
 

 
Abstract—A 2D computational model is used for the 

hydrodynamic analyses of earthquake excited dam-reservoirs.  
The model is based on the finite volume solution of the Navier-
Stokes equations considering compressibility effects due to 
sudden change in pressure field during earthquake.  Volume of 
Fluid Method (VOF) is used to track the nonlinear free-surface 
waves in the reservoir.  A non-reflecting boundary condition is 
applied at the outflow boundary to prevent the pressure and 
free-surface waves reflecting from the boundary back into the 
domain. Numerical results are compared with the existing 
semi-analytical solutions developed for dams with vertical and 
sloping upstream faces to demonstrate the capability of the 
computer code for the realistic simulation of earthquake 
excited dam-reservoirs.  
 

Index Terms—Hydrodynamic pressure, earthquake, dam-
reservoir, free-surface, VOF.  
 

I. INTRODUCTION 

 A dam designer needs an accurate computational model 
and a computer code in hydrodynamic analysis of 
earthquake excited dam-reservoirs. The computer code 
should consider the compressibility effects due to sudden 
change in pressure field during earthquake and free-surface 
waves in reservoirs with respect to possibility of wave 
overtopping on the dam crest.   
 Westergaard first analyzed the earthquake response of 
dam-reservoirs [1]. He proposed an analytical expression for 
hydrodynamic pressures on dam face neglecting 
compressibility effects. Chopra suggested analytical 
formulas for hydrodynamic response of dam-reservoirs 
considering compressibility effects during harmonic and 
arbitrary ground motions [2].  Hung and Wang analyzed 
earthquake excited dam-reservoir system solving 
dimensionless Navier-Stokes equations and pressure 
equation by finite difference method and they used 
kinematic boundary condition to track the free surface [3]. 
Kinematic boundary condition can track only non-breaking 
waves, so the free-surface tracking algorithm should predict 
breaking surface waves for the possibility of wave breaking 
during arbitrary ground motion. They concluded that 
viscous effects are negligible in hydrodynamic analysis of 
dam–reservoirs. Chen investigated the hydrodynamic 
pressures in dam-reservoir with sloping bottom and water 
rising in the reservoir using the same mathematical model 
[4]. He reported the maximum wave run-up on a vertical 
dam-face as functions of dimensionless displacements for 
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various reservoir bottom slopes.    
 In this study, a computational model and a computer code 
were proposed and validated. It can be concluded that the 
model can compute the hydrodynamic pressures accurately 
on the vertical and inclined dam-faces. The proposed 
computer code NASSLARD (Navier-Stokes Solver for Large 
Domains) can predict the maximum wave run-up accurately 
on a sloping dam-face during earthquake considering the 
possible wave breaking.  

II. GOVERNING EQUATIONS 

 The momentum equations for two dimensional flows in a 
vertical plane (Fig.1), integrated over a control volume are 
written as 
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where x and z are coordinate axes in horizontal and vertical 
directions respectively, ax is horizontal ground acceleration, 
u and w are velocity components, ሬܸԦ is velocity vector 
relative to the moving ground, p is pressure, t is time, g is 
gravitational acceleration, ν is kinematic viscosity, ρ is fluid 
density, ሬሬԦ is the del operator, CV indicates control volume, 
CS indicates control surface and ݀ܣԦ is the area element 
normal to the control surface pointing out of the control 
volume. Horizontal ground acceleration is included to 
represent earthquake excitations. 
 

 

 

 

 

 

 

 

 

 

Fig. 1.  Definition sketch of dam-reservoir system subjected to earthquake 
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The continuity equation is simplified for weakly 
compressible fluid by dropping the spatial variations of 
density since they are negligible in dam-reservoir 
hydrodynamics. An equation of state is applied to represent 
the density variations with pressure through the definition of 
acoustic velocity. The time variation of density is linked to 
pressure variations and the continuity is recast to be solved 
for the pressure field: 
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in which a (=1,438 m/s) = acoustic velocity in water.     

III. NUMERICAL SOLUTION 

 The computational domain and the grid system are 
assumed to move with the ground. The integral equations 
are discretized on a staggered grid arrangement.  
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where t is the time step, x and z are mesh sizes, Dif and 
Con represent diffusive and convective fluxes. To utilize the 
advantage of staggered grid system, convenient control 
volumes are selected for each equation. First order 
derivatives in diffusive fluxes are discretized using second 
order polynomial approximation on a variable mesh. 
Convective fluxes are evaluated by first order upwind 
(FOU). Pressure solution is obtained from the Poisson 
equation for pressure. Discretized form of the Poisson 
equation for pressure is obtained by substituting Eqs. 4 and 
5 into 8 
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 Free surface position is captured using the VOF (Volume 
of Fluid)  method which was originally developed by Hirt 
and Nichols [5]. In the VOF method, a function F is 
introduced  
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where F is a flow variable with values between zero and one 
. In particular, F = 1 corresponds to full cell, F = 0 to an 
empty cell, and 0 < F < 1 to a surface cell. In the VOF/PLIC 
(Piecewise Linear Interface Reconstruction) algorithm an 
interface line is constructed in free surface cells using the 
gradient of F function. In the reconstruction of the interface, 
normal direction to the interface is calculated by  
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 The momentum equations and the pressure Poisson 
equation are solved by sequential iterations. The detailed 
description of the computational algorithm is given in [6]. A 
computer code named NASSLARD is developed to perform 
the computations [6], [7]. 

IV. BOUNDARY CONDITIONS 

 At the dam-face and reservoir bottom, normal 
velocities are set to zero and no-slip boundary conditions are 
used for the tangential velocities. At the free-surface, an 
extrapolation procedure proposed by Miyata is used for 
velocities [8]. Free-surface velocities are extrapolated from 
the neighboring momentum velocities in this method. 
Pressure on the free-surface is computed from the free-
surface stress conditions given by Griebel et al. [9] At the 
far-end of the reservoir, a combination of Sommerfeld non-
reflecting boundary condition with a dissipation zone 
method is applied to minimize the wave reflection. The 
velocity components along the open-end boundary are 
computed from the Sommerfeld non-reflecting boundary 
condition which is modified to include ground accelerations: 
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where  stands for the velocity components u and w, c is the 
wave velocity, a represent the ground accelerations in the 
velocity directions. In addition to Sommerfeld boundary 
condition, a dissipation zone is included to dissipate the 
wave energy as the end-boundary is approached (see Fig. 1). 
Non-atmospheric pressures are applied on the free surface to 
damp the surface waves similar to approach described by 
Westhuis [10]. A linearly increasing surface pressure is 
applied to produce a gradual damping on the waves over the 
length of the dissipation zone.  

V. RESULTS 

A. Hydrodynamic Forces on a Vertical Dam-Face During 
Arbitrary Ground Motion 

 
 Hydrodynamic forces on a vertical dam face are 
investigated in order to validate the computational model 
and computer code NASSLARD. Chopra presented an 
analytical expression for the variation of hydrodynamic 
pressures on a vertical dam face during arbitrary ground 
motion [2]: 

 

,௫ሺ0 ,ݖ ሻݐ ൌ
ସఘ

గ
∑ ሺିଵሻషభ

ଶିଵ
ݖߣݏܿ  ܽ௫ሺ߬ሻܬሼߣܿሺݐ െ

௧


ஶ
ୀଵ

߬ሻሽ݀߬  (13) 
 
where J0=the Bessel function of the first kind of zero. The 
determination of hydrodynamic response of a vertical dam 
face to prescribe earthquake motion involves the numerical 
evaluation of  Eq. (13).  Mathematica software was used to 
evaluate the above expression numerically [11].    

Fig.2(a) shows the time history of  Duzce Earthquake 
record (1999) with the peak ground acceleration 0.307g.  
The time variation of total hydrodynamic forces on dam face 
is shown in Fig. 2(b) for 182.88 m (600 ft) deep reservoir. 
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It’s clear form this figure that the hydrodynamic forces can 
be calculated by NASSLARD accurately considering 
compressibility effects for reservoir subjected to arbitrary 
ground motion.  

  

 
 

Fig. 2.  a) Ground acceleration, Duzce Earthquake, Nov 12, 1999 b) total 
hydrodynamic force on dam face, reservoir depth 182. 88 m (600 ft) 

 

B. Hydrodynamic Pressures on an Inclined Dam-Face   

 Hydrodynamic pressures on an inclined dam-face for 
inclination angles θ =45°, 75° and 90° were computed for 
a constant ground acceleration ax=αg and compared with 
Chwang’s analytical results [12] in Fig. 3. Compressibility 
effects are neglected in simulations adjusting the sound 
speed in water to a large value since Chwang’s linear 
solutions are valid for only incompressible fluid. A “stair 
step” approach which defines the solid body as aligned 
with cell edges is used to adjust the interface position of 
sloping boundary on Cartesian grid.  

 

 

Fig. 3.  Variation of hydrodynamic pressures with depth as function of 
inclination angle of dam-face with ߙ ൌ 0.4݃. 

  

 The parameters h+ and Cp, dimensionless water depth 
and hydrodynamic pressure coefficient defined as  
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where h0 is initial water depth in reservoir and ∗ is 
hydrodynamic pressure (excessive over hydrostatic 
pressure).  

C. Surface Wave Run-up On a Vertical Dam-Face  

 The computed free-surface profiles were compared with 
Chwang’s analytical results [13] in Fig. 3 for ߳ଶ ൌ 0.005 
and	߳ଶ ൌ 0.1. The parameter ߳ଶ indicates instantaneous 
displacement of ground motion computed as  
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 There is a discrepancy between the computed and 
analytical results at 	߳ଶ ൌ 0.1 which may be due to 
neglected nonlinear convective and diffusive terms in 
Chwang’s analytical solution [13].   
 

 
 

Fig. 4.  Comparisons of free surface profiles with analytical results for 
ܽ௫ ൌ 0.4݃. Continuous lines show the present results, symbols show 
Chwang’s (1983) analytical results   
 

D. Surface Wave Run-up On an Inclined Dam-Face  

 It was shown that the present computational model can 
predict the hydrodynamic pressures on an inclined dam-face 
accurately at the previous section. Here, free-surface wave 
run-up on an inclined dam-face was investigated for 
inclination angle θ =45°.  Fig. 5 shows the free-surface 
profiles corresponds to 	߳ଶ ൌ 0.3 for vertical dam-face (a) 
and inclined dam-face (b) for inclination angle θ =45°. It can 
be seen from this figure that the maximum wave run-up on 
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the inclined dam face is reduced to an amount of 87% of 
that on vertical dam-face.  
 

 
 

 
 

Fig. 5.  Free-surface profiles on dam-faces for  ߳ଶ ൌ 0.3 a) vertical dam-
face, b) inclined dam-face for ߠ ൌ 45° 

VI. CONCLUSION 

This work deals with numerical computation of 
hydrodynamic forces and breaking free-surface waves in 
dam-reservoirs subjected to constant and arbitrary ground 
motion. The numerical results agree fairly well with the 
existing analytical solutions. The maximum wave run-up 
occurs on a vertical dam-face in comparison to inclined 
dam-face, so the free-board design should be evaluated for a 
vertical case. Maximum surface wave run-up or especially 
run-down on an inclined dam-face must be considered in the 
landslide risk analysis.  
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