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Abstract - Self-tuning control can provide desirable 

behaviour of a process even though the process parameters are 
unknown or may vary with time. Conventional self-tuning 
control requires that the speed of adaptation must be more 
rapid than that of the parameter changes. However, in 
practice, problems do arise when this is not the case. For 
example, when fault occurs in a process, the parameters may 
change very dramatically. A new approach based on 
simultaneous identification and adaptation of unknown 
parameters is suggested for compensation of rapidly changing 
parameters. High dynamic precision self-tuning control can be 
used for the solution of a fault tolerance problem in complex 
and multivariable processes and systems. 
 

Index Terms - Self-tuning control, identification, fault 
tolerance, Singular Value Decomposition.  
 
 

I.  DETERMINATION  OF A MATHEMATICAL 
MODEL OF A PROCESS 

 
A mathematical model of a process on a stationary 

regime can be found from the sequence of Markov 
parameters using the classical Ho algorithm [1]. The 
Markov parameters can be obtained from input – output 
relationships or more directly as an impulse response of the 
system. It is well known that according to the theorem of 
Kronecker the rank of the Hankel matrix constructed from 
the Markov parameters is equal to the order of the system 
from which the parameters are obtained. Therefore, by 
consistently increasing the dimension of the Hankel matrix 
  until 
 
 rank r  = rank 1r  

 
the order of the system can be obtained as equal to r . 
However, in practical implementation, this rank – order 
relationship may not give accurate results due to several 
factors: sensitivity of the numerical rank calculation and 
bias of the rank if information about the process is corrupted 
by noise. This problem can be avoided using singular value 
decomposition (SVD) of the Hankel matrix: 
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Here U  and V  are orthogonal matrices. The diagonal 
elements of the matrix S  (the singular values) in (1) are 

arranged in the following order 0...21  n . 
Applying the property of SVD to reflect the order of a 
system through the smallest singular value, the order of the 
system can be determined with the tolerance required. From 
practical point of view a reduced order model is more 
preferable. Taking into account that the best approximation 

in the Hankel norm sense is within a distance of 1 l , the 
model of order l  can be found. However, a relevant matrix 
built from Markov parameters of this reduced order model 
should also be of the Hankel matrix. But it is not an easy 
matter to find such a Hankel matrix for the reduced order 
process. A simpler solution, although theoretically not the 
best, can be found from the least squares approximation of 
the original Hankel matrix [2], [3] and [4]. The discrete time 
state space realisation of the process can be determined 
from the relationship between Markov parameters and 
representation of the Hankel matrix through relevant 
controllability and observability matrices of the process: 
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where 

dA  is the system matrix, 

dB  is the control matrix, 

dC  is the output matrix, 
  is the observability matrix, 
  is the controllability matrix. 

 
 

II.  THE SELF-TUNING CONTROL SYSTEM 
 
Consider a continuous time single input – single output 
second order plant (a process) given in the following 
canonical state space realisation form: 
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u  is the control signal, 
y  is the output of the plant. 

 

Assume that at the time t  parameters pa1  and pa2  change 

dramatically due to a fault in the system, but parameters 

pc1  and pc2  remain constant. The mathematical model of 

plant (3) can be represented in the following form: 
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where 

)(111 taaa ppp  , 
)(222 taaa ppp  , 

pppp ccaa 2121 ,,,  are the nominal parameters (constant) of 

the plant, 
),(1 ta p  )(2 ta p  are the biases of the plant parameters 

(variable) from their nominal values, 

px  is the plant state, 

py  is the plant output. 

 
A desirable behaviour of the plant can be determined by the 
following reference model: 
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,   (4) 

 
where 

g  is the input signal, 

ma1 , ma2 , mc1 , mc2  are parameters of the model. 
 
In order to compensate for the plant parameters' biases, a 
controller can be used. The closed loop system with the 
controller is represented in the following form: 
 

ppppppp xtaaxtaax ))(())(( 1122    

gxtkkxtkk pp  ))(())(( 1122 
 

(5) 

 
where 

,1k  2k  are the constant parameters of the controller, 

)(1 tk , )(2 tk  are the adjustable parameters of the 

controller. 
 
The desirable quality of the process behaviour can be 
obtained from the following relationships: 
 

mp aak 111   

mp aak 222  . 

 

According to equations (4) and (5), the error equation is 
obtained as follows: 
 

ppmm xzxzeaeae 1212   , (6) 

 
where: 

pm xxe  , 

)()( 111 tktaz p  , 

)()( 222 tktaz p  . 

 
It can be seen from equation (6) that in order to achieve the 
desirable error 0e , it is necessary to provide the 
following conditions: 
 

01 z ,  02 z .   (7) 

 
The conditions (7) can be achieved by adjusting parameters 

)(1 tk  and )(2 tk  according to the following laws [5]: 

 

pxtk  )(1
     (8) 

pxtk   )(2 , 

where Pe . 
 
The positive definite symmetric matrix P  can be obtained 
from the solution of the relevant Lyapunov equation. The 
main problem associated with algorithms (8) is that all self-
tuning contours are linked through the dynamics of the 
plant. The consequence is that high interaction of each 
contour with others will occur. This further results in poor 
dynamic compensation of plant parameters' biases ipa  i

=1,2,…, m , where m  is a number of self-tuning contours. 
The idea of decoupling self-tuning contours from plant 
dynamics, based on simultaneous identification and 
adaptation, is suggested for the solution of this problem 
with fault tolerance. This could considerably improve 
performance of the overall system, especially for high 
dimension and multivariable plants and processes. 
 
It can be shown [6], [7] that the self-tuning contours will be 
decoupled from the plant dynamics if   can be formed 
such that: 
 

eaeae mm 12
*   . 

 
In this case the following relationship can be obtained: 
 

 pp xtkta ))()(( 22
*

pp xtkta ))()(( 11  . (9) 

 
In order to solve equation (9) with two variable parameters, 
the following approach is suggested: Multiply both parts of 
equation (9) by state variables px  and px  and integrate the 

resultant equations on the time interval ),( 21 tt , where: 

ttt  12 . Taking the initial conditions as 01 t , 

0 ik , )2,1( i  the following equations are obtained: 
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Introduce the following notations: 
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According to notations (11), equations (10) can now be 
written in the form: 
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From the solution of equations (12) the bias of the plant 
parameters ,ipa  )2,1( i  can be determined. The 

controller can be adjusted according to the estimated 
parameter bias as: 
 

ipi ak  . 

 
Therefore, conditions (7) are satisfied, which in turn means 
that the behaviour of system (5) follows the desirable 
trajectories of model (4), even in the presence of dramatic 
plant parameters changes. 
 
For the solution of equations (12) one needs to take into 
account of the hypothesis of quasi-stationarity of the 
process, where the interval time t  is selected such that the 
biases of parameters ipa  must be constant at this interval. 

However, the interval t  should be sufficiently large in 
order to accumulate a larger quantity of variables px  and 

px  for the solution of the equations. 

 
 

 
III.  THE NUMERICAL RESULTS 

 
The Hankel matrix  , constructed from the Markov 
parameters (obtained from the experiment, see 
APPENDIX), is as follows: 
 


















01-1.2447038e01-1.5056000e01-1.6442500e

 01-1.5056000e01-1.6442500e01-1.4550000e

01-1.6442500e01-1.4550000e02-6.5000000e

. 

      (13) 
 
Applying the singular value decomposition procedure (1) on 
the Hankel matrix (13), it is found that 
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04-6.1531296e000.0000000e000.0000000e

000.0000000e02-7.4455532e000.0000000e

000.0000000e000.0000000e01-4.2773559e

S

       (14) 
 
Using relations (1), (2) and (14) the discrete time state space 
realisation of the reduced order system is obtained as 
follows: 
 











01-3.4867831e01-3.4211654e

01-3.4211654e-01-9.7950468e
dA  

 
3.3767560e-01

-2.2160613e-01

3.3767560e-01 2.2160613e-01
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  (15) 

 
The behaviour of the full order model and the reduced order 
model is given in Figure 1. It can be seen in Fig. 1 and 
APENDIX that the Markov parameters of the reduced order 
model are a close approximation to the Markov parameters 
of the original system. 
 
Nominal parameters of the plant in the continuous time (3) 
are obtained from (15) as follows: 
 

1184.31 pa ,     0517.32 pa , 

0318.01 pc ,     9132.22 pc . 

 
Parameters of model (4) are chosen as pm aa 11  , 

pm aa 22  , pm cc 11  , pm cc 22  . 

 
The performance of the high dynamic precision self-tuning 
control system are presented in Fig. 2 - 5. 
 
Fig. 2.  shows that the bias from the nominal parameter at 

time 1t  sec. is ,11  pa  ( 02  pa ). The 

adaptation is switched off. 
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Fig. 3.  shows the bias from the nominal parameter at 1t  

sec. with adaptation being switched on ( ,11  pa  

02  pa ). It can be seen that the output of system 

py  coincides with the model reference output my  

after 4t  sec. 
 
Fig. 4.  shows that the bias from the nominal parameter at 

time 1t  sec. is ,12  pa  ( 01  pa ). The 

adaptation is switched off. 
 
Fig. 5.  shows the bias from the nominal parameter at 1t  

sec. with adaptation being switched on ( 12  pa , 

01  pa ). It can be seen that the output of system 

py  coincides with the model reference output my  

after 9t  sec. 
 
 

IV.  CONCLUSIONS 
 
The high dynamic precision self-tuning control system for 
the solution of a fault tolerance problem of a SISO process 
is suggested in this paper. The method, which is based on 
simultaneous identification and adaptation of unknown 
process parameters, provides decoupling of self-tuning 
contours from plant dynamics. The control system 
compensates the rapidly changing parameter when fault 
occurs in a process. The mathematical model of the process 
is formed from Markov parameters, which are obtained 
from the experiment as the process impulse response. The 
order of the model is determined using singular value 
decomposition of the relevant Hankel matrix. This allows 
one to obtain a robust reduced order model representation if 
the information about the process is corrupted by noise in 
industrial environment. 
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APPENDIX 
 
Markov parameters     Markov parameters of 
obtained from              the reduced order 
the experiment:           model: 
 
0.0000000e+00           0.0000000e+00 
6.5000000e-02            6.4934730e-02 
1.4550000e-01            1.4578163e-01 
1.6442500e-01            1.6384913e-01 
1.5056000e-01            1.5077128e-01 
1.2447038e-01            1.2511681e-01 
9.7003263e-02            9.7037520e-02 
7.2809279e-02            7.1509116e-02 
5.3273657e-02            5.0478548e-02 
2.7143404e-02            3.4252666e-02 
1.9054881e-02            2.2345734e-02 
1.3274250e-02            1.3971877e-02 
9.1920232e-03            8.3100499e-03 
6.3351771e-03            4.6301281e-03 
4.3498142e-03            2.3388797e-03 
2.9776238e-03            9.8319708e-04 
2.0333343e-03            2.3330942e-04 
1.3857582e-03            -1.4099694e-04 
9.4289895e-04            -2.9426412e-04 
6.4072233e-04            -3.2618265e-04 
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