
 

 

  

 Abstract— This study is based upon evaluating the 

performance and power consumption of a least effort 

controller for a turbo-jet engine. The paper emphasizes that 

the least effort control technique gives comparable transient 

performance and disturbance recovery characteristics with 

referenced results, obtained from Nyquist array and optimal 

control methods. It also provides a simpler controller than 

those given by these techniques whilst dissipating minimum 

control energy leading to minimum heat, wear and 

maintenance costs. Rapid implementation of this design theory 

for aircraft engines and for general multivariable applications 

is advocated. 

 
Index Term— multivariable, control, least-effort, INA, optimal 

I. INTRODUCTION 

he fuel flow rate and the nozzle area changes are the 

manipulated input variables, while high and low 

pressure spool speeds, are the output variables, for the 

turbo-jet engine considered in this contribution. 

Multivariable system analysis presents further restrictions 

on the classical control problem, such as output interaction 

regulation, integrity confirmation and stability assessment. 

The pilot control of aircraft jet engines, especially during the 

critical flight modes, such as at takeoff and landing are 

investigated. The reliability and rapid response of the 

engine’s control system is essential, for the safe approach 

and deck landing of aircraft. Random disturbances on the 

control systems, of aircraft engines, are to be expected due 

to air turbulence and during varying operational flight 

modes. This would affect the performance of the aircraft and 

the control system which should be designed to limit the 

effect of output changes and random disturbances. 

Aircraft have limited power supplies. Consequently, 

research and development aimed at minimizing the fuel 

consumption of aircraft engines, from a mechanical point of 

view are important. However, the problem of the energy 

consumption of the gas turbine control system itself, to 

minimize wear, maintenance, noise and heat generation 

whilst reducing the deterioration of the control system 

components has been neglected.  

 This paper exploits recent advances in multivariable 

system control emphasizing the minimization of the control 

effort required for the regulation of the engine model [1]. 

The methodology applied is to design a Least Effort 

Controller [2] for a twin-spool turbo-jet engine model. The 

proposed controller also addresses problems such as closed 
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loop stability improving thereby the transient and aircraft 

steady state responses whilst enhancing the disturbance 

rejection properties of the system.   

 The case study considered herein is in respect of a twin 

spool turbo-jet engine, and the proposed controller will be 

compared with previous designs [3] and [4]. Substantial 

simplification of the controller is achieved whilst 

maintaining the closed loop design characteristics specified 

for existing designs.  

II. OPEN LOOP RESPONSE  

The general transfer function for the jet engine, model as 

shown in [1], is given by: 

 

�∆��(�)∆��(�)	 = ��.������ ���.�(���.���)����.������.����.����� ����(���.���)����.������.���� �
������ 00 ��������� �

∆��,�∆ !,�	     (1) 

 

 An investigation of the open loop responses requires the 

simulation of the system model following a unit step change 

on each input. These are as shown in Fig 1 and Fig. 2. 

 From Fig. 1, the simulation exhibits over damped 

behaviour for both outputs and a settling time of almost 3 

seconds with an output interaction of almost 570%. The 

second output is for the low-pressure spool speed,	∆��(�). 
Fig. 2 again shows this to be over damped responses for 

both outputs and a settling time of approximately 4 seconds, 

with approximately 75% interaction is evident.  

 Disregarding the substantial output coupling, the system 

model is stable and dynamically well behaved. Therefore, 

the control strategy herein will be focused on reducing the 

system output interaction whilst improving the transient 

response. The control system should be such that changes in 

any system input will not cause a significant change in the 

remaining outputs. A ten percent limit on the steady state 

interaction between outputs, for any input changes, is 

normally acceptable.  

The closed loop response should also be stable, and well 

behaved with overshoots of less than 20%. An improvement 

in the system response is required and the settling time must 

be reduced.  

Since the system model represents a jet engine, random 

disturbances are to be expected. Air turbulence and changes 

in the aircraft flight mode (e.g. takeoff, cruise) result in 

natural air turbulence disturbances. The robustness of the 

control system and any change in the model parameters 

should also be considered. An investigation of the 

disturbance recovery response is also required. Importantly, 

this paper investigates the energy consumed by the closed 

loop control action. 

 

 

Turbo-Jet Engine Multivariable Control  

R. Whalley and T. El-Hassan 

T

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012



 

 

 

III. LEAST EFFORT CONTROL METHODOLOGY 

 

In the design procedure outlined here, a dual loop approach 

is adopted, where an inner loop will be utilized to secure 

acceptable dynamics and an outer loop and the pre-

compensator will primarily be employed to satisfy 

disturbance-output conditions, as shown in [5].  

The transformed open loop system equation is: #(�) = $(�)%(�) & '(�)                         (2) 

and if the control law for the proposed feedback is %(�) = ((�))*̅(�) , -(�)#(�). & /(*(�) , 0#(�))     (3) 

where in (2) and (3) there are m independent inputs, 

disturbances, and outputs and  

( ) ,  0 1,  1 .F Diag f f j m= < < ≤ ≤  

Since the inner loop controller is: ((�))*̅(�) , -(�)#(�). 
this will be used to satisfy the specified dynamic behavior of 

the closed loop system while the outer loop controller, given 

by: /(*(�) , 0#(�)) 
will be utilized to secure the required steady state interaction 

and disturbance recovery capacity of the system. 

With	*2(�) = 0, the closed-loop equation becomes: #(�) = (34 & $(�)(((�) 56 -(�) & /0))7� 8($(�) /*(�) & '(�))                       (4) 

If a steady-state matrix S: is now selected such that    

#(0) = ;�*(0) 
then from (4), with  � = 0 : 

/ = ($(0)7� & ((0) 56 -(0));�(3 , 0;�)7�       (5)  

At low frequencies,   $(�)/ ≅ 11 , > (34 & $(�)((0) 56 -(0)) 
Consequently, (6) on approaching steady-state conditions 

becomes: #(�) = 34*(�) & ;(�)'(�)                 (7) 

where the low frequency sensitivity matrix is: ;(�) = (1 , >)(34 & $(�)((�) 56 -(�))7�, 0 6 > 6 1 

Evidently, from (7), if s mS I=  steady-state non-interaction 

would be achieved. Moreover, as f is increased,> 6 1, there 

will be increasing steady-state disturbance rejection , with 

imposition of the stability constraint. 

 For implementation purposes, a conventional 

multivariable regulator structure comprising a forward path @(�) and feedback path compensator A(�) could be easily 

be computed from (4).The input-output relationship would 

be: #(�) = (34 & $(�)@(�)A(�))7�)$@(�)*(�) & '(�). (8) 

On comparing (4) and (8), evidently @(�) = /                                (9)  

and    @(�)A(�) = ((�) 56 -(�) & /0 A(�) = /7�((�) 56 -(�) & 0              (10) 

enabling the employment of established feedback structures. 

 

A. Inner Loop Analysis 

The open loop system $(�) is assumed to be an m 8m	linear, regular, proper, or strictly proper realization which 

admits a general factorization of: $(�) = B(�) C(�)�(�)D(�)E(�)                     (11) 

where B(�), �(�), D(�), E(�), and the elements of  
F(:)G(:) ∈HJ, s ∈ L 

 In (11), B(�) contains the left (row) factors of  $(�) , 
while D(�) contains the right (column) factors, and E(�) 
contains the transformed finite time delays, such that the M 8M matrices comprising (11) are: 

( ) ( )

( )

( ) ( ) / ( ) ,   ( ) ( ) / ( )  

and ( )  1 ,j

j j j j

sT

L s Diag s p s R s Diag s q s

s Diag e i j m

λ ρ

−

= =

Γ = ≤ ≤

 

and det ( ) 0,A s ≠ with elements: NOP(�) = NOP�47� & QOP�47� & ⋯& SOP 		1 T U, V T M   (12) 

As the input-output-disturbance relationship is: #(�) = $(�)%(�) & '(�)            (13) 

and if the inner-loop controller is: %(�) = ((�))*̅(�) , -(�)#(�).         (14) 

Then, combining (13) and (14) yields: #(�) = (34 & $(�)((�) 56 -(�))7�($(�)((�)*̅(�) &																																																						'(�)																																							(15) 

Any finite time delays in E(�) could be ordered with WO X WP 	, 1 T V T M	, U Y V	, so that the forward path gain 

vector can be arranged as: ((�) = )(�(�)Z7�[\]7\^_, (�(�)Z7�[\]7\^_ 																					, … . , (�(�), … . . , (4(�)Z7�(\]7\^).\              (16) 

Since: -(�) = (-�(�), -�(�), … . , -4(�))              (17) 

and if: 
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(P(�) = (P∅P(�) and -P(�) = -PbP(�)				1 T V T M where ∅P(�)  and bP(�) are proper or strictly proper , stable , 

realizable , minimum phase functions , then they could be 

selected such that (15) becomes: 

#(�) = c34 & Z7�\]d(�)B(�) C(�)�(�) ((�) 56 -(�)e7� 8																cd(�)B(�) C(�)�(�)(Z7�\]*(�) & '(�)e               (18) 

where: ( = ((�, (�, … . , (4)\               (19) 

and  - = (-�, -�, … . , -4)                   (20) f(�) = �g & N��g7� &⋯& N� 

and    fZh cd(�)NO,P(�)e 6 (		1 T U, V T M 

The determinant required in (18) is: fZi j34 & Z7�\]d(�)B(�) C(�)�(�) ((�) 56 -(�)k = 1 &																																	Z7�\]d(�) 6 - C(�)�(�) ( 5             (21) 

The inner product in (21), may be expressed as: 

6 -�(�)( 5=
)1, �, … . , �47�. lS�� S�� ⋯ S44⋮Q��N��

⋮Q��N�� ⋱…… ⋮Q44N44o l
(�-�(�-�⋮(4-4o      (22) 

If in equation (22), the gain ratios are: (� = d�(�, (� = d�(�, … . (4 = d47�(�        (23) 

and 6 -�(�)( 5= Q(�)                  (24) 

then (24) implies that: (�) .- = (Q47�, Q47�, … . , Q�)\            (25) 

where: Q
= lS�� & S��d� & S�4d47� ⋮ S�� & S��d� & S�4d47�⋮ ⋮Q�� & Q��d� & Q�4d47�N�� & N��d� & N�4d47� ⋮ Q�� & Q��d� & Q�4d47�⋮ N�� & N��d� & N�4d47� 

⋮ ⋯S4� & S4�d� & S44d47�⋮⋮ ⋯Q4� & Q4�d� & Q44d47�⋮ ⋯N4� & N4�d� & N44d47�qr
rrr
s
 

 

B. Optimization 

To detect the absolute minimum control effort required, 

under closed-loop conditions with arbitrary disturbances 

entering the system, a performance index representing the 

energy dissipated should be defined. The control effort, at 

time t is proportional to: (|(�-�| & |(�-�| & ⋯ |(4-�|)|#�(i)|& (|(�-�| & |(�-�| & ⋯ |(4-�|)|#�(i)|& ⋯& (|(�-4| & |(�-4|& ⋯ |(4-4|)|#4(i)| 
Hence, the control energy costs, under these conditions, 

are proportional to: v(i) = w [∑ (��4Oy� ∑ -P�#P�(i)4Py� _fizy\{zy�               (26) 

Then for arbitrary changes in the transformed output 

vector #(i), following arbitrary disturbance changes: | = ∑ (��4Oy� ∑ -P�4Py�               (27) 

If the relationships: (� = d�(�	, (� = d�(�… . . (4 = d47�(� 

are adopted then (27) can be written as: 

( ) ( )2 2 2 1 1

1 2 11
T

T

m
J n n n b Q Q b− −

−= + + +�  

 

C. Disturbance Rejection Analysis 

The employment of the minimum control effort would 

not, in general, achieve required disturbance recovery 

conditions. To provide this, the outer-loop feedback gain f 

should be increased	0 6 > 6 1.0, as indicated by (7). For 

further analysis details, see [5]. 

 

D. Stability of Combined System 

The stability condition is dependent on the denominator 

of the input-output relationship for the complete, closed-

loop system which is given by (8). Consequently, the outer –

loop feedback gain matrix F is given by 

( )   0 1F Diag f f= < <  

Then the denominator of equation (8) may be computed 

from: fZi ~34 + $��� �(��� >< ℎ����1 − >� + $�0�7�>�1 − >� �� 

From this expression, it is clear that the elements of the 

feedback-compensator matrix become infinite as > → 1. 

This would always result in closed-loop system instability. 

Consequently, 0 < f <1, is mandatory. 

 

IV. LEAST EFFORT CONTROLLER 

 

In the design procedure outlined here, the inner loop will be 

utilized to secure acceptable dynamics, the outer loop and 

the pre-compensator will be employed to satisfy 

disturbance-rejection conditions. For the gas turbine model, 

according to (1) is: 

$��� = l1.496� + 2 951.5�� + 1.898��� + 3.225� + 2.5258.52� + 2 1240�� + 2.037��� + 3.225� + 2.525o l
10� + 10 0
0 100� + 100o $��� =

��.������ ���.�����.��������.������.����.����� ��������.��������.������.���� �
������ 00 ��������� �

��������� 00 1� ���������� 00 1�  
Multiplying the first three matrices and rearranging in the 

form :	$��� = B��� C�������D���E���  $��� =
���.��[����.������.���_ ���������.�����������.�[����.������.���_ ����������.���������������.������.���������������� ���������� 00 1�  
where B��� = 3	, E��� = 3, D��� = ���������� 00 1�, ���� =�14.96��� + 3.225� + 2.525� 95150�� + 1.898��� + 2�85.2��� + 3.225� + 2.525� 124000�� + 2.037��� + 2�	  
and	f��� = ��� + 3.225� + 2.525��� + 2��� + 100�, with 

pre compensator: 
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( ) ( )100 10 0
.

0 1

s s + + 
 
 

 

The approximation: h�� = 14.96��� + 3.225� + 2.525���� + 3.225� + 2.525��� + 2��� + 100�≈ 15.418� + 18.887�� + 100���� + 3.225� + 2.525� h�� = 85.2��� + 3.225� + 2.525���� + 3.225� + 2.525��� + 2��� + 100�≈ 87.8082� + 107.565�� + 100���� + 3.225� + 2.525� h�� = 95150�� + 1.898��� + 2���� + 3.225� + 2.525��� + 2��� + 100�= 95150�� + 1.898��� + 100���� + 3.225� + 2.525� h�� = 124000�� + 2.037��� + 2���� + 3.225� + 2.525��� + 2��� + 100�= 124000�� + 2.037���� + 3.225� + 2.525��� + 100� 
will be employed. h��� = ����f���

≈ j 15.418� + 18.887 95150� + 180594.787.8082� + 107.565 124000� + 252588k��� + 3.225� + 2.525��� + 100�  

Then according to (22): 

( ) ( )

( ) ( )
1 1 2 1

1 2 2 2

15.418 18.887 95150 180594.7

                  87.8082 107.565 124000 2

( )

52 8

 

5 8

s k h s k h

s k h s

hA k

k h

s + + +

+ +

=

+ +

< >  

= [1	�] j18.887 180594.7 107.565 25258815.418 95150 87.8082 124000k l
(�ℎ�(�ℎ�(�ℎ�(�ℎ�o  

According to (23), the gain ratio n is substituted to 

formulate the Q matrix 1with 1 yielding:k =   = j18.887 + 180594.7d 107.565 + 252588d15.418 + 95150d 87.8082 + 124000dk 
From (24),     < ℎ C������� ( >= �������� 
where: f��� = ��� + 3.225� + 2.525��� + 100� =�� + 1.34��� + 1.8866��� + 100� 
If  Q��� = s + 1.5 , so that this zero will attract the pole at 

(� = −1.34) reducing the settling time, and assuring closed 

loop stability.  

Substituting for Q and   yields the performance index: 

| = �������������.�������������7�.����������������.���������������������7�.����������������.�����������������         (31) 

Fig. 4, shows the performance index | against gain ratio d. 

To find the absolute minimum value of the performance 

index, differentiating the J function with respect to gain 

ratio and equating to zero so that: �|�d = 0 

reveals that there are four supremum values for J where 

minJ arises when: d = −458.58735	�ℎZ*Z	| = 0.218Z − 18	(minimum) as 

shown in Fig. 4. 

Hence, the inner loop forward gain values becomes with 

1 1:k =  

1
(0)

458.58735
k

 
=  − 

                  (32) 

 Now, substituting   	, Q = j 11.5k into (25), yields the inner 

loop feedback gain values which are h�0� = ����g� = [−0.8854e − 7, 0.5035e − 7]       (33) 

 To design the outer loop, the feed forward and feedback 

gain matrices k(0), h(0), Ss, G(0) and F are required. 

 

 
since $��� =< ℎ ����f��� ( > D��� 
then (��� = (. D��� = j 1−458.58735k ���������� 00 1�   (34) 

(�0� = j 10−458.5874k and ℎ�0� = [−0.8854Z −																													7		0.5035Z − 7]                             (36) 

The steady state open loop transfer function matrix is 

given by (0)G and the steady state interaction due to output 

coupling would be restricted in closed loop to 10% if:  ;� = j 1 0.10.1 1 k                    (38) 

Investigation of the effect of increasing feedback gains 

from 0.1 to 0.9 on closed loop response and disturbance 

suppression will be studied in order to complete the control 

system strategy. 

For 0 = j0.9 00 0.9k                               (45) / = j−8.588 −5.0530.0904 0.0797k                     (46) 

A = � �.����:����:��� �.�������:����:����.������:����:��� �.�����:����:��� � =
																															j 0.899 0.0005420.00162 0.8991 k      (47) 

For values of f <0.9 the compensator P and H have 

elements of smaller moduli. For comparison purposes, the 

closed loop response was simulated using the three designs 

of outer loop feedback gain f. Following a unit step change 

on the reference inputs of jet nozzle cross sectional area *����,  and then on the fuel flow rate *���� , results in the 

responses  shown in Fig. 5 and Fig. 6, respectively. 
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Also, the effect of increasing outer loop feedback gain f 

from 0.1 to 0.9, on the system disturbance rejection transient 

following a unit step change on disturbance δ��t� and then δ��t�, respectively will be compared for the three system 

designs using >� = 0.1, >� = 0.5	Ndf	>� = 0.9 as shown in 

Fig. 7 and Fig. 8. 

 

 
 

 
 

 

V.  CONTROL ENERGY DISSIPATION 

 

The controller for the inverse Nyquist and optimal 

designs are presented in Fig. 9. The energy consumed by 

each of the three controllers can be computed form: 

( )
600

2 2

1 2

0

( ) ( ) ( )

t

E s u t u t dt

=

= +∫
 

following the imposition of random disturbances for a 

period of 10 minutes. As this illustration shows, the energy  

 

consumed by the INA and optimal controllers is 

substantially greater than for the least effort controller. 

This diverging energy difference would manifest itself in 

terms of control system actuator and component wear, 

generating heat, aging and noise attracting thereby 

additional maintenance, refit and fuel costs. 
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VI. CONCLUSIONS 

 

The least effort controller’s responses are stable, rapid and 

well behaved. Despite the strong coupling exhibited by the 

twin-spool jet engine, this controller succeeds in reducing 

the output interaction, as specified. This reflects the 

flexibility of its design philosophy, giving freedom to 

enhance the performance and the closed loop response of 

multivariable systems.  The inner loop design provides an 

effective method for improving the transient response. 

Meanwhile, the outer loop design is used to reduce output 

interaction enhancing the disturbance recovery performance, 

thereby. The entire strategy is based upon minimizing the 

control effort required which is a commendable 

specification requirement. 

The least effort controller gives comparable performance 

characteristics with any of the published results. It also 

requires less control effort than these methods which 

employ perfect integrators or alternatively, relatively high 

gains. 
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