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Abstract—Stochastic models of bounded velocity transport
are revisited. It is proven that these models exhibit short-time
propagative (as opposed to diffusive) behavior for a large class
of initial conditions. Numerical simulations also show that this
propagative effect is different from the damped propagation
predicted by common hyperbolic models. A fit of the density
profiles is finally presented.

Index Terms—Transport phenomena, probabilistic modelling,
simulation

I. INTRODUCTION

Transport at bounded velocity is encountered in many
different contexts which range from metal [17], [13] and
computer engineering [3] to tumor treatment [16], [14] and
fusion plasma physics [18], [10]. Finding realistic models
of such transport is a long standing problem of continuous
media theories [2], [12], [19], [11], [4]. The simplest form
of transport is matter transport and the simplest models
of matter transport are stochastic processes. Stochastic pro-
cesses which bound the velocity of the diffusing matter
have been introduced in [4]. We show here by an analytical
computation that, for a very large and natural class of initial
conditions, these processes display propagative (ballistic)
behaviour at short times. This propagation (ballistic) effect
contrasts sharply with (i) standard diffusive behaviour, which
only appears at asymptotic large times (ii) damped prop-
agation predicted by the widely used hyperbolic transport
models based on the telegraph equation. We illustrate these
findings by numerical simulations of the ROUP [8], which is
the first bounded velocity process introduced in the physical
literature. We finally present a simple analytical Ansatz,
which fits the density of the ROUP at all times to an accuracy
of order 3% and which can be used in a more general context
to model bounded velocity transport.

II. SHORT-TIME PROPAGATIVE BEHAVIOUR OF BOUNDED
VELOCITY PROCESSES

Consider the following 1D stochastic process:

dxt = vt dt (1)
dvt = F (vt) dt+ σ(vt) dBt (2)

where F is a friction or dissipative term and σ is a noise
coefficient. Equation (1) is simply the definition of the
velocity v as the time-derivative of the position x and (2)
is a generalization of Langevin equation.
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Since we are modeling bounded velocity transport, we
suppose that the initial condition and the process itself
restricts v to a finite interval, say I = (−c,+c), where c is
an arbitrary constant velocity which depends on the nature of
the diffusing particles and of the medium in which transport
occurs. A simple one-to-one map of this interval onto IR is
of course:

p : I → IR
v → p(v) = γ(v) v (3)

with γ(v) = (1 − v2

c2 )−1/2. Note that v → ±c corresponds
to p→ ±∞ and γ → +∞. The first equation of the process
transcribes into

dxt =
pt

Γ(pt)
dt (4)

with Γ(p) = (1 + p2/c2)1/2. The variable p will henceforth
be called the momentum of the diffusing particle.

Consider a diffusing particle starting its motion from point
x0 = 0 with initial momentum p0. For sufficiently small
times, the position varies with time according to:

xt =
p0

Γ(p0)
t+O(t2). (5)

The probability law of xt and, thus, the density n are then
entirely determined by the probability law of p0 i.e. the initial
momentum distribution of the particle, which we denote by
F ∗(p)dp. To make the discussion simpler, suppose that F ∗

isotropic, and write F ∗(p) = exp(−Φ(Γ(p))).
Equations (4) and (5) show that xt/t has the same proba-

bility law as the initial velocity of the particle. This law can
be obtained by changing variables in the initial momentum
distribution F ∗(p). By direct differentiation,

dp = (γ(v))
3
dv (6)

and this leads to

n(t, x) ≈ 1

t

(
γ
(x
t

))3
exp

(
−Φ

(
γ
(x
t

)))
. (7)

The maxima and minima of n at short time can be iden-
tified by computing the first and second derivatives of
this expression with respect to x. One finds that, for all
increasing function Φ such that the equation γΦ′(γ) = 3
admits a single solution γ∗, the points ±x∗(t) = ±c∗t with
c∗ = c

√
1− 1/γ∗2 are maxima of the density provided the

function Φ is convex1. Thus, for any convex function Φ, the
short-time density profile exhibits two peaks which travel at
constant velocity c∗. The short-time transport thus exhibits
propagative (ballistic) behaviour.

1this last condition is sufficient but not necessary for the extrema at
± x∗(t) to be maxima. The necessary and sufficient condition is D∗ =
−3γ∗ − γ∗3Φ′′ (γ∗) < 0
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III. ILLUSTRATION THROUGH NUMERICAL SIMULATIONS

The ROUP [8], [6] corresponds to the choices F (v) =
−αv and σ(v) =

√
2D, where α and D are both constant.

The constant α is a friction coefficient, and D is a noise
coefficient. Numerical simulations have been performed for
the one-parameter family of functions Φ:

Φβ(γ) = βγ + a(β), (8)

where β is an arbitrary real positive coefficient and a(β)
ensures that the corresponding initial momentum distribution
F ∗β is normalized to unity with respect to dp. This distri-
bution is a hyperbolic distribution commonly called Jüttner
distribution [15], [5] and β plays the role of an initial inverse
temperature for the ROUP. At fixed p and thus, at fixed value
of Γ(p), the ratio Aβ(p) = F ∗β (p)/F ∗β (0) decreases expo-
nentially as β increases. For β � 1, Aβ(p) is comparable to
unity only if p � c. This means that the diffusing particle,
initially, does not ‘see’ the maximum velocity c; note that,
for p � c, the function Γ(p) can be approximated by its
expansion around p = 0 i.e. Γ(p) ' 1 + p2/(2c2) and F ∗β is
then approximately Gaussian.

Figures 1 and 2 display typical profiles for the density nβ
generated by the ROUP with initial condition (8). Figure 1
displays nβ=1 as a function of ξ = ct for different values of
the dimensionless time T = αt.

At early times, the maximum of the density profile is not
situated at ξ = 0 i.e. at the starting point of the diffusion, but
rather at | ξβ=1 |≈ 0.948, remarkably close to the analytical
prediction | x∗β(t)/(ct) |=| ξ∗β(t) |= 0.943 (see Section II.
above). In time, a secondary maximum appears at the origin
point ξ = 0. This secondary maximum grows and finally
becomes much higher than the peaks at ±ξβ=1. The density
profile thus gets closer and closer to a Gaussian and the
bounded velocity transport transforms into standard diffusion
with diffusion coefficient χ = D/α2 in physical space, as
expected from [9], [1].

Fix now an arbitrary, not necessarily large dimensionless
time T and consider the density profile nβ(T, ·) at this
time. As β tends to infinity, this density profile also tends
towards the standard diffusion Gaussian. Indeed, the more
β increases, the less the diffusing particle ’sees’ the velocity
bound c (see the discussion above) and the more the transport
looks like standard Fickian diffusion. Note also that the time
at which the secondary maximum appears at the origin is
a decreasing function of β and tends to zero as β tends to
infinity.

IV. FAILURE OF THE HYPERBOLIC DIFFUSION MODEL

Let us show that the spatial density of the ROUP does
not obey Cattaneo’s hyperbolic diffusion equation [2], which
is a popular model of bounded speed transport. Cattaneo’s
damped wave equation reads:

∂tn = χ�n = χ

(
∂xx −

1

c2
∂tt

)
n, (9)

where � is the D’Alembert operator with velocity c and
χ = D/α2 is the usual diffusion coefficient in position space.
We have computed numerically the relative discrepancy
Rβ(T ) between ∂tnβ and χ�nβ ; Figure 3 displays a typical
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Fig. 1. Density profile and propagation. Density-profile nβ against
rescaled position ξ = x/(ct) for β = 1 and T = αt = 0.5 (squares),
T = 2 (crosses) and T = 10 (circles). The density nβ is normalized to
unity with respect to dξ.
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Fig. 2. Density profile and propagation. Density-profile nβ against
rescaled position ξ = x/(ct) for T = 1 and β = 1 (squares), β = 1.2
(crosses) and β = 2 (circles). The density nβ is normalized to unity with
respect to dξ.

result in Fourier space. This figure clearly displays the failure
of Cattaneo’s hyperbolic diffusion model to reproduce the
correct density profile of the ROUP.

V. FIT OF THE DENSITY PROFILE

Consider now the following function of position and time:

Nα,σ,B(t, x) = B(t)
(
γ
(x
t

))α(t)
exp

(
−φQ

(
γ
(x
t

)))
×

exp

(
− x2

2σ(t)2

)
, (10)

where α and σ are two arbitrary functions of t and B ensures
that Nα,σ,B is at all times normalized to unity on (−ct, ct).

At each time t, the values of αβ(t), σβ(t) and Bβ(t)
producing the best fits of nβ can be obtained, for example,
by minimizing the following distance function dC(t) between
nβ(t, ·) and NασB(t, ·):

dC(T ) =

∫
IR

| nβ(t, x)−NασB(t, x) | dx+

λB | 1−
∫

IR

NασB(t, x)dx |, (11)
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Fig. 3. Failure of the hyperbolic diffusion model. Evolution with k of
the relative discrepancy between ∂tnβ and χ�nβ for β = 1 and T = 2.
The hyperbolic Cattaneo model predicts R identically vanishes.

where λB is a Lagrange multiplier which enforces normal-
ization and the convention NασB(t, x) = 0 for | x |> ct has
been used.

Figures 4, 5 and 6 display the results of the fit at different
times for β = 1 and λB = 100. The precision of the fit
is always better than 3% (see Figure 6). The coefficient
αβ remains close to the above computed value of 3 and
seems to globally decrease with time; its average value
for the points plotted in Figure 4 is 2.88. At small times,
σβ(t) behaves like 2

√
t/3 (see the green dashed curve in

Figure 5) and is thus larger than ct (the red straight line in
Figure 5); the Gaussian then varies slowly over (−ct,+ct),
the shape of the density profile is essentially controlled by
the γαβ(t) exp (−βγ) and it thus displays the characteristic
peaks x close to ct. As t increases, σβ(t) becomes smaller
than ct and the maximum of the Gaussian at x = 0 generates
the secondary maximum at x = 0. As time still increases,
σβ(t) increases slowly from 2χ

√
t/3 to χ

√
t (the onset of

this increase can actually be seen in Figure 5) but σβ(t)/(ct)
continues to decrease towards zero; the density profile is then
essentially controlled by the Gaussian and tends towards the
standard result predicted by Fick’s law.

Let us stress that the fit presented in this section is not
based on an approximate analytical computation of the finite-
time density profile, but is only a heuristic extension of the
short-time computation presented in the previous section.
This fit nevertheless highlights the fact that the whole time-
evolution of the density profile can be understood in very
simple terms i.e. as the superposition of two competing
phenomena which are (i) the propagation of the peaks at
velocity close to the light-velocity (ii) a standard Gaussian
diffusion with a typical scaling as

√
t.

The fit also constitutes a simple, ready-to-use model of fi-
nite speed transport. It can be easily integrated into numerical
simulations and should thus prove useful in a wide variety
of physical and engineering applications.

VI. DISCUSSION

We have proved that bounded velocity diffusions exhibit
short-time propagative behaviour for a wide class of initial
conditions. This has been illustrated by numerical simula-
tions of the ROUP. We have also shown numerically that the
widely used hyperbolic diffusion model does not replicate the
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Fig. 4. Fit of the density profile. Time-evolution of the α-coefficient for
β = 1.
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Fig. 5. Fit of the density profile. Time-evolution of the σ-coefficient
(circles) for β = 1. The straight line is x = ct and the dashed curve is
x = (2/3)χ
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Fig. 6. Fit of the density profile. Time-evolution of the absolute error of
the fit for β = 1.
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density profiles of the ROUP and we have finally presented
a simple Ansatz which fits these profiles to a precision better
than 3%.

We believe several general conclusions can be drawn from
these results. First, the failure of the hyperbolic diffusion
model to replicate the density profile of the ROUP, which
is certainly the simplest reliable model of bounded velocity
transport, strongly suggests that this model also fails in more
complicated problems involving mass transport as well as
momentum viscous transport and heat conduction.

The material presented in this article indicates (i) that
bounded velocity effects are essentially short-time effects
(ii) that these effects depend on all characteristics of the
initial state of the system in which transport is to occur.
Indeed, in the situation studied in this article, the short-time
density profile depends, not only on the initial position of the
diffusing particle, but also on its initial velocity distribution
and, in particular, on its initial temperature.

Let us mention here that the density profiles of bounded
velocities processes can be derived from a geometrical gen-
eralization of the standard Fick’s law. Reference [7] presents
this generalization for the ROUP.

Finally, all the results presented in this article need to be
extended properly to include viscous momentum transfer and
heat conduction. This can be accomplished, at least in theory,
by analyzing kinetic models richer than the ROUP which also
bound particle velocities.
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