

Abstract—This paper introduces the new approach for

reliability estimation of control systems software. First we
provide the basic starting points and definitions required for
understanding the approach. Next we define the main
parameters and variables, which are necessary for reliability
estimation. The last section deals with the model for assessing
the reliability of control systems software.

Index Terms— control dependency graph, control system
software, function block, reliability.

I. INTRODUCTION

HE one of the most complex software non-functional
requirements, which cannot be missed out when

designing software system, is the reliability. The software
reliability is the probability that a software system is
performing successfully its required functions for the
duration of a specific mission profile. In the past years there
were introduced several approaches to evaluate reliability of
software systems in the early stages of software
development at the architecture level using several models
(e.g. UML, Petri-nets, etc.)

The adoption of IEC 61499 standard provided model for
using some aspects of component-based software also to
control systems software. This main fact will be used for
reliability assessment of control systems in this paper.

The approach will combine various techniques from
software engineering practice (e.g. UML, Sequence
diagrams) and also algorithm for directed graph traversing.

II. DEFINITION OF BASIC FACTS

Definition 1: Dependency is the relationship among two
or more objects, where change in one or more objects leads
to a potential change in one or more objects. [3].

Manuscript received August 8, 2012; revised July 22, 2012.
Martin Jedlicka is with the Institute of Applied Informatics, Automation

and Mathematics, Faculty of Materials Science and Technology in Trnava,
Slovak University of Technology in Bratislava, Trnava, 91701, Slovak
Republic (martin.jedlicka@tcempire.sk).

Oliver Moravcik is with the Institute of Applied Informatics,
Automation and Mathematics, Faculty of Materials Science and
Technology in Trnava, Slovak University of Technology in Bratislava,
Trnava, 91701, Slovak Republic (oliver.moravcik@stuba.sk).

Andrej Elias is with the Institute of Applied Informatics, Automation
and Mathematics, Faculty of Materials Science and Technology in Trnava,
Slovak University of Technology in Bratislava, Trnava, 91701, Slovak
Republic (andrej.elias@stuba.sk).

Lukas Smolarik is with the Institute of Applied Informatics, Automation
and Mathematics, Faculty of Materials Science and Technology in Trnava,
Slovak University of Technology in Bratislava, Trnava, 91701, Slovak
Republic (lukas.smolarik@stuba.sk).

Fig. 1 represents the relationship between two objects A
and B. Dependence is directed edge between related objects.
Then we can say that object B is dependent on the object A.

class Dependency

A Bw

«dependency»

Fig. 1 Dependency relationship between UML objects

Definition 2: The dependency ratio (w) represents
quantitative characteristic how one or more objects depend
from one or more objects.

The dependency ratio is a quantitative value of edge,
which represents the dependency relationship between two
objects. This quantitative value may reflect some degree of
software quality characteristics (e.g. reliability) or degree of
probability.

Definition 3: Scenario is represented by a set of
interactions I={i1,...,im} the set of objects O={o1,...,on},
where m is the total number of interactions and n is the total
number of objects. The object will further represent
component, respectively functional block or its instance.

The scenario is used for analyzing the dynamic behavior
of software. The UML sequence diagrams [6] are one of the
tools for capturing dynamic behavior. Sequence diagrams
are used in the proposed methodology to capture the
dynamic behavior of the software of control system which is
modeled according to standard IEC 61499.

Definition 4: Sequence diagram is two-dimensional
graph showing the scenario where the horizontal axis
represents a set of objects and the vertical axis represents the
time which passes from the top to bottom.

Fig. 2 represents a sequence diagram that contains the
horizontal axis of a set of objects {o1,...,on}, where the order
of objects on the horizontal axis is not significant.

On the vertical axis, time goes from top to bottom, where
the objects exchanged messages among themselves. The
order of message interactions is significant and the first sent
message is always on the top of the vertical axis. The dashed
line represents the lifeline of the object and the rectangle
located on the lifeline represents the activity of the object at
the time.

Definition 5: Interaction IS(oi, oj) represents set of all
messages sent from object oi to object oj during the
execution within a single scenario S, which is described by a
sequence diagram.

Fig. 2 also shows the set of all messages {i1, i2, i3, i4}
within the described scenario.

The New Approach for Reliability Assessment
of Control Systems Software

Martin Jedlicka, Oliver Moravcik, Andrej Elias, Lukas Smolarik

T

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

sd seq

o1 o2 o3

t0
i1()

i2()

i3()

t
i4()

Fig. 2 Sequence diagram

Definition 6: Interaction matrix is two-dimensional
matrix, where i is the row index and j is the index column,
and the matrix has dimension NN, where N represents the
number of all objects.

 o1 o2 ... oj ... oN
o1
o2
...
oi
...
oN

Fig. 3 Interaction matrix

Definition 7: Interaction matrix row contains the
numerical values of the interactions for scenario S, where
the object oi represent the sender role (NSI = the number of
sent interactions).

 sd Scenario

o1 o2sender receiver

Fig. 4 Object roles in interaction

Fig. 4 shows the roles of object in their possible
interactions. The object role in interaction is also
represented graphically by direction of interaction - the
direction of the arrow from the sender to the recipient.

Definition 8: Interaction matrix column contains the
numerical values of the interactions for scenario S, where
the object oj represents the recipient role (NRI = number of
received interactions).

Definition 9: Interaction matrix cell (i, j) represents the
numerical value of number of interactions between objects
oi and oj.

Diagonal cells in interaction matrix don’t contain any
value because they represent the object interaction with
itself, and such interactions are not significant for this paper.

Fig. 5 represents the general example of interaction
matrix, where value indicated as A is the number of
interactions sent from object o2 to object o1, and also the
number of interactions received by the object o1 from the
object o2.

 o1 o2 ... oj ... oN

o1 0

o2 A 0

... 0

oi 0

... 0

oN 0

Fig. 5 Interaction Matrix Example

A. Scenario identification

The scenarios represent different modes of behavior in
analyzing phase of the control system software, i.e. they
model all the possible ways control flow across the
software.

Definition 10: Scenario indicated as Sk is a sequence of
possible interactions of elements, and SkS, where k=1...|S|
and S represents the total set of application scenarios.

Element is a function block, which has interactions with
other function blocks. UML sequence diagrams are the most
appropriate for scenario modeling, where function block is
then transformed into sequence diagram as a component.

Scenarios Identification may be based on:
1. Existing model of the function blocks network and

knowledge of system behavior,
2. Required operational profile.

If there is known model of function block network, we
can identify scenarios on behalf of system behavior
knowledge which is represented by the function block
network model. The scenarios are then analytic output of
function block network behavior.

If scenarios are identified from the desired operational
profile, they are created during the design phase of control
system software using function blocks. UML diagrams, as a
tool to support software engineering, can be used in the
design phase of control system software. The required
operational profile based on the functional requirements of
the application.

B. Sequence Diagram Construction

In this step, we have to construct sequence diagram for
each scenario. If there exists the system architecture
modeled by the function block network, it is necessary to
transform its behavior into a sequence diagrams using
mapping rules. Following rules are respected when mapping
functional blocks into UML elements:

 The name of the element in the sequence diagram is
the same as the name of the function block
instance;

 Interactions of function blocks in the sequence
diagram are representing the data flows from the
function blocks model;

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

 One data flow from the function blocks model may
occur as the interaction in multiple sequence
diagrams depending on the execution scenarios.

Fig. 6 shows an example scenario that was constructed
from network of two function blocks FB_1 and FB_2, which
for better explanation contains also time characteristics. At
the time t0 function block instance FB_1 sends an event
request() to function block instance FB_2, which will
receive it at the time t1. Function block instance FB_2 will
perform the event flow processing, execute the algorithm
and generate output events in the time interval {{t1, t2}.
Output event answer() will be sent by the function block
instance FB_2 at time t2 and the function block instance
FB_1 will receive it at the time t3.

 sd Scenario01

:FB_1 :FB_2

signal {Tstart= (t0,ms),
Tend= (t1,ms)}

action {Tstart= (t1,ms),
Tend= (t2,ms)}

signal {Tstart= (t2,ms),
Tend= (t3,ms)}

request()

answer()

Fig. 6 Scenario example modeled by sequence diagram

C. Interaction Matrix Construction

It is necessary to create a interaction matrix separately for
each scenario in this phase and to determine the number of
sent interactions (NSI) for each function block, respectively
components. The scenario is identified in the upper left
corner and particular cells are filled with the NSI values
according to sequence diagrams.

Fig. 7 shows an example of function block network,
which contains a set of function blocks FB = {FB1, FB2,
FB3, FB4} and a set of interactions I = {i1, i2, i3, i4}.

Fig. 7 Function block network example

Two scenarios S = {s1, s2} were identified during
analyzing the software behavior, t. Fig. 8 shows the scenario
s1 and its sequence diagram.

 sd Scenario S1

FB1 FB2 FB4

i1()

i3()

i5()

Fig. 8 Example of scenario s1

Fig. 9 shows the interaction matrix of scenario s1.

s1 FB1 FB2 FB3 FB4

FB1 0 1 0 0

FB2 0 0 0 1

FB3 0 0 0

FB4 1 0 0 0

Fig. 9 Interaction Matrix of scenario s1

Fig. 10 shows the scenario s2 and its sequence diagram.

 sd Scenario S2

FB1 FB3 FB4

i2()

i4()

i5()

Fig. 10 Example of scenario s2

Fig. 11 shows the interaction matrix of scenario s2.

s2 FB1 FB2 FB3 FB4

FB1 0 0 1 0

FB2 0 0 0 0

FB3 0 0 0 1

FB4 1 0 0 0

Fig. 11 Interaction Matrix of scenario s2

The NSI values in interaction matrix are important in
determining the parameters for further reliability
assessment.

III. DEFINITION OF INPUT PARAMETERS TO RELIABILITY

ASSESSMENT

The proposed method for reliability assessment requires
defining input parameters as follows:

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

1. Function Block Reliability;
2. Transition Reliability;
3. Transition Probability.

A. Function Block Reliability

Function Block Reliability RFBi represents ability of
function block to perform the required functions under
declared conditions for the specified time. The function
block reliability value can be determined by various
methods from reliability theory:

 Testing,
 Fault injection,
 Reliability growth model.

It is very difficult to estimate reliability of control system
software in early stages of software lifecycle, which is
modeled by function blocks, because reliability data from
system operation are not available. The ready-made function
block libraries are very common which are used for
application design. Such function block types are pre-tested,
so we can assume for reliability assessment purposes that
function block reliability is unity.

B. Transition Reliability

Transition Reliability RTij represents the reliability of
transition from one element to another element, so it is
probability that the information is correctly transferred from
the source function block to the target function block in the
direction of execution.

Transition reliability estimation depends on two important
parameters: Interface Reliability and Link Reliability.
Therefore: [7]

(1)

where RIij is the interfaces reliability of source
and target function blocks;

RLij is link reliability between source

and target function block.
Interface Reliability is the probability that two function

blocks, which are in interaction, have corresponding
interfaces. If there is no interface compatibility, which are in
interaction, it may be caused by:

 Mutual incompatibility in structure or sequence of
messages which are the matter of the function
blocks communication;

 Incompatibility of data formats and message types;
 Replacement of elements roles in the interaction

(replacement of source and target function block).
In the proposed method, the interface reliability

assessment is the result of correct design of function blocks
interfaces which communicate each to other, and this is fully
dependent on human factor. For these reasons, the interface
reliability is ignored in overall reliability assessment of
application.

Link Reliability is the probability that the message is
correctly transferred from the source to the target function
block. It means that the link reliability depends on the
physical connection of function blocks. Especially in a
distributed environment it is affected by the appropriate
hardware and physical network layer. Typical problems of

link reliability are the connection failures, delays or
congestion of transmission channels. Analysis of link
reliability is beyond the scope of this paper and therefore it
will not be further examined.

C. Transition Probability

Transition Probability PTij is the probability of
transition from the function block FBi to the function block
FBj. The transition probability estimation is based on the
number of interactions between particular functional blocks.
The transition probability is calculates as follows:

(2)

where k =1...|S| a |S| is the total number of scenarios;
m =1...|N| a |N| is the total number of function
blocks,

NSIk(FBi, FBj) is the number of sent
interactions between function
block FBi a function block FBj
in one scenario k;

is the number of sent
interactions among function
block FBi and all other
function blocks (FBi, ...,FBi,
..., FBm) in scenario k,

The sum of transition probabilities of edges from any
function block must be unity.

(3)

In sequence diagrams, which were used to describe the
behavior of application, the number of interactions is
calculated from interaction matrix of the particular
scenarios. The number of interactions in the numerator is
equal to the sum of interactions which are between the
function block FBi in sender's role and function blocks FBj
with the role of the receiver in all scenarios, where such an
interaction exists.

Transition probability (for example in Figure 12) from the
PTFB1FB2 for scenario s1 is calculated from the NSI value in
Cell(FB1,FB2), which is in numerator, and the sum of NSI
values in Row(FB1) from all interaction matrixes, which is
in the denominator. The NSI value for interaction FB1FB2
is null in scenario s2. For this particular case the transition
probability is calculated as follows:

(4)

This means that transition probability depends mainly on
the scenarios and also on the number of sent interactions
within each scenario.

IV. RELIABILITY ASSESSMENT MODEL

The proposed a model for reliability assessment of the
control system software, which is modeled by the function
blocks, concerns a specific type of graph - Component
Dependency Graph (CDG). This graph is based on control
flow graphs, which is classic method for describing the
structure, decision points and branching in the code. [5]

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

CDG graph is basically directed graph which describes
the dependencies among graph nodes by its edges. Nodes
and edges of graph can be rated by one or more parameters
depending on the application type. CDG graph is widely
used tool by various authors [7] [1] [2] [4].

A. Component Dependency Graph

CDG graph for reliability assessment is probabilistic
directed graph, which describes the dependence among the
nodes by the edges. The graph nodes and edges are rated by
parameters that were mentioned before. CDG graph is based
on the possible execution ways among the function blocks
according to scenarios.

Definition 11: CDG graph is defined by the tuple G={V,
H, s, f}, where:

V is the finite set of nodes V = {vi | i=1...|V|},
H is the set of directed edges of graph, E = {ei | i=1...
|E|}, E V V,
s is the start node of graph,
f is the termination of graph.

Definition 12: Node v: v V represents function block

FBi and its defined as a tuple {NFBi, RFBi}, where:
NFBi is the name of the function block FBi,
RFBi is the reliability of the function block FBi.

Definition 13: Function block reliability RFBi is the

probability that function block FBi execute correctly
(faultless) its function.

Definition 14: Directed edge h: h H represents a
transition of control flow from one function block to
another. Directed edge is defined as a tuple {RPij, PPij},
where:

RTij is the reliability from node vi to node vj, respectively
from the function block FBi to function block FBj,
PTij the probability of transition execution from node vi
to node vj, respectively from the function block FBi to
function block FBj.

Fig. 12 CDG graph example for reliability assessment

Definition 15: Transition reliability RPij is probability that
the information sent from one functional block FBi is
failure-free received by the second function block FBj.

Definition 16: Transition probability PTij is the
probability that the execution of required functionality of
functional block FBj is performed immediately after the
execution of required functionality of the function blocks
FBi.

Fig. 12 shows the example of control system application,
which consists of five function blocks.

B. CDG Graph Construction

The start node of the graph represents the point where
signals enter the system, respectively inputs from outside the
system. Termination node of the graph is the point where
signals exit the system, respectively outputs from the
system. Reliability of the start node and termination node is
equal to unity.

CDG graph construction algorithm:
1. Identify the functional blocks which are the inputs

into the system.
2. Identify the functional blocks which are the outputs

from the system.
3. Assign all components from sequence diagrams

into the set V, V {FB1, FB2, FB3, ..., FBn}, kde n
=1...|N| a |N| is the number of functional blocks.

4. Assign into the set W, W V.
5. Assign into the w any element from the set W and

at the same time remove it from the set W.
6. While the set W is not empty, repeat:

a. If w is the system input, then add the edge (s,w)
into the set of edges E, otherwise

b. If w is the system output, then add the edge
(w,f) into the set of edges E, otherwise

c. If there is a dependence between w W a v V
in the sequence diagram, then add the edge
(w,v) into the set of edges E.

d. Into w add next element from the set W at the
same time remove it from the set W.

Next step is to:
 Assign function block reliabilities RFBi values to

graph nodes,
 Assign transition reliabilities RTij values to graph

edges,
 Assign the transition probabilities (PPij) for all

scenarios using scenario probability and transition
probabilities among functional blocks in each
scenario according the equation (2).

If all these parameters are set, then it is possible to

construct CDG graph according to the earlier definitions.

C. Reliability Assessment Algorithm

The last step after the CDG graph construction is to apply
the reliability analysis algorithm. This algorithm
incorporates the traversing of directed graph.

The CDG graph traversal algorithm starts from the
starting node seeking for all of its descendants. If found
child node is not the termination node of the graph, this is
serial execution flow and we use multiplication to calculate
the reliability. Following these instructions, every path is

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

traversed until the termination node is found. This indicates
that either this is the end of the graph traversing or there is
still some node in the stack and there is a branching in the
graph. If there was a branching in the graph, the algorithm
traverse another way in the graph and the calculated value of
this parallel path is added to the temporary value of
reliability.

Algorithm is described by this pseudo-code:

Input: CDG Graf
Output: RCelk

1 Initiation: RCelk = 0; RTemp = 1;
2 Begin
3 s = TStack.Create; {stack creation}
4 s.push(v1); {adding the first node into the

stack}
5 repeat
6 begin
7 s.pop(vi,RFBi); {selecting and removing

the node from stack}
8 if (vi = f) {if actual node is termation

node}
9 then RAll = RAll + Temp
10 else
11 for j:= all neighbours of vi do
12 if EdgeExist(vi,vj) then {for all

edges from node vi}
13 Begin
14 RTempj = RTempi * RFB(vi) *

RT(vi,vj) * PT(vi,vj);
15 s.push(vj,RFBj,Rtemp); {add all

descendants of node V into the stack}
16 End;
17 until s.empty;
18 s.Free;
19 End;
20 End.

V. CONCLUSION

Quality assurance and reliability assessment of technical
systems, which include software, is one of the most
important but also most difficult tasks of software
engineering. The reliability assessment moves to earliest
stages of the software development cycle to predict the
reliability and identify critical system components. After
finding reliability critical software components it is
necessary to adopt such design tasks to increase the
reliability level by appropriate engineering practices.

Today the automation and control systems software are
penetrating from industrial area also to everyday life
appliances. Such control systems software becomes still
more complex and sophisticated, and it is the challenge to
ensure its reliability.

The paper introduced the new approach for reliability
assessment of control systems software which can be used in
early stages of development. The approach follows the last
trends in control systems software using the IEC 61499
standard which provides the model for capturing the
behavior and the architecture of control systems software.

The next steps in future work contain the case study
elaboration and practical evaluation of the approach.

REFERENCES

[1] CHANG, J., MA, H. “Modeling the Architecture for Component-
Based E-commerce System” in Proceedings of the 4th international
Conference on Formal Engineering Methods: Formal Methods and
Software Engineering (October 21 - 25, 2002). C. George and H.
Miao, Eds. Lecture Notes In Computer Science, vol. 2495. Springer-
Verlag, London, 2002, pp.98-102.

[2] CHAUHAN, P., et al. “Automated Abstraction Refinement for Model
Checking Large State Spaces Using SAT Based Conflict Analysis” in
Proceedings of the 4th international Conference on Formal Methods
in Computer-Aided Design (November 06 - 08, 2002). M. Aagaard
and J. W. O'Leary (Eds.) Lecture Notes In Computer Science, vol.
2517. Springer-Verlag, London, 2002, pp. 33-51.

[3] DELUGACH, H.S., COX, L.C., SKIPPER, D.J.. Representing
Software Component Dependencies Using Conceptual Graphs
[Online] Available:
http://pdf.aminer.org/000/290/146/representing_natural_language_cau
sality_in_conceptual_grpahs_the_higher_order.pdf

[4] PELIKAN, M., MÜHLENBEIN, H. “The bivariate marginal
distribution algorithm” in Advances in Soft Computing - Engineering
Design and Manufacturing (1999), London, R. Roy, T. Furuhashi,
and P.K. Chawdhry (Eds.), 1999, pp.521-535.

[5] PRESSMAN, R. Software Engineering: A Practitioner’s Approach,
4th ed. New York : McGraw Hill, 1997.

[6] UML. OMG Unified Modeling Language (OMG UML),
Superstructure. [online] OMG. Available:
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/

[7] YACOUB, S. M., CUKIC, B., AMMAR, H. H. “Scenario-Based
Reliability Analysis of Component-Based Software” in Proceedings
of the 10th international Symposium on Software Reliability
Engineering (November 01 - 04, 1999). ISSRE. IEEE Computer
Society, Washington, DC, 1999, s. 22 – 31.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

