
 

Abstract—In this paper a new approach for determining an 

upper and a lower bound for estimating Domain of attraction 

of dynamical systems is proposed. We analyze the stability of 

dynamical systems by Markov models of them and using 

invariant measure as a stability indicator. Markov modeling 

focuses on asymptotic behaviors of systems and ignores the 

transient ones.  Since an important limitation of estimating of 

DA via Markov modeling is that the estimated DA is actually 

an upper bound of the real one, for overcoming this limitation 

and estimating DA more accurately, we propose a novel 

method for determining a low bound of DA which is obtained 

by detecting and eliminating the boundary partitions which are 

not completely placed in the actual DA. The results of 

simulations show the efficiency of proposed method. 

 

Index Terms— Discrete dynamical systems, Domain of 

attraction, Invariant measure, Markov chain, Lower bound 

domain of attraction. 

 

I. INTRODUCTION 

Using Markov models for extracting dynamical behaviors 

has some advantages. The statistical properties of this model 

often have closed forms and are easily computed numerically 

and in addition the transient effects of system can be 

removed and only the asymptotic behaviors of system are 

computed. So it takes less time than direct analysis of system 

orbits. 

    To perform the problem of estimating Domain of 

attraction (DA), in the form of a finite dimensional 

optimization one, the state space is divided into some 

subspaces and the average quantities of these subspaces is 

considered.  Any analysis of dynamical systems involving 

average quantities requires a reference measure to average 
contributions from different regions of the phase space. The 

most popular measure used in these cases is the probability 

invariant measure, which is described by the distribution of 

the typical long trajectories of the system. During recent 

years, invariant measure has played an important role in the 

characterization of dynamical systems. It is an approximate 

tool to determine behaviors of dynamical systems which is 

effectively used for detecting invariant sets or cyclic 

behaviors of nonlinear systems [1].   

    Some papers propose methods for producing better 

Markov models via smarter partition selection.  
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In all cases, one selects an initial coarse partition, computes 

the invariant measure of the Markov model, and on the basis 

of information contained in the invariant measure of the 

current model, a choice is made on which partition sets to 

refine and which not to refine. In [2] any partition sets which 

are assigned a measure greater than 
n

1  , where   is the 

current number of partition sets, are refined. In [3] a high 

derivative approach is proposed and it is assumed that the 

physical measure is smooth; therefore, if the current estimate 

of the invariant measure has adjacent sets given very 

different measure, there must be an error in this region, and 

so one refines these sets to obtain better estimates. In [4] all 

partition sets are refined and a temporary transition matrix 

tempP  and invariant measure       for the refined partition 

are constructed. The new invariant measure is compared 

with the previous one which is related to oldp  and only sets 

in the old partition for which the measure according to 

tempp  and  oldp    is very different are split up. The 

transition matrix tempp  is then discarded.    

    An important limitation of estimating DA by Markov 

modeling is that the estimated DA is actually an upper bound 

of DA (UDA) that contains the actual one. Since boundary 

partitions of UDA are not completely placed in actual DA. 

This fact generates an estimation error. To overcome this 

limitation and have more accuracy in estimation, we find a 

low bound for DA (LDA) which is obtained by eliminating 

the boundary partitions of UDA on the basis of changes of 

invariant measures.  

  This work contains 4 sections. In the second section some 

definitions are summarized. Introducing the main idea of this 

work which is describing stability analysis according to 

Markov model of a system and estimating UDA and 

estimating LDA is the subject of the third section. And 

finally, in the fourth section the results are simulated. 

II. PRELIMINARIES 

    Let   be an n-dimensional open rectangular set in 
nR , 

equipped with Lebesgue measure   on  -algebra of Borel 

sets
 

)(B  and T  be a measurable nonsingular transition 

operator [1]  on the measurable space ),( B,  such that  
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Definition 1 (State space partitioning): A is a state space 

partitioning for   if it divides   into cells     where 
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          such that they satisfy the following two 

conditions: 


N

i

iA

1

,



 ,


 jAiA     ji   

Where iA


 is the interior of 
iA set and   is  the empty set.  

Definition 2 (Center of a partition): Let A  be a state 

space partitioning for
nR . For simplicity we suppose 

rectangular partitions as 

NihlhlA niniiii ,...,1],[...],[ 11  . The center of each 

partition iA is a point like 
T

niii ccC ],...,[ 1  where 

2

jiji
ji

lh
c


 . 

The state space partitioning for 2n  is illustrated in figure 

1. 

 
Fig. 1. State space partitioning for 2n  

                                                         
Definition 3 (Domain of attraction): Consider nonlinear 

system (1). The domain of attraction of an asymptotic stable 

equilibrium point eX  [5] is 

})(lim)({ e

k

k
XXTkXDA 


.
   

Definition 4 (Upper bound of DA): Upper bound of DA 

(UDA) is an estimated DA which contains the actual DA.     

  

Definition 5 (Lower bound of DA): Lower bound of DA 

(LDA) is an estimated DA which is surrounded by actual DA.   
 

III. ESTIMATING DA BY MARKOV MODELING 

 

    Stability concepts in dynamical systems have both 

discrete-time and continuous-time versions. As results of 

discrete-time dynamical systems are easier to formulate, we 

focus on the discrete dynamical system of the equation (1). 

Results for the continuous-time systems can be deduced 

from the discrete ones. As we are concerned with estimating 

domain of attraction of certain (or uncertain) systems, we 

should analyze the long term orbits of the system, but it is 

not practically possible in many systems because it takes a 

long time and may lead to computer round off error.     

Therefore, in this paper we use the method of Markov 

modeling of dynamical systems to remove the transient 

effects and calculate the asymptotic behaviors.     

    In the next part, we review some properties and theorems 

that are necessary for stability analysis of nonlinear systems 

via Markov models. 

 

A. Stability Theorems 

 

    For discrete system (1) a Markov chain can be constructed 

as [6]: 

 10),()(  nkXTkX k

kk  .      (2)                                                                                                                              

                                                                     

Definition 6: Let X
 
and A . The n-step transition 

function, denoted by ),( AXpn
,
 
shows the probability that 

a Markov chain   starting from an arbitrary point like 

X0  
remaining in the set A  after n steps [5]. 

 

Proposition 1: For Markov chain (2) the Markov transition 

function is proposed as ),(lim),( AXpAXP n

n 


 
Proof: see [5, chapter 1, page 3]. 

     In the sequel, it is considered that according to 

proposition 2, the uniformly distributed ),( AXP depends 

only on A . For stability analysis of proposed Markov chain, 

we consider theorem1. 

 

Theorem 1: The existence of a fixed point like eX which is 

asymptotically stable in the set A is exactly equal to 

the existence of a nonzero unique solution for the following 

invariant equation: 




 )(),()( AdmAXPAm  

Proof: see [5, chapter 1, page 20, asymptotic stability 

definition].  

    In the above theorem Mm and M  is the set of all 

probability Lebesgue measures on the topological space . 

    According to the DA definition, we propose Lemma 1 

which is the direct conclusion of theorem 1. 

 

Lemma1: Closure of the Domain of attraction of nonlinear 

system (1), DA , is the union of the members of 

support of probably measure m  and obtained from 

following equation: 

}{mSUPPDA   

where 

}0)(),()({}{  


AdmAXPAmAmSUPP 
 

B. Estimating UDA 

    It is not practically possible to estimate domain of 

attraction of system (1) using Lemma 1,   because it leads to 

an infinite dimensional problem in space .M In other words 

since DA , we should calculate 

),(lim),( AXpAXP n

n 
  for every X  which leads 
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to an infinite dimensional problem. So we use the rough idea 

of [7] and partition the state space   (according to 

definition 1). Assuming that ),( AXP  has a uniform 

distribution, we can calculate probability of partitions 

transitions instead of calculating every point X  
transition. So in the sequel we convert the infinite 

dimensional problem of estimating DA, proposed in 

Lemma1, to a finite dimensional one. To investigate the 

stability of state partitions we use the discrete-time Markov 

chain which is a Markov process n  having a countable 

number of states nA [6].  

 

Definition 7 (Markov transition matrix): Consider 

nonlinear system (1). For A partitioning of , the NN   

Markov transition matrix P is defined as: 

1

]];)()([[][

),(

12
),(),(

21

2121


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
j

nn
ij

ij
nn

ij
nn

p

AnXAnXprobpP

   (3)                

 Definition 8 (state probability vector): The state 

probability vector for state space partitioning  A   in n
th

 

transition is defined as ))(),....,(()( 1 nnn N  , 

where )(ni is the probability of existing Markov chain in 

iA
 

state in n
th

 transition [5] in other words 

])([)( iAnXprobn  and nn
N

i

i 


1)(
1

  [6].   

 

Definition 9 (n-step Markov transition matrix): n-step 

Markov transition matrix for a homogenous Markov process 

is defined as: 

))()((][ )()(

ij

n

ij

n AkXAnkXprobpP 
    (4)                                                                        

Proposition 2:   For uniformly distributed ),( AXP , 

)1(

ijp  can also be presented as: 

 Nji
Am

AATm
p

i

ij

ij ,...,1,
)(

))(( 1

)1( 






   (5)                                                                           

Proof:  see [7]. 

 

Proposition 3: For a homogeneous process we have: 

i- 
nn PP )(

                                                   (6)                                                                                                  

ii- PnPPn nn )1()0()0()( )(  
        

(7)
                                                                                                

 

Proof: see equation (16-110) of [6] . 

     
Proposition 4: For a stationary Markov process, the state 

probability vector   does not depend on n and is called a 

stationary distribution (or invariant measure) vector. 

 

Theorem2 (Perron-Frobenius theorem): For irreducible 

and aperiodic Markov chains there exists a unique invariant 

measure vector . In addition
)(nP  converges to a rank-one 

matrix in which each row is the stationary distribution   

that is: 

 1lim )( 


n

n
P   

Where 1 is the column vector with all entries equal to 1. 

Proof: See [6].               

                                                                                                                                        

Theorem 3: The (closure of) domain of attraction of 

nonlinear system (1) with N state partitioning A can be 

estimated from the support of invariant measure vector . 

Where  is calculated from following equations:  






N

i

NP

1

i1 1       ,),....,(;       (8)                                                               
                      

               

Proof: Propositions 3 and 4 implies that  P , where 

1
1




N

i

i  and ),....,( 1 N    is unique (see Perron-

Frobenius theorem). In addition as i  
is the probability of 

existing Markov chain in iA state we can conclude that i is 

an stability weight or in other words 0i  shows that 

orbits do not exist in iA and
 
leave this state so domain of 

attraction includes states with nonzero invariant measure or 

equally DA is the support of  .                                                                    

□ 

          

    Proposed analytic form of Markov Matrix  

                                                                                                                                                                                                                         

    Considering theorem 3, to estimate DA, we should 

calculate Markov matrix. There are different numerical 

algorithms to calculate P  matrix from equation (5) [see 

chapter 6 of reference 7]. In the sequel, we provide a new 

analytic formula to determine P which is more accurate.  

 

Proposition 5:  Some useful properties of the (probability) 

Lebesgue measure m  and characteristic function   are: 

a- dXXdXXBAm
B

A

A

B )()()(     

Proof: From [8] we have )()()( . BABA   , which 

yields; 

     

dXXdXXdXXXBAm

B

A

A

BBA )()()().()(  





                       

 

b- ))(()(
)(1 XTX AAT

 

  
 

Proof: Science T is nonsingular we have 
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C. Estimating LDA 

    In this section a novel algorithm for eliminating the 

Boundary partitions and determining LDA base on the 

changes of invariant measures is proposed. 

    For simplicity the algorithm is applied for two 

dimensional systems but without loss of generality this can 

be used for n dimensional systems too. 

 

Definition 10 (neighbor partition): Let iA  and jA   be 

rectangular sets in   and consider iA , jA A .  iA  is 

denoted by a neighbor of jA  if  ji AA . If we define

}{SAA ji  , it is clear that S  includes a line (vertical or 

horizontal neighbor) or a node (diagonal neighbor). 

 

Definition 11 (boundary partitions): The partitions which 

have nonzero invariant measure but they are not completely 

placed in the actual DA.  

 

Definition 12 (Horizontal gradient): Horizontal gradients 

at each partition can be defined as the central difference 

between invariant measures of two horizontal neighbors. 

Horizontal gradient is calculated from the following 

equation: 

2

1 ii
x

x
G

 





                                      (9)                                                                                                            

Where i   is invariant measure of current partition iA
. 

 

Definition 13 (Vertical gradient): Difference between 

invariant measures of two vertical neighbor leads to vertical 

gradient that can define as follows: 

2

iNi
y

y
G

 





                                   (10)                                                                                                                                                                                                                                                                                                                                                

Proposition 6 (absolute magnitude of gradient): The 

absolute magnitude of gradient )(G  is illustrated by the 

mean square root of the horizontal      and vertical      

gradients. That is  
22

yx GGG   . To reduce the 

computational cost of magnitude, it is often approximated 

with absolute sum of the horizontal and vertical gradients

)( yx GGG  .  

    According to definition 8, we introduce invariant measure 

of a partition iA  by a constant value )( j ; so variations of 

invariant measure from a partition like jA  to one of its 

neighbor like jiA ,1  can be modeled by a step signal. 

Partitions of Ω space can be divided in to two major groups, 

the partitions that are inside DA (DA mode) and the 

partitions that are outside DA ( -DA mode), it is clear that 

the most considerable invariant measure variations occurs in 

boundary partitions because in these partitions the stability 

mode changes. This fact leads to the idea that we can 

effectively detect the boundary partitions by determining the 

partitions with considerable variations in their invariant 

measure. To obtain this aim, we compare the invariant 

measure gradient with a proper threshold.  

 

    For determining the lower boundary by deleting boundary 

partitions, we propose the following algorithm: 

 

1. Calculate horizontal and vertical gradient of 

state partitions which are contained in UDA. 

2. Determine absolute magnitude of gradient of 

each partition. 

3. Select the partitions that their absolute 

magnitude of gradient are larger than their 

neighbors in either the horizontal or vertical 

directions and are larger than the threshold 

which obtained by try and error as boundary 

partitions. 

4. Eliminate the remaining partitions (since DA 

is a connected set). 

 

IV. SIMULATION RESULTS 

 

    Consider the following Vander Pol oscillator: 

][]}[)])[(1(][{]1[

][])[(]1[
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 Considering ]3,3[]3,3[  , 3221  NN
 

that yields 

to 187.0, 21  ,
2

2211 32,..,1],[],[  ihlhlA iiiii ,  

,
32

187.031 









i
remaiderl i

     











32
187.032

i
quotientl i  

   and 187.0,0187 2211  iiii lhlh
,  

    The estimated UDA and LDA are obtained according to 

algorithm 1 and 2. Figure 2  shows the UDA and LDA of 

Vander Pol system. 

a)estimated UDA 
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b) estimating  LDA by eliminating boundary partitions of 

UDA 

Fig. 2. Comparison of UDA (2.a), LDA (2.b) and actual DA 

(black curve) of Vander Pol oscillator.  

V. CONCLUSION 

In this work we propose a novel method for estimating upper 

and lower bounds of domain of attraction. This method is 

based on Markov modeling of nonlinear systems which 

considers the average quantities of state space and is able to 

effectively find estimated DA. As the estimated DA which is 

obtain trough this method doesn't completely surrounded by 

DA, in the other words it is a upper bound for DA, we 

propose an algorithm to omit the boundary partitions of 

estimated DA and find a more accurate estimate which is 

denoted by lower boundary of DA. 

In this approach according to the changes of invariant 

measures, the boundary partitions which are contained in 

estimated DA but are not completely placed in the actual DA 

detected and deleted. The efficiency of proposed methods is 

shown via simulations. 
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