E , but it considerably increases the computa-
tional cost.

On the other hand, the Table II contains the results of
fixing the total number of radii at S = 1000, and the number
of points per radius at K = 200. The Table displays an
unexpected behaviour, since the absolute error E does not
always decrease at the time the maximum number of formal
powers N increases. This phenomenon can be observed
in a wide enough variety of arguments for the sinusoidal
conductivities.

At this point, the authors are unable to adequately explain
the causes of this behaviour, proposing it as an interesting
topic for further analysis.

V. CONCLUSIONS

An optimized algorithm that approaches solutions for the
forward Dirichlet boundary value problem, corresponding
to the Impedance Equation in the plane, is an important
contribution to the Electrical Impedance Tomography theory.

This is asserted by considering that the examples presented
in this work, could well pose a difficult challenge if analysed
with classical numerical methods, as the Finite Element
variations are (see e.g. [6]).

In this sense, the optimized method can be used for
analysing physical conductivity distributions, since no vari-

TABLE II
BRIEF RELATION AMONG PARAMETERS OF THE METHOD AND THE

ABSOLUTE ERROR E

Formal Powers Argument Error Time
N τ E t (seconds)

2 0.5 0.1101 10.70

4 0.5 0.1101 17.75

6 0.5 0.0346 24.81

8 0.5 0.0049 31.84

10 0.5 0.0079 38.87

12 0.5 0.0029 45.97

14 0.5 2.5707×10−4 53.02

16 0.5 1.8248×10−4 60.08

18 0.5 1.0543×10−4 67.41

20 0.5 2.4939×10−5 74.42

20 2 0.1178 74.45

22 2 0.0524 81.52

24 2 0.0508 88.69

26 2 0.0125 95.38

28 2 0.0180 102.26

30 2 0.0246 109.53

32 2 0.0155 116.46

34 2 0.0198 123.47

36 2 0.0156 130.54

38 2 0.0133 137.48

40 2 0.0060 145.33

42 2 0.0037 151.75

44 2 0.0045 158.49

46 2 0.0043 165.82

48 2 0.0026 172.68

50 2 0.0015 179.49

50 8 0.2942 179.52

55 8 0.1964 197.32

60 8 0.2410 214.97

65 8 0.1808 232.16

70 8 0.2136 249.57

75 8 0.2365 267.26

80 8 0.1971 284.81

85 8 0.1371 302.60

90 8 0.1102 321.23

95 8 0.0785 337.47

100 8 0.0568 355.73

110 8 0.0199 390.02

120 8 0.0172 425.75

130 8 0.0128 461.36

140 8 0.0100 497.62

150 8 0.0046 531.28

160 8 0.0027 545.30

ations are needed for examining those cases when the exact
mathematical expressions are unknown [10]. Furthermore,
the results suggest that an adequately valance between the
numerical accuracy and the computational cost has been
achieved.

Note that it is still possible to improve the development
of the method, by simply employing the available parallel
computational techniques and devises. This, indeed, would
significantly reduce the executions times, without provoking
loss of precision or accuracy. Beside, many characteristics
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discussed along these pages might be subjects of further
works.

For example, the factor A, introduced in (20) to war-
rant the numerical stability of the method, was empirically
approached during the experimental phase, but it was not
possible to detect any pattern for predicting its magnitude,
when only considering the conductivity distribution, or the
domain.

Another question is why the total number of points K+1
per radius, did not have a strong influence in the obtained
results, as it could have been expected. This immediately
indicates that a larger number of experiments, employing
different domains and boundary conditions, are necessary to
understand the contribution of the K + 1 points.

As a matter of fact, it is a very welcome opportunity
for considering data obtained from physical measurements,
locating the optimized method among the mathematical
tools, employed for analysing the Electrical Impedance
Tomography problem.
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