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Abstract—A fuzzy adaptive control method is proposed for
a class of non-affine nonlinear systems. By combing implicit
function theorem and time scale separation, the control input is
derived from the solution of a fast dynamical equation. Stability
analysis shows that the proposed approach can guarantee the
boundedness of the tracking error semi-globally, which can
be made arbitrarily small by choosing appropriate design
parameters. Tracking performance is illustrated by simulation
results.

Index Terms—fuzzy control; time scale separation; singular
perturbation; non-affine system.

I. INTRODUCTION

Tremendous researches have been made in recent years
in the area of controller design for nonlinear systems. Many
remarkable results and new design tools, for instance, back-
stepping design, fuzzy and neural networks adaptive control
methods, were facilitated by advances in geometric nonlinear
control theory, in particular, feedback linearization method
[1], by which the nonlinear system is transformed into a
linear one, then linear control design methods can be applied
to acquire the desired performance. Most of these researches
are devoted to the control problem of nonlinear systems in
affine form, which are characterized by the control input
appearing linearly in the system state equation. For non-
affine systems, the implicit function theorem [2] is commonly
used to demonstrate the existence of the optimal solution for
the control input, but it does not provide a way to construct
such controller to achieve control objective.

Because it is difficult to invert the non-affine nonlinearities
to obtain the inverting control input, fuzzy logic systems
(FLs) or neural networks (NNs) are used to approximate
the desired feedback control input. In [3∼7], under some
assumptions on the original system, several direct/ indirect
adaptive controllers based on NNs or FLs are proposed to
deal with the control problem of non-affine system. These
approaches use the adaptive controller to approximate the
optimal control input directly with a parameter adaptation
law designed by the Lyapunov theorem. These direct adaptive
control methods are further extended to the output feedback
adaptive control in [8∼11]. The main feature of the previous
approach is that the uncertainty to be approximated by an
adaptive signal contains the adaptive signal itself as a part
of uncertainty, which leads to a fixed-point problem. Thus, it
needs to involve more restriction on both the input magnitude
and the input change. The indirect adaptive control method is
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concentrated on transforming the original system non-affine
in control input to a new system in which the new control
input variable appears in an affine form. In [12], FLs are
used to approximate the plant model and the control input
can be solved by inverting the fuzzy model in an affine
form. In [13], the authors use Taylor series expansion to
transform the original non-affine system into the affine-like
one, then the well-developed adaptive control scheme for
affine nonlinear system can be used directly to the non-
affine one. However, the indirect adaptive approach has the
drawback of the controller singularity problem. In [14], a
dynamic feedback adaptive control method is presented by
differentiating the original nonlinear state equation once so
that the resulting augmented state equation appears linear in
the new state variable—the derivative of the control input,
which can be used as new control variable. Recently, in
[15], [16], the authors propose a control method based on
singular perturbation theory by the combination of time
scale separation and dynamic inversion. The control input
is derived from a solution of fast dynamical equation and is
shown to stabilize the original non-affine system asymptot-
ically by using Tikihonov theorem [17] directly. This result
is extended to deal with the control problem of the pure-
feedback systems in [18].

In this paper, we develop a fuzzy adaptive controller for
non-affine systems by using time scale separation. Unlike
[15], [16], the Lyapunov theory is used to show the system
stability instead of using Tikhonov theorem directly. The er-
ror system dynamics are constructed to facilitate the stability
analysis by combing the implicit function theorem and the
mean value theorem. It is noted that, from the Lyapunov
stability analysis, the tracking error can be made arbitrarily
small by choosing appropriate controller parameters. we
introduce the generalized fuzzy hyperbolic tangent model
(GFHM) [19] to be the fuzzy basis function. The properties
of the hyperbolic tangent function are exploited to design the
adaptive law to guarantee the existence of the solution for
control input.

This paper is organized as follows. Section II presents a
class of non-affine systems that will be considered and some
assumptions to facilitate the controller design. In section III,
a brief description of GFHM is presented and fuzzy adaptive
controller is designed for the unknown non-affine systems
Finally, An illustrative example and some conclusion remarks
are given in sections IV and V.

II. Problem Formulation
Consider the following non-affine nonlinear system

ẋi = xi+1 i = 1, · · · , n− 1
ẋn = f(x, u)
y = x1

(1)
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where x = [x1, · · · , xn]T ∈ Rn, is the state vector of the
system which is assumed available for measurement, u ∈ R
is the scalar control input, y ∈ R is the system output and
the function f : Rn+1 → R is a smooth nonlinear function.

The following assumptions are made for system (1).
Assumption 1. The map f : Rn+1 → R, is C1, f(0, 0) =

0.
Assumption 2. The inequality g(x, u) = ∂f(x, u)/∂u 6= 0

holds for (x, u) ∈ Rn+1. It is implied that g(x, u) is either
positive or negative and is bounded away from zero for
(x, u) ∈ Rn+1. Without losing the generality, we assume
that there exist g > g > 0, such that g > g(x, u) > g > 0.
This assumption is made for the controllability of the system
(1) because g(x, u) can be viewed as the control gain of the
system (1).

Assumption 3. The given desired trajectory yd(t) and its
derivatives up to (n + 1)-th are bounded.

The aim of this paper is to find u for system (1) such that
the system output y(t) tracks a desired trajectory yd(t) while
keeping all the signals of the closed-loop system bounded.

III. Fuzzy Adaptive Controller Design
In this section, the GFHM-based fuzzy logic system is

used to approximate the unknown function and the adaptive
law is designed to ensure the existence of the control input.

A. Description of GFHM-Based Fuzzy Logic System
The fuzzy logic system performs a mapping from an input

vector x = [x1, · · · , xn]T ∈ U ⊆ Rn to a scalar output
y ∈ R. In this paper, we use GFHM as fuzzy basis function,
which can be characterized by a set of if-then rule as follows
[19],

If χ1 is F l
χ1

and χ2 is F l
χ2

and · · · and χω is F l
χω

,
Then yl =

∑ω
m=1 cl

Fχm
where, χ = [χ1, · · · , χω]T is the

generalized input vector, derived from the transformation of
input vector x = [x1, · · · , xn]T,

χ1 = x1 − d11

χr1+1 = x2 − d21

...
χr1+···+rn−1+1 = xn − dn1

· · · χr1 = x1 − d1r1

· · · χr1+r2 = x2 − d2r2

...
· · · χr1+···+rn

= xn − dnrn

ω =
(∑n

j=1 rj

)
is the total number of the generalized input

variables of the fuzzy logic system, rj are the numbers of
the generalized input variables derived from transforming xj ,
(j = 1, · · · , n). dji (j = 1, · · · , n, i = 1, · · · , rj) is the
tranformation offset for xj . Fχm

is the fuzzy sets with respect
to χm, m = 1, · · · , ω, which includes only two linguistic
expressions, i.e., Positive (Pχm

) and Negative (Nχm
), with

respect to which cPχm
and cNχm

are consequent parameters..
The membership function of the fuzzy sets Pχm and Nχm

for the generalized input variables are depicted as

µPχm
= exp

[−(χm − km)2/2
]

µNχm
= exp

[−(χm + km)2/2
] (2)

where, km, m = 1 · · · , ω, is a constant offset. According to
these fuzzy rules, the fuzzy logic system with singleton fuzzi-
fier, product inference engine and center-average defuzzifier,
is in the following form,

y = θTW (x) (3)

where θ = [C0, C1]T, C0 =
ω∑

m=1

cPχm
+ cNχm

2
,

C1 =
[
cPχ1

− cNχ1

2
, · · · ,

cPχω
− cNχω

2

]
, W (x) =

[1, tanh(k1χ1), · · · , tanh(kωχω)]T.
It has been proven that GFHM-based fuzzy logic system

(3) can approximate any continuous function over a compact
set D ⊂ Rn to arbitrary accuracy [19]

f(x) = θ∗TW (x) + ζ(x) (4)

where θ∗ is the optimal weight parameter, and ζ(x) is the
approximate error. For simplicity, ζ(x) is denoted by ζ. We
assume that there exist optimal weight parameters such that,
|ζ| ≤ ζM with constant ζM > 0 for all x ∈ D. Moreover,
θ∗ is bounded by ||θ∗|| ≤ θM on the compact set D, where
θM > 0 is a constant. Let θ be the estimate of θ∗, and the
weight parameter estimation error be θ̃ = θ − θ∗.

Remark 1. A property of GFHM is used in this paper to
facilitate our controller design, i.e., 0 ≤ | tanh(Z)| ≤ 1, 0 ≤
|∂ tanh(Z)/∂Z| = |1− tanh2(Z)| ≤ 1,∀Z ∈ R.

B. GFHM-Based Fuzzy Controller Design
In this section, we develop a fuzzy controller by use of

implicit theorem [2] and singular perturbation theory [17]
for the case where the plant model (1) is assumed to be
unknown.

Let e = x1−yd and the corresponding tracking error vector
is e = [e, ė, · · · , e(n−1)]T. We define the filtered tracking
error as

ξ = [kT 1]e (5)

where k = [k1, · · · , kn−1]T is determined so that sn−1 +
kn−1s

(n−2) + · · · + k1 is Hurwitz, i.e., e → 0 as ξ → 0.
From (1), the following error dynamic is immediate

e(n) = f(x, u)− y
(n)
d (6)

Adding and subtracting bu, we can rewrite (6) as

e(n) = f(x, u)− bu + bu− y
(n)
d (7)

where b > 0 is a design constant, which will be spec-
ified later. The term bu is used to ensure the existence
of the control input for the tracking problem. The fuzzy
logic system is used to approximate the unknown function
fb(x, u) = f(x, u)− bu

fb(x, u) = θ∗TW (x, u) + ζ (8)

then, we have

e(n) = θTW (x, u)− θ̃TW (x, u) + ζ + bu− y
(n)
d (9)

where θ = [θT
x , θT

u ]T ∈ Rω, W (x, u) =

[W (x)T,W (u)T]T ∈ Rω, ω =

(
n∑

i=1

ri + ru

)
is the

total number of the generalized input variables of the
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fuzzy system. ri, i = 1, · · · , n and ru are the numbers
of the generalized inputs by transforming xi and u.
θT

x and θT
u are the estimation parameters with respect

to W (x) and W (u). ζ is the approximate error. Let
v = Kξ + [0 kT]e− y

(n)
d ,K > 0, then the error dynamic is

as the following

ξ̇ = −Kξ + [θTW (x, u) + bu + v − θ̃TW (x, u) + ζ] (10)

We design the following fast dynamic system to obtain the
control input u,

εu̇ = −θTW (x, u)− bu− v (11)

If we choose ε = 0, (11) is reduced to an algebraic equation

0 = −θTW (x, u∗)− bu∗ − v (12)

Where u∗ is the desired control input of u. The existence
of u∗ is demonstrated by implicit theorem [2]. Because ξ,
[0 kT]e and y

(n)
d are not the functions of u, we have

ĝ(x, u) = ∂[θTW (x, u) + v + bu]/∂u
= θT

u ∂W (u)/∂u + b
(13)

In order to guarantee the existence of the solution for the
control input in (11) and (12), it should be ensured that
ĝ(x, u) 6= 0. To be consistent with the assumption 2 for
original system (1), let ĝ(x, u) > 0 and b > 0. We should
design an adaptive law and select an appropriate constant
b1 such that ĝ(x, u) > b1 > 0 is bounded away from zero.
From remark 1, the following inequality holds,

|ĝ(x, u)| ≥ |b| − ||θT
u || ||∂W (u)/∂u||

≥ b− ||θT
u ||

> b1

(14)

Thus, the adaptive law should ensure ||θT
u || < b−b1. We can

get b1 < ĝ(x, u) < 2b− b1. Let f̂b(x, u) = θTW (x, u)+ bu.
Using mean value theorem, there exists 0 < λ < 1, such that

f̂b(x, u) = f̂b(x, u∗) + ĝλ(u− u∗) (15)

where ĝλ = ĝλ(x, uλ), uλ = λu + (1 − λ)u∗. Note that
2b− b1 > ĝλ > b1 > 0.

Let η = u − u∗. From (10)–(12) and (15), we obtain
the following error dynamics (a general form of singular
perturbed system [17]).

{
ξ̇ = −Kξ + ĝλη − θ̃TW (x, u) + ζ
εη̇ = −ĝλη − εu̇∗

(16)

The adaptive law is

θ̇x = Γ1 [W (x)ξ − δ1θx]

θ̇u =





Γ2W (u)ξ
if ||θu|| < b− b1

or ||θu|| = b− b1

and ξθT
u W (u) ≤ 0

Γ2W (u)ξ − Γ2
ξθT

u W (u)
||θu||2 θu

if ||θu|| = b− b1

and ξθT
u W (u) > 0

(17)
where Γ1 and Γ2 are positive defined diagonal matrices, δ1 >
0 is a constant.

Consider the Lyapunov function,

V = 1/2
(
ξ2 + η2 + θ̃TΓ−1θ̃

)
(18)

where Γ = diag(Γ1,Γ2), we have the following theorem.
Theorem 1: Consider the system (1) regulated by the

control law in (11). Suppose that the Lyapunov function
(18) is bounded by a given positive constant p for all initial
conditions, and that the estimation parameters are updated
according to (17). Then, all the closed loop signals are
semi-globally uniformly bounded, and the tracking errorr is
attracted to a neighborhood of the origin, whose size can be
adjusted by control parameters.

proof: Firstly, we should give the upper bound of u̇∗.
Differentiate the right hand side of (12) and after some
simple manipulations, we have

u̇∗ = −
[
b + θT

u

∂W (u∗)
∂u∗

]−1 [
θT

x

∂W (x)(ẋ1, · · · , ẋn)T

∂(x1, · · · , xn)
+Kξ̇ + [0 kT]ė− y

(n+1)
d

]

(19)
By induction, there exists a continuous function
B(yd, · · · , y

(n+1)
d , θ̃, ξ, η), such that,

u̇∗ = B(yd, · · · , y
(n+1)
d , θ̃, ξ, η) (20)

Define the compact sets, D0 := {yd, ẏd, · · · , y
(n+1)
d |y2

d +

ẏ2
d · · · +

(
y
(n+1)
d

)2

≤ B0}, D1 :=
{
ξ2 + η2+

θ̃TΓ−1θ̃ ≤ 2p
}

for p > 0. Clearly, D0 × D1 is compact

in Rn+3+ω , where ω is the dimension of θ̃. Therefore, B
has a maximum M on D0 ×D1.

The derivative of the Lyapunov function is

V̇ = ξξ̇ + ηη̇ + θ̃TΓ−1θ̇

= −Kξ2 + gλξη − θ̃TW (x, u)ξ + ξζ − ε−1gλη2

−ηu̇∗ + θ̃TΓ−1θ̇
(21)

Let β ≤ ĝλ ≤ β, where β = 2b− b1, β = b1.
Using the facts,

ξ2 + (1/4)η2 ≥ ξη
ξ2 + (1/4)ζ2 ≥ ξζ

we have

V̇ ≤ (−K + 1 + β)ξ2 + (1/4)βη2 + (1/4)ζ2

−ε−1βη2 + |ηB|+ θ̃TΓ−1θ̇ − θ̃TW (x, u)ξ
(22)

Using (17), we can deduce the following inequality,

θ̃T
u (Γ−1

2 θ̇u − ξW (u)) ≤ 0

Substitute the adaptive law (17) into (22),

V̇ ≤ (−K + 1 + β)ξ2 + (1/4)βη2 + (1/4ζ2)
−ε−1βη2 + |ηM | − δ1θ̃

T
x θx

(23)

Choose K = 1 + β + γ0 and ε−1 = (1/β)[(1/4)β +
M2/(2%)+γ0], where γ0 and % are positive constants. Using
2θ̃T

x θ̃x ≥ ||θ̃x||2 − ||θ∗x||2, we obtain,

V̇ ≤ [−γ0(ξ2 + η2) + %/2 + (1/4)ζ2
]

−(1/2)δ
(
||θ̃x||2 − ||θ∗x||2

)

≤
[
−γ0(ξ2 + η2)− δ

2λmax(Γ−1)
θ̃TΓ−1θ̃

]

+%/2 + (1/4)ζ2 + (δ/2)||θ∗||2

(24)
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Let e = (1/4)ζ2 + (δ/2)||θ∗||2, because |ζ| < ζM and
||θ∗|| < θM , then we get e ≤ (1/4)ζ2

M +(δ/2)||θM ||2 = eM .
Choose γ = min

(
γ0, δ/

[
2λmax(Γ−1)

])
,

V̇ ≤ −2γV + (%/2 + eM ) (25)

Let γ > (%/2 + eM )/(2p), then V̇ < 0 on V (t) = p. Let
L = (%/2 + eM )/(2γ) and for all t ≥ 0, the solution of
inequality (24) is

0 ≤ V (t) ≤ L + [V (0)− L] exp(−2γt) (26)

It means that V (t) is eventually bounded by L. Thus, ξ, η
are uniformly bounded. By choosing appropriate value K, ε,
the quantity L can be made arbitrarily small. Because ξ is
bounded, from (5), it follows that e = [e, ė, · · · , e(n−1)]T is
bounded. Then, all the signals in the closed loop system are
bounded. It is clear that increasing the values of K, reducing
the value of λmax(Γ−1) and ε, i.e., increasing the value of
γ will result in a better tracking performance, but lead to a
high gain control scheme. Decreasing δ1 will help to reduce
e, however, a very small δ1 may not be enough to prevent
the fuzzy weight estimates from drifting to very large values.

IV. NUMERICAL SIMULATION

In this section, the following example are considered to
illustrate the proposed control method.

ẋ1 = x2

ẋ2 = x3
1 + x1x2 + u3/3 + 0.2(1 + x2

2)u
y = x1

(27)

where, x1 and x2 are state variables, u is control input, y
is the output. Clearly, system (27) is in non-affine form (1)
and satisfies assumption 1 and 2. The control objective is to
find a control input u such that all the signals in the closed-
loop system remain bounded and the output y can track the
desired trajectory yd = 0.75[sin(t) + cos(0.5t)].

For the unknown system, we design the GFHM-based
fuzzy adaptive controller in the following procedure.

We use [x1, x2, u]T as the input vector of the fuzzy logic
system. The generalized input vector χ can be obtained
by transforming the input variables x1, x2, u. In simulation,
every input variable is transformed for three times. For x1

and x2, the transformation offsets are d = [−0.5, 0, 0.5] and
the constant offset is k = 0.8. For u, the transformation
offsets are d = [−1.5, 0, 1.5] and the constant offset is k = 2.
Two membership functions depicted as (2) are chosen for
each generalized input variable (see e.g., Fig.1 and Fig.2).
Choose the following design parameters, k = 2, ξ = ė + ke,
K = 5, ε = 0.02, Γ1 = Γ2 = diag{10}, δ1 = 0.1, b1 = 0.2.
The fuzzy adaptive controller is

εu̇ = −θTW (x, u)−bu−Kξ−kė+ ẏd, u =
∫

u̇dt (28)

Remark 2: The choice of b is critical for the closed-loop
stability and the tracking performance. On the one hand, too
small value of b cannot guarantee the existence of solution for
u in (11) because b + ∂[θTW (x, u)]/∂u = 0 may occur and
it leads to the controller singularity, on the other hand, the
signal of f(x, u) is submerged by the signal of bu if too large
value of b is chosen (see (8)) and it may degrade the tracking
performance because the actual dynamic of system (1) cannot

−3  −0.8 0   0.8 3   0.5 1.3−1.3
0

1
2k

d

Fig. 1. Membership functions of the generalized input variables for x1

(x2). Dashed line: x1 − 0.5; Solid line: x1; Dotted line: x1 + 0.5

−6 −2 0 2 6 3.51.5
0

0.2

0.4

0.6

0.8

1

d

2k

Fig. 2. Membership functions of the generalized input variables for u.
Dashed line: u− 1.5; Solid line: u; Dotted line: u + 1.5

be updated correctly by the fuzzy logic system through on-
line learning. According to assumption 2, we choose g <
b1 < b < (g + g)/2, such that, g > ĝ(x, u) > g > 0 holds.

To show how the choice of b affects the control perfor-
mance of the system, We choose b = 1, 2 for the simulation
and Fig.3 – Fig.6 show the simulation results with fuzzy
adaptive controller. In Fig.5, it can be seen that the controller
with b = 1 has a better tracking performance and too large
value b = 2 degrades the performance but still guarantees
the system stability. Fig. 4 and Fig. 6 show the boundedness
of control input and the fuzzy estimation parameters for
different choices of b.

V. Conclusion

In this paper, time scale separation based fuzzy adap-
tive control method is developed for a class of non-affine
nonlinear systems. The implicit function theorem is used to
demonstrate the existence of the optimal control input for the
non-affine system, which is approximated by the solution of
a fast dynamical equation. The error system dynamics are
constructed by combining implicit function theorem and the
mean value theorem. Stability analysis based on Lyapunov
theory shows that the developed control scheme achieves
semi-globally uniform boundedness of all the signals in the
closed-loop, and the bounded errors can be made arbitrarily
small by choosing appropriate design parameters.
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Fig. 3. Actual (solid) and desired (dotted) output (b = 1).
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Fig. 4. Adaptive control input (b = 1).
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Fig. 5. Tracking errors (solid line: b=1; dotted line: b=2).
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Fig. 6. L2 norms of θx, θu. solid line: b = 1; Dotted line: b = 2.
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