Proceedings of the World Congress on Engineering and Computer Science 2012 Vol 11
WCECS 2012, October 24-26, 2012, San Francisco, USA

Modelling Dynamic Systems with Known Data:
An Object-oriented Modelling System

Carel van Dam and Carl Sandrock

Abstract—A number of modelling environments (languages)
facilitate object-oriented model development. Although various
methods exist for parameter estimation they are not well
integrated into these environments and are treated as sepa-
rate optimization problems. An environment was developed to
investigate the integration of these tasks.

Index Terms—plant data, parameter estimation, object-
oriented modelling

[. INTRODUCTION

ODELLING an existing chemical process involves

identifying the relationships between the plant’s var-
ious inputs and outputs. The modeller has to use the known
parameters, measurable plant data and an understanding of
the process to generate a model that is representative of the
phenomena of interest. Even simple plants may have complex
models and a number of modelling languages have been
developed. These languages allow the modeller to describe
a process in an object-oriented way, encouraging the reuse
of known relations and grouping related process information
into an organized hierarchy. This structure is then ‘flattened’
to a form suitable for simulation. The focus is on equation
management and manipulation for simulation.

Parameter estimation has largely been left as a secondary
process. The modeller has to determine the initial values, for
all the unknowns in the model, to perform an initial simu-
lation. The final values are then determined by comparing
the results of a simulation against the known plant data and
adjusting the unknown parameters. The problem is that plant
data is not included in the model structure.

The objective of this work was to develop a system
whereby plant data may be included in the model structure
so that parameter estimation may be more readily performed
during the development of a model and simulated results may
readily be compared to experimental results.

A simple tank is considered that does not exhibit discon-
tinuity or an index greater then unity.

II. THEORY

The various components, namely the Data, Process, Model
and Criterion, combine to define the various problems of
Simulation, Identification or Control and Optimization en-
countered by the modeller [1]. Describing an existing plant
falls under the Identification problem. Where the known
Data, including certain parameters and the measured inputs

Manuscript received July 18, 2012; revised August 08, 2012. This work
was supported by Anglo American PLC and the Technology and Human
Resources for Industry Programme (THRIP).

C. Sandrock is with The University of
carl.sandrock@up.ac.za.

C. van Dam is with The University of Pretoria, e-mail: carelv-
dam@ gmail.com

Pretoria, e-mail:

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

and outputs of the Process, are used with a Model structure,
selected from a possible set of structures, to determine
the unknown parameters for that structure. The Criterion
measures the ability of the structure to accurately represent
the phenomena occurring within the process.

A. Model Representation

A number of modelling languages are available including
Modelica [2], Simscape/Simulink [3] and gPROMS [4], that
facilitate the modelling of physical systems. The require-
ments of such software is concisely described by Pantelides
and Barton [5] and are considered briefly below.

These languages treat acausal, discontinuous, differential
algebraic equations by allowing the modeller to group them
and any supporting information into classes. Typically user-
defined classes will inherit from one of two super classes. A
‘Unit’ class, which is used to model a volume or capacity
and a ‘Flow’ class, which specifies the connectivity between
these capacities [1, pg. 30]. The modeller then describes the
various sub-systems under study by inheriting and expanding
upon these and other previously defined classes. The model
is then built by connecting these together to describe the
behaviour of the entire system.

These languages are geared towards equation management
and are generally limited in how they treat chemical pro-
cesses. Simscape/Simulink requires 3™ party support and
the commercial package Dymola provides this for Modelica.
gPROMS is the only one of these languages that is designed
to handle chemical processes.

B. Simulation

Before simulation can occur the hierarchical models must
be flattened into a single set of equations. Simple integration
routines like Euler or Runge-Kutta may require iterative
solution of simultaneous equations [5]. While more advanced
codes like DASSL may automate this process [6]. The lan-
guage compiler must ensure the model is consistent, manage
discontinuous equations and perform index reduction. The
latter may require that certain equations be differentiated,
which is best automated by a computer algebra system. The
output of these systems is usually a compiled program that
simulates the system.

C. Parameter Estimation

Parameter estimation is the process of determining the
unknowns in a model given a structure that relates the input
to the output data. An initial value is usually guessed for
each unknown and iteratively adjusted until some metric or
criterion is sufficiently minimized or maximized. The least
mean square error method (LMSE), for example, minimizes

WCECS 2012

the difference between the model’s output and the plant’s
output. Various methods exist for this purpose [7].

This activity is closely related to optimization and
the modelling languages mentioned above leave param-
eter estimation to their associated optimization tools.
gProms provides the gPROMS Runtime Object (gO:Run)
which supports maximum likelihood (ML) and LMSE [8].
Simulink/Simscape is supported by a very extensive Systems
Identification Toolbox that treats linear and non-linear, grey
and black box models and ordinary differential equations
but not differential algebraic equations [9]. Modelica is
supported by Optimica and features within Dymola [10],
[11]. These tools tend to flatten the model prior to simulation
and parameter estimation.

D. Plant Data

Plant data is typically retrieved from a plant historian in
tabular form, where the first column represents the time
of each measurement and the columns thereafter are the
respective process measurements. The first row in the table
is the plant tag for each measurement. Experimental data
typically will be arranged in the same way.

III. EXPERIMENTAL

The focus of these languages is on the management of
equations with variable objects existing only to support
the model. Variables are often assigned upper and lower
bounds, an initial value and possibly units as well as a short
description. Much of this information is lost during model
flattening but should still be available when interpreting the
simulation results. Modelling languages share many aspects
of their means of model representation and this motivates an
intermediate representation for translation from one language
to another. Ideally such a representation must have a flexible
structure to accommodate the nuances in each language
and the ability to expand as the supported languages grow.
Validating such a representation requires an implementation
in at least one programming language.

A. Structure

The proposed model structure or representation is shown
in Figure 1. It aims to incorporate all the features mentioned
by [5] and provides a set of classes towards these ends.

The Relation class is central to the entire structure as
it manages both the equations and the associated variables.
An instance of this class retains a set of equations, internal
variables and references to external variables, present under
other instances of this class. Discontinuity is handled by the
Relation object which masks the equations that do not
apply under the various conditions.

The ‘Unit’ and ‘Flow’ classes mentioned in section II-A
are included called Process and Stream respectively.
These classes include instances of Relation as children.
Process may also include Process and Stream as chil-
dren to handle hierarchical nesting of sub processes e.g. for
distillation columns. Presently a mechanism for inheritance
has not been defined and this needs further consideration.

Two helper classes World and Reserved are also in-
cluded to manage global variables and constants respectively.
Both include instances of Relation as children. World is

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol 11
WCECS 2012, October 24-26, 2012, San Francisco, USA

meant to behave as a an infinite source or sink as required,
but this is not rigidly enforced. World and Reserved
instances are unique and may not be nested.

Variable instances that are not local to a particular
instance of Relation are considered external to it. Three
kinds of external variables are allowed namely reserved,
world and relative, which correspond to Variable in-
stances under Relation instances of Reserved, World
and Process or Flow respectively. Variables may also
have knowledge as to their Units, Range and Type, which
defines them as Parameters, Inputs, Outputs or States. Im-
portantly they will also retain information about their names
in experimental investigations and as plant variables. This
is done by supplying tag names to the variables which will
match those in the data files. Equations may also need to
retain information about their linearized form and under
which discontinuous conditions they might apply. The Data
class is included to manage data files and to connect the
information in these files to the Variable instances in the
model structure.

Instances of these classes have Model as their parent with
the exception of Process and Flow instances which may
have other instances of Process and Flow as their parent.
The Mode1 class exists to manage the structure of the model,
its various components and any non-model classes such as

the Data class.
||

Variable

[eurauy

Flow)—(Relation

C Model
.
Process)%{Relation
Fig. 1. The hierarchical structure of an instantiated model. Indicating

how the instances of each class are arranged and the difference between an
internal an external variable.

B. Representation

There are a number of marshaling or serialization formats
for storing object-oriented structures including XML (eXten-
sible Markup Language), JSON (JavaScript Object Notation)
and YAML (Yet Another Markup Language). JSON was
selected as the preferred format as it is terse and readily
translated, requiring only a single pass. Within this repre-
sentation relative file paths to other JSON files are allowed,
this enables models to be split up into parts. Any part may
then be swapped out for another part enabling simple model
comparison. Relative references to other objects are also
allowed.

There is not presently a standardized schema for validating
JSON files but some headway has been made [12]. For

WCECS 2012

[RUIIXY

now the structure is believed to be sufficiently clear and the
implementation of a schema not an immediate requirement.

C. Implementation

Any language implementing this structure must support
object-orientation, preferably providing a computer algebra
system with differentiation capabilities, good plotting and
user interface libraries. MATLAB and Python both provide
such functionality. The former was selected as this project
forms part of another in this language. Figure 2 indicates the
implementation’s class structure.

The main classes comprises Odete, Base and Model.
The Odete Class acts as a project or model manager,
handling the models that are loaded. This will eventually
manage the user interface as well. A Settings class is
provided to handle user settings and any other configuration
information.

All the classes must inherit from a super class called
Base, itself a subclass of MATLAB’s hgsetget. This
enables certain basic functionality such as the find and the
set and get functions. The Base class essentially converts
all classes to and from the JSON file. This reliably mirrors
the structure presented in 1 and allows one to quickly alter
the structure as the implementation matures.

The Relation class should handle both equation manip-
ulation and index reduction [13]. At present it can rearrange
the equations using an implementation of the Tarjan algo-
rithm but index reduction is not yet implemented. In some
cases the Type information contained within Variable
may be used to identify system connectivity and assist in the
equation arrangement. This leads to a representation similar
in form to a Simulink model.

In the present implementation the modeller is able to
select certain sections of the tree to flatten and simulate.
The variables external to the selected set of relations are
identified in this case and need to be specified for this to
work. As Variable objects know the Tag Names of the
plant measurements, direct comparison between the plant
data and simulation results is possible. Parameter estimation
is still being implemented.

hgsetget

Settings

Fig. 2. The class inheritance diagram for the MATLAB implementation in-
dicating how the classes are derived from Base which extends hgsetget.

D. Example

A simple tank system has been modeled to ensure the
proposed structure loads and saves correctly and to ensure
the model can be simulated. This system is represented by

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol 11
WCECS 2012, October 24-26, 2012, San Francisco, USA

equations 1 to 3 and in the code listing in appendix A.
The representation in JSON is fairly verbose for presentation
purposes. The model becomes significantly more compact
when the white space is removed.

av

0 = in_Fou 1
7 Vi ¢ (1)
V = Ah)
Fout:khl (3)

Such a simple system will not require index reduction
but can verify that the equation management works in the
implementation.

IV. RESULTS AND DISCUSSION

The structure presented can be extended to represent more
complex models, though these will require a better im-
plementation which supports equation re-arrangement. The
addition of information to the Variable class has helped
to match the experimental data against the inputs, outputs
and states in the model. To get to a point where parameter
estimation is possible within this structure requires further
development. JSON allows for a flexible structure where
whole branches or localized parts of the Model may simply
be swapped for other representations enabling the modeller
to quickly compare different sub-models.

V. CONCLUSIONS AND RECOMMENDATIONS

The inclusion of plant tags into the model structure
simplifies the comparison of plant data and the results of
a simulation. Parts of the model are also readily simulated
enabling the modeller to investigate the lower levels of the
structure. Further work must be done to enable parameter
estimation and the various features expected of modern
modelling environments.

APPENDIX

The following code listing describes a simple tank includ-
ing references to the various plant tags in an associated data
file.

{"Name": "Simple Model",
"Processes": [
{"Name": "Tank",
"Relations": [{
"Equations": [
{"Formula": "V:t = In.V - Out.v"},
{"Formula": "V = Axh"}],

"Variables": [

{"Name" "V",
"Description": "Volume",
"Type" "State",
"Value": "Null",
"Unitsl': "l" } ,

{"Name" "A",
"Description": "Area",
"Type" "Parameter",
"Value": "Null",
"Units": "cm"2"},

{"Name" "h",

WCECS 2012

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol 11
WCECS 2012, October 24-26, 2012, San Francisco, USA

"Description": "Height", [5] C. C. Pantelides and P. I. Barton, “Equation-oriented dynamic simu-
"Type" : "Output", lation current status and future perspectives,” Computers & chemical
" w. o om " engineering, vol. 17, pp. 263-285, 1993.
Value": "Null", [6] L. R. Petzold, “A description of DASSL: a Differential/Algebraic
"Units": "cm"}1}11}], equation solver,” Scientific Computing, pp. 65-68, 1983.
"Flows": [[7] K. J. Astrom and P. Eykhoff, “System identification : A survey,”

Automatica, vol. 7, no. 2, pp. 123-162, 1971.

{"Name". "In" o

. ’ [8] Process System Enterprise Limited, “Model validation and model-
"Enters": "Tank", based data analysis,” 2012. [Online]. Available: www.psenterprise.com
"Leaves": "World", [9] The MathWorks,,, Inc., “Syst@m 1dent1.ﬁcat10n toolbox : User’s guide
"Relat ", (version 2012a),” 2012. [Online]. Available: www.mathworks.com

elations™: { [10] J. Akesson, “Optimica : an extension of modelica supporting dynamic
"Equations": [optimization,” in Proc. 6th International Modelica Conference 2008,
{"Formula": "V = 0.5"}], 2008. [Online]. Available: www.modelica.org

[11] H. Elmgqvist, H. Olsson, S. E. Mattsson, D. Brck, C. Schweiger,

"Variables": [D. Joos, and M. Otter, “Optimization for design and parameter

{"Name": "V", estimation,” in Paper presented at the 4th International Modelica
" Descript ion": "Flow Rate", Conference, 2005. ‘ N
[12] K. Zyp, “A JSON media type for describing the structure
" e": "Input" . 1 .
yp . p ’ and meaning of JSON documents,” 2010. [Online]. Available:
"Value": "0.5", www.http://json-schema.org/
"Units": "1/s"}1}}, [13] C. C. Pantelides, “Speed uprecent advances in process simulation,”

Computers & chemical engineering, vol. 12, no. 7, pp. 745-755, 1988.

—_—

"Name": "Out",
"Enters": "World",
"Leaves": "Tank",
"Relations": {
"Equations": [
{"Formula": "V = kxTank.V"}],
"Variables": [

{"Name" . "v",
"Description": "Flow Rate",
"Type": "Output",

"Tag": HF O",
"Value": "0.5",
"Units": "kg/s"},

{llName": "k",
"Description": "Constant",
"Tag": llF lll’

"Type": "Parameter",
"Value": "Null",
"Units": "1/s"}1}1}1,
"Reserved": {
"Name": "Environment",
"Relations": {

"Variables": [

{"Name" . "t",
"Description": "Time",
"Type": "Variable",
"Value": "Null",
"UnitS": "s",

"Tag": "01-Time"}]1}}}

REFERENCES

[11 M. R. Westerweele, “Five steps for building consistent dynamic pro-
cess models and their implementation in the computer tool modeller,”
Ph.D. dissertation, Technische Universiteit Eindhoven, Eindhoven,
2003.

[2] H. Elmgqvist, S. E. Mattsson, and M. Otter, “Modelica : An
international effort to design an object-oriented modeling language,”
in Summer Computer Simulation Conference, 1998, pp. 333-339.
[Online]. Available: www.modelica.org

[3] A. C. W. Grace, “SIMULAB, an integrated environment for simu-
lation and control,” in Proceedings of the 1991 American Control
Conference, Boston Park Plaza Hotel, Boston, Massachusetts, 1991,
pp. 1015-1020.

[4] P. 1. Barton, “The modelling and simulation of combined discrete and
continuous processes,” Ph.D. dissertation, Imperial College, London,
1992.

ISBN: 978-988-19252-4-4 WCECS 2012
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

