
 

 
 

 
Abstract— A linear quadratic regulator is designed for a 

rotor system on the basis of a finite element model. The rotor is 
subject to gyroscopic effect and is actively supported by means 
of piezoelectric actuators installed at one of its two bearings. As 
a result of the first aspect, its dynamic behavior varies with 
rotational frequency of the rotor. This aspect is challenging for 
linear time invariant control techniques since it results in a 
demand for high robustness. Furthermore, if controller and 
observer are calculated using a model at a specific design 
frequency, the separation principle does not hold. In this 
article a proposal for combined Linear Quadratic Regulator 
and Kalman Filter design on the basis of physical 
considerations is given. The space of design parameters is 
reduced to a manageable number of 3. It is shown that it is 
possible to design a single controller which guarantees stability 
and good performance in the whole operating range, which 
includes two resonance frequencies. The controller is 
implemented at the rig and experimental results are presented. 

 
Index Terms— active vibration control, linear quadratic 

regulator, piezoelectric actuator, rotor 
 

I. INTRODUCTION 

OTOR vibrations are a limiting factor for high speed 
applications such as aircraft engines or high speed 

cutting machines. This aspect gains in importance since the 
demand for lightweight construction leads to lighter 
machines being prone to excitation by dynamic forces. In 
many cases, attenuation of vibration amplitudes can be 
achieved by passive means, i.e. balancing, damping 
elements like squeeze film dampers (SFD), or targeted 
manipulation of eigenfrequencies and eigenvectors. If those 
methods reach their limits, active means are an attractive 
alternative. 

Possible actuators and semi-active components for use in 
vibration control of rotating machinery are active SFD [1], 
electrorheological dampers [2], active magnetic bearings 
and electromagnetic actuators [3], [4], [5], [6], [7], [8] as 
well as piezo-actuated bearings [9], [10], [11]. Advantages 
of piezoelectric stack actuators are low weight accompanied 
by high forces in a broad frequency range. Furthermore, 
even though there is hysteresis present in piezoelectric 
material, nonlinearity is small in comparison to other 
actuator types and a linear approximation of the 
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piezoelectric effect is sufficient for controller design. 
The most important component of any active system is 

the controller. For vibration control, feedforward as well as 
feedback methods are suitable. 

Feedforward approaches are typically adaptive because of 
the inevitable model mismatch. The algorithm most 
frequently used for adaption in the context of noise and 
vibration control is the Filtered x Least Mean Squares 
(FxLMS) algorithm. In [4], [10] the viability of the FxLMS 
algorithm is investigated in the context of rotating 
machinery. The extent of vibration attenuation seems 
promising. Also, no model of the frequency response 
functions (FRFs) from the disturbances to the outputs is 
required for implementation. However, the convergence 
behavior is difficult to predict under fluctuating operating 
conditions. This is especially true for systems having time 
dependent dynamics, such as rotor systems being subject to 
gyroscopic moments during a run up, since the algorithm 
requires a model of the so-called secondary path from the 
actuators to the sensors. If there is a phase mismatch in the 
secondary path greater than 90°, the algorithm will diverge 
[12]. This is critical for weakly damped mechanical systems, 
since there are very steep phase jumps of 180° at resonance 
as well as anti-resonance frequencies. Thus, just small 
mismatch of resonance or anti-resonance frequencies in the 
model leads to large mismatch in secondary path phase in a 
region around these frequencies. 

Feedback methods for vibration control, from the authors’ 
point of view, can be divided into three categories: 

The first one is built up by classical controllers such as 
PID-control, Integral Force Feedback, Positive Position 
Feedback and similar techniques, see [13]. They are used as 
a reference in many articles and can be implemented without 
a model of the plant. However, their performance is often 
far below optimal values due to a lack of closed solutions 
for calculation of optimal controller gains of multiple input 
multiple output systems. 

The basic idea of frequency domain approaches, e.g. 
controllers designed via µ-Synthesis or H∞-optimal 
controllers, is a more intuitive performance specification by 
means of frequency dependent weighting functions for the 
FRFs of the system. This kind of problem description in the 
frequency domain is convenient for mechanical engineers 
involved in structural dynamics, since they often think in 
FRFs. By inclusion of model inaccuracy in the control 
design process, it is possible to achieve robust stability and 
even robust performance in the case of µ-Synthesis. As a 
drawback, the weighting functions offer infinite degrees of 
freedom as they can be shaped arbitrarily and as a result 
usually have to be defined in an iterative manner. 
Furthermore, in contrast to state space controllers, the order 
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of frequency domain controllers usually exceeds the model 
order. The order of H∞-optimal controllers is given by the 
model order plus the order of the weighting functions [14] 
while the order of µ-controllers is usually even higher. This 
results in the need for a subsequent controller reduction if 
there are limits regarding computational effort of the 
controller. Controller reduction can reduce the closed loop 
performance significantly and sometimes even leads to an 
unstable closed loop system. In rotordynamics, the 
frequency domain controllers are often used in the context 
of active magnetic bearings, see [5], [6] for example. 

The third category contains the state space controllers. 
Besides the classic examples, the Linear Quadratic 
Regulator (LQR) and pole placement controllers, which 
mainly aim at the alteration of system dynamics, there have 
emerged other techniques to design state feedback 
controllers which e.g. consider nonlinearities in the system 
[15] or affect disturbance rejection behavior by using Linear 
Matrix Inequalities (LMI) for the definition of requirements, 
see [16] for an example in the field of rotordynamics. 
However, implementation of these techniques often fails 
because of mathematical obstacles in e.g. the solving 
process of LMIs. Furthermore, the problem description is far 
more complex as in the case of the classic state space 
controllers, which offer the user relatively simple 
implementation and a good understanding of the alteration 
of the dynamic characteristics of the system by the 
controller. They are thus frequently applied to control 
problems throughout literature. For instance, the LQR has 
been successfully applied to rotor systems excited by 
unbalance, see [7], [8], and [11]. Results show that the 
controller is suitable for the problem. However, even though 
dependence of the system dynamics on the rotational 
frequency due to gyroscopic effects is mentioned in some of 
these articles, [7] and [11], the problem of model mismatch 
is not addressed in detail in the context of controller design. 

In this article, a LQR and a Kalman Filter, resulting in a 
Linear Quadratic Gaussian (LQG) controller [17], are 
applied to a rotor system. The choice of these types of 
controller and observer is due to their ease of 
implementation and the advantage of the design parameters 
being physically interpretable. Furthermore, the LQR is 
robust to model inaccuracies and Kalman Filters can be 
designed to be insensitive to measurement or actuator noise 
[17]. 
 

II. SYSTEM DESCRIPTION AND MODELING 

 

A. Test Rig 

In this paper, a controller is applied to the rotor system 
shown in Fig. 1. The flexible rotor consists of a shaft of 9 
mm diameter and 320 mm length which has two discs 
mounted on it. The active bearing, consisting of a bearing 
cup, two piezoelectric actuators with a maximum stroke of 
60 μm and two springs to apply pre-stress to the actuators is 
shown in detail in Fig. 2. Besides the active bearing, which 
is located between the discs, there is a passive bearing at the 
other end of the shaft. The displacements of the discs into 
the radial direction are measured by four eddy current 

sensors. The resulting sensor signals are low pass filtered by 
means of a first order analogue filter in order to avoid 
aliasing effects during in digitalization process of the 
measurement data. The rotor is accelerated by means of a 
250 Watt DC motor. The maximum rotational speed of the 
rotor is 160 Hz. It has two unbalance induced resonance 
frequencies in its operating range at approximately 47 and 
108 Hz. A dSpace real time system (DS1104) is used for 
data acquisition and controller implementation. 

 

 
Fig. 1: Test rig 

 

 
 

Fig. 2: Active bearing 

 

B. Modeling 

A model of the rig is derived by means of finite element 
(FE) method on the basis of Timoshenko beam theory. A FE 
model is used rather than an identified one, in order to 
achieve a model in which the states are physically 
interpretable, i.e. assignability to vibration modes in this 
case. The bearings are modeled by discrete springs and 
piezoelectric elements. The piezoelectric effect is 
approximated by linear equations, even though there exists 
some hysteresis in reality [18]. The results in this article 
show, that this simplification is permissible. Damping is 
introduced by means of viscous damping and a uniform 
damping ratio of 0.9% for all modes. The model is reduced 
by means of modal reduction to an order of 16 in state 
space. The governing equations read: 

 

 
ሶݔ ൌ ݔஐܣ  ݑஐܤ   ஐ݀ܧ

ݕ ൌ ݔஐܥ   ݑஐܦ
(1) 

 
where ݔ ∈ Թ are the system states, ݑ ∈ Թೠ the control 

inputs, i.e. the voltages applied to the actuators, ݀ ∈ Թ the 
disturbances and ݕ ∈ Թ the sensor signals. 
,ஐܣ ,ஐܤ ,ஐܥ ,ஐܦ  ஐ are system matrices with appropriateܧ
dimensions. The states of (1) are arranged with ascending 
eigenfrequencies. Due to gyroscopic effects, the system 
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dynamics are dependent on the rotational frequency Ω, 
which is indicated by the respective subscript in (1). After 
reduction, the model is augmented in order to capture the 
effects of filters, amplifiers and sampling. The low pass 
filters and the amplifiers are described by first and second 
order models respectively and sampling is introduced to the 
model by a second order padé approximation. For controller 
design purposes in this article, it is equivalent to add the 
filters to the model at the inputs rather than on the physically 
correct outputs. Thus, effects of filters, amplifiers and 
sampling are described by a single 2 x 2 model of order 10, 

 

 
ሶݔ ൌ ݔܣ   ݑܤ

ݑ ൌ  ݔܥ
(2) 

 
and included into the overall model as shown below: 
 

 

ሶௌݔ ≔ 
ሶݔ
ሶݔ
൨ ൌ 

ஐܣ ܥஐܤ
0 ܣ

൨ ቂ
ݔ
ݔ
ቃ  


ஐܧ 0
0 ܤ

൨ 
݀
ݑ

൨ ൌ 

 
ൌ:ܣௌ,ஐݔௌ  ௌ,ஐ݀ܧ   ݑௌܤ

 
ݕ ൌ ሾܥஐ ௌݔሿܥஐܦ ൌ:  ௌݔௌܥ

(3) 

 
The model matches reality with quite high accuracy, see 

Fig. 3, where the simulated and the identified FRFs from the 
actuator pointing into the x direction to the sensor pointing 
into the x direction at disc 1 (referred to as sensor 1x in the 
following) are shown for the case of nonrotating rotor 
(Ω ൌ 0). 
 

Fig. 3: FRF of plant and model from actuator x to sensor 1x 

 
 
The first 2 modes are replicated with high accuracy, in the 

frequency region of higher order modes there is some 
deviation of the simulated from the measured data. Also, 
effects of the low pass filters, amplifiers and sampling are 
visible in the model as well as the measurement when 
inspecting the phase of the transfer function. The model 
could be further improved in the upper frequency range, but 
experiments show that accuracy is sufficient for controller 
implementation. 

The excitation for the simulations in this article is derived 
by means of analysis of measurement data at the critical 
speeds by a procedure similar to influence coefficient 
balancing method [19]. Assuming that there are unbalances 
present at the discs only, the response at sensor 1x, 
represented by its complex amplitudes yଵ୶ሺΩሻ, to the 
unbalance excitation is given by: 
 

 yଵ୶ሺΩሻ ൌ  ሺΩሻΩଶܷ (4)ܪ

 
where ܷ ൌ ሾ ଵܷ, ܷଶሿ represents the unbalances at the discs. 

For identification of these unbalances, complex amplitudes 
yଵ୶ሺΩୖଵሻ and yଵ୶ሺΩୖଶሻ at the unbalance induced resonances 
Ωୖଵ and Ωୖଶ are obtained by evaluation of the measurement 
signals at these frequencies by means of a digital 
implementation of the wattmeter measuring principle [20]. 
The desired approximation of the equivalent unbalances at 
the discs is given by 

 

 ܷ ൌ 
ሺΩୖଵሻΩோଵܪ

ଶ 	
ሺΩୖଶሻΩோଶܪ

ଶ ൨
ିଵ


yଵ୶ሺΩୖଵሻ
yଵ୶ሺΩୖଶሻ

൨ (5) 

 
Because of residual mismatch between model and plant 

regarding resonance frequencies, see Fig. 4, the resonance 
frequencies of the model and not the rotational frequencies 
of the measurements are substituted into (5). 

 

C. Model mismatch 

The model as discussed so far just incorporates basic 
rotordynamics, the gyroscopic effect and unbalance 
excitation. However, in real rotor systems there are 
additional effects to be considered. Fig. 4 shows the 
spectrogram of sensor 1x for a run up to a rotational 
frequency of 115 Hz. 

Besides the power spectral density of sensor 1x, there are 

straight lines in the figure corresponding to vibration at 
ଵ

ଷ
Ω, 

ଶ

ଷ
Ω, Ω and 2Ω, often referred to as engine orders. Also the 

first four eigenfrequencies of the model are included in the 
figure, which are altered significantly by the presence of 
gyroscopic moments and are thus a function of rotational 
frequency. Excitation with rotational frequency Ω 
corresponds to unbalance excitation and is most relevant for 
rotor systems. It is observed, that only modes of even order, 
referred to as forward whirl modes, are excited by unbalance 
in contrast the backward whirl modes of uneven order. 
Excitation at 2Ω results from the rotor not being fully 
isotropic in the plane perpendicular to the rotor axis, leading 
to excitation of the rotor by gravitational forces [19]. 

Increased vibration amplitudes at 
ଵ

ଷ
Ω and 

ଶ

ଷ
Ω for Ω/2π ൎ
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80	Hz result from nonlinearities in the system, presumably 
clearances and nonlinear characteristics of ball bearings 
[21]. For controller synthesis, just unbalance excitation and 
a linear model are considered, since it is assumed that other 
effects are of minor interest for rotor behavior as well as 
controller design. 

 
 

 
Fig. 4: Spectrogram of a run up, power spectral density normalized to 

measurement duration and sampling frequency, sensor 1x 

 

III. CONTROLLER DESIGN 

The main hindrance for controller implementation is the 
dependence of the rotor matrices in (3) on the rotational 
frequency. In this section it will be shown that it is possible 
to design a single controller which leads to stable behavior 
and good performance in the whole rotational frequency 
range considered. A consequence of the fluctuation of the 
system characteristics, despite the demand for high 
robustness, is that the separation principle does not hold if a 
simple constant observer is applied. There are possibilities 
to design observers for systems with additive uncertainties 
in the system matrices [15], however, the conditions for 
existence are very restrictive. In this article, the coupled 
problem of controller and observer design is treated, and a 
proposal to reduce the problem to 3 design parameters is 
given. 

A linear quadratic regulator (LQR) minimizing the cost 
functional  

 

ଵܬ  ൌ න ሺݔ௦்ܳݔ௦  ݑ
் ݐ݀	ሻݑܴ

ஶ


 (6) 

 
for ݔ௦ሺ0ሻ ് 0 and ݀ ≡ 0, is applied to the system. One 

may raise the question how the LQR fits to the problem of 
rotating shafts excited by unbalance. By proper weighting of 
the modes of the system it is achieved, that the damping 
ratios ߞ of modes of interest are increased, leading to 
reduced vibration amplitudes at resonance. 

The weighting matrices for the LQR are chosen to be of 
diagonal shape. Due to symmetry of the rotor and the 

exclusive consideration of unbalance excitation, one can 
choose ܴ ൌ  ଶ without losing relevant controllers, whereܫ
ܫ ∈ Թ௫ denotes the identity matrix. ܳ is chosen to be of 
the shape 

 ܳ ൌ ݀݅ܽ݃ሺݍଷܫଶ, ,ଶܫଵݍ ,ଶܫଷݍ ,ଶܫଶݍ ܫଷ଼ݍ , 0ଵሻ (7) 

 
such that the modes which are excited by unbalance are 

assigned the weights ݍଵ (for the first forward whirl mode) 
and ݍଶ (for the second forward whirl mode) respectively. 
Other rotor modes are weighted by ݍଷ and the modes 
corresponding to the model of filters, amplifiers and 
sampling are not weighted. In order to further reduce the 
number of parameters, and to achieve good vibration 
attenuation in both of the unbalance induced resonances, the 
respective weighting factors are set to ݍଵ ൌ ଶݍ ൌ 10. ݍ is 
one of the 3 design parameters to be determined. 
Simulations indicate that the resulting controllers possess 
poor robustness if the factor ݍଷ is too small compared to ݍଵ 
and ݍଶ, such that it is set to ݍଷ ൌ 10ିଵ. In this way the 
degree of stability [13] is increased for these modes. 

Since the system states are not measureable in the case of 
the rig, an observer has to be implemented for the system 
(3). The observer feedback matrix, denoted by ܮ is also 
computed by the LQR design method, leading to a so-called 
Kalman filter being insensitive to measurement and actuator 
noise if designed properly. If one assumes noise of equal 
level at all sensors and also at all actuators respectively, it is 
sufficient to choose the weights for the observer as shown 
below: 

 

 ܴை ൌ ,ସܫݎ ܳை ൌ ஐܤஐܤ
் (8) 

 
where ݎ describes the ratio of measurement and actuator 

noise levels assumed. This is true because just the ratio of 
assumed actuator and sensor noise levels affects the 
observer matrix ܮ but not the absolute values. Even though 
the value ݎ is not assigned on the basis of noise levels at 
the rig in this article, this physical consideration helps to 
reduce the number of free parameters to be determined in 
observer design significantly. 

As stated above, the differential equations describing the 
system are dependent on rotational frequency Ω of the rotor. 
As a result, if a linear time invariant controller is to be 
applied to the system, it has to be robust against changes in 
rotational frequency. Furthermore, separation principle does 
not hold and thus controller and observer design is a coupled 
problem. The approach in this article is to design a single 
pair of controller and observer at some specific design 
frequency Ω, leading to a robustly stable system for 
Ω ∈ ሾ0; Ω௫ሿ and good attenuation of unbalance induced 
vibration. A remarkable aspect of the LQR, designed at Ω, 
in combination with the rotor system under consideration is 
that despite the fluctuation of eigenvalues as well as 
eigenvectors of the system, the weights ݍଵ and ݍଶ still target 
at the forward whirl modes for the whole frequency range 
considered. 

By above considerations, the space of design parameters 
is reduced to 3, i.e. ݍ,  , and Ω have to be found. In orderݎ
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to do so, simple brute force optimization is found to lead to 
a controller showing good performance, not exceeding the 
maximum permissible control input and being robustly 
stable against variations in Ω ∈ ሾ0;Ω௫ሿ. 

The cost functional used for optimization is 
 

ଶܬ  ൌ
1

Ω௫
න  |ଶݔ|

ୀଷ,ସ,,଼

݀Ω
ஐೌೣ


 (9) 

 
in order to focus on the modes excited by unbalance 

within the operating range, i.e. the first two forward whirl 
modes. ܬଶ is minimized over a subset of the predefined set of 
design parameters in which robust stability for Ω ∈
ሾ0; Ω௫ሿ is guaranteed and the maximum control effort is 
not exceeded. The resulting optimal design parameters are 
used as a starting point for manual fine tuning as explained 
below. 

The controller resulting from the optimization does not 
account for measurement noise. In order to avoid high noise 
amplification, ݍ is reduced, starting from the optimal value 
to ݍ

௦, just before the point where control performance is 
diminished significantly. The obvious approach to reduce 
noise amplification, i.e. increase of ݎ, leads to significant 
loss in performance, cannot compensate for high controller 
gains entirely and is thus infeasible without reduction of 
controller gains. 

Furthermore it is observed in simulations, that vibration 
attenuation at the first unbalance induced resonance is much 
lower than at the second one. To overcome this problem, the 

respective weights are set to ݍଵ ൌ 10
ೞାଵ and ݍଶ ൌ

10
ೞିଵ. If ݍଵ and ݍଶ are futher altered from the optimal 

value, ݍ
௦, the system is no longer robustly stable for 

Ω ∈ ሾ0; Ω௫ሿ. 
The resulting controller is checked for stability in the 

presence of spillover effects caused by the not modeled rotor 
modes. From a mathematical point of view, stability of the 
system is not proven by inspection of the system for all 
Ω ∈ ሾ0; Ω௫ሿ because Ω is time dependent during a run up. 
Nonetheless it is clear from experience, that the system will 
be stable if it is stable for Ω ∈ ሾ0; Ω௫ሿ, Ω ൌ  and 	.ݐݏ݊ܿ
the system dynamics change slowly. This statement is given 
on a theoretical basis in [22]. Because of above 
considerations, the proof of stability for the linear time 
invariant case is skipped. 
 

IV. SIMULATION 

Simulation results for displacement amplitudes of sensor 
1x with and without control are shown in Fig. 5 for steady 
state operation. 

It is observed, that good vibration attenuation is achieved 
at both resonance frequencies within the operating range. 
The system is stable for all rotational frequencies under 
consideration. The required control inputs, i.e. the voltages 
applied to the actuators, are well below the maximum load 
of 500 V. It may be assumed, that voltages will also remain 
below design limit in the experiment despite modeling 
errors and simplifications made. It is also observed, that the 
control inputs are equal due to symmetry of the system, 

which has already been taken advantage of in the choice of 
ܴ in section III. 

 

 
Fig. 5: Simulation results, amplitudes at sensor 1x and control effort 

 

V. EXPERIMENT 

The controller is validated in an experimental setup. In 
order to do so, the rotor is accelerated to a maximum 
rotational speed of 115 Hz within about 5 minutes, i.e. 
virtually at steady state operation, with and without control. 
The results are shown in Fig. 6, where the envelopes of the 
displacement signals of sensor 1x with and without control 
as well as the control inputs are shown. 

It is observed, that the model matches reality good in 
terms of eigenfrequencies and the unbalance response, i.e. 
amplitudes at resonance of the forward whirl modes. The 
effects not included in the simulation, i.e. resonance-like 

behavior at 
ଵ

ଷ
Ω and 

ଶ

ଷ
Ω as well as the weight induced 

resonance at 2Ω are visible in the envelope of the 
uncontrolled run at approximately 20 and 80 Hz as 
expected. As stated in section II, these excitations are of 
minor interest, since only moderate amplitudes are caused 
by them. 

Control performance at the unbalance induced resonances 
matches the simulation results quite accurately and good 
performance is achieved. Prediction of control effort by the 
simulation is subject to uncertainties. The differences are 
assumed to be mainly caused by the linear approximation of 
the behavior of the actuators but also other simplifications 
during the modeling process. The controller attenuates 

vibration amplitudes at 2Ω efficiently. Excitation at 
ଵ

ଷ
Ω and 

ଶ

ଷ
Ω is literally eliminated with no significant control effort. 
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It is assumed by the authors, that the bearing characteristics 
are altered in such a way by the controller, that the effect of 
nonlinearity in the bearings is reduced. Furthermore, since 
lower amplitudes occur in the controlled case and nonlinear 
effects like progressive spring characteristics are amplitude 
dependent, it may be assumed that the influence of 
nonlinearity is further reduced by the attenuation of 
vibration amplitudes. 

 
 

Fig. 6: Experimental results, amplitudes at sensor 1x and control effort 

 

VI. CONCLUSION 

A proposal based on physical considerations for 
combined design of an LQR and the respective observer for 
a rotor with gyroscopic effect has been given. The controller 
design procedure was discussed in detail in order to give the 
reader advice for controller design for this class of systems. 

It has been shown, that it is possible to design a single 
controller leading to robust stability and good vibration 
attenuation in the whole operating range of the test rig under 
consideration. The controller was validated in simulation as 
well as experiment. It was shown that the controller is able 
to attenuate unbalance induced vibrations, as well as those 
caused by gravitational forces and nonlinearities in the 
system. 
 

ACKNOWLEDGMENT 

This paper is based on a research project in partnership 
with Rolls-Royce Deutschland Ltd & Co KG., supported by 
Deutsche Forschungsgemeinschaft within the framework of 
the graduate college 1344, „Instationäre 
Systemmodellierung von Flugtriebwerken“. 

REFERENCES 

[1] A. El-Shafei, "Active Control Algorithms for the Control of Rotor 
Vibrations Using Hybrid Squeeze Film Dampers," Journal of 
Engineering for Gas Turbines and Power, vol. 124, pp. 598-607, 
2002. 

[2] J. M. Vance, D. Ying, and J. L. Nikolajsen, "Actively controlled 
Bearing Dampers for Aircraft Engine Applications," Journal of 
Engineering for Gas Turbines and Power-Transactions of the ASME, 
vol. 122, no. 3, pp. 466-472, 2000. 

[3] A. Tonoli et al., "Design of Electromagnetic Dampers for Aero-Engine 
Applications," Journal of Engineering for Gas Turbines and Power, 
vol. 132, 2010. 

[4] K. Tammi, "Active Control of Rotor Vibrations by two Feedforward 
Control Algorithms," Journal of Dynamic Systems, Measurement, and 
Control, vol. 131, pp. 051012-1 - 051012-10, 2009. 

[5] R.L. Fritto and C.R. Knospe, "Rotor Compliance Minimization Via μ-
Control of Active Magnetic Bearings," IEEE Transactions on Control 
Systems Technology, vol. 10, no. 2, pp. 238 - 249 , 2002. 

[6] H.M.N.K. Balini, C.W. Scherer, and J. Witte, "Performance 
Enhancement for AMB Systems Using Unstable H∞ Controllers," 
IEEE Transactions on Control Systems Technology, vol. 19, no. 6, pp. 
1-15, 2011. 

[7] N. Tanaka, N. Uchiyama, T. Watanabe, and K. Seto, "Lavitation and 
Vibration Control of a Flexible Rotor by Using Active Magnetic 
Bearings," Journal of System Design and Dynamics, vol. 3, no. 4, pp. 
551-562, 2009. 

[8] M. Arias-Montiel and G. Silva-Navarro, "Finite Element Modeling 
and Unbalance Compensation for a Two Disks Asymmetrical Rotor 
System," in 2008 5th International Conference on Electrical 
Engineering, Computing Science and Automatic Control, Mexico 
City, 2008. 

[9] A. B. Palazzolo, R. R. Lin, and R. M. Alexander, "Piezoelectric 
Pushers of Active Vibration Control of Rotating Machinery," Journal 
of Vibration, Acoustics, Stress, and Reliability in Design, vol. 111, pp. 
298-305, 1989. 

[10] O. Lindenborn, B. Hasch, and R. Nordmann, "Vibration Reduction 
and Isolation of a Rotor in an Actively Supported Bearing Using 
Piezoelectric Actuators and the FXLMS Algorithm," in 9th 
International Conference on Vibrations in Rotating Machinery, 
Exeter, 2008. 

[11] F. Lebo, S. Rinderknecht, and M. Özel, "Model-Based Control of an 
Elastic Aircraft Engine Rotor with Piezo Stack Actuators," in IEEE 
17th International Conference on IE&EM, Xiamen, 2012. 

[12] S. M. Kuo and D. R. Morgan, Active Noise Control Systems. New 
York: John Wiley & Sons, 1996. 

[13] A. Preumont, Vibration Control of Active Structures. New York, 
London, Dordrecht, London, Moscow: Kluwer Academic Publishers, 
2004. 

[14] J. Doyle, K. Glover, P. Khargonekar, and B. Francis, "State-Space 
Solutions to Standard H2 and H∞ Control Problems," in Proceedings 
of the 1988 American Control Conference, Atlanta, 1988, pp. 1691-6. 

[15] W. Breinl and G. Leitmann, "Zustandsrückführung für dynamische 
Systeme mit Parameterunsucherheiten," Regleungstechnik, vol. 31, no. 
3, pp. 95-103, 1983. 

[16] C. Yongjun and Z. Changsheng, "Active Vibration Control based on 
Linear Matrix Inequality for Rotor System under Seismic Excitation," 
Journal of Sound and Vibration, vol. 314, pp. 53-69, 2007. 

[17] E. Hendricks, O. Jannerup, and P. H. Sorensen, Linear Systems 
Control. Berlin, Heidelberg, Germany: Springer, 2008. 

[18] A. Preumont, Mechatronics. Dordrecht: Springer, 2004. 

[19] T. Yamamoto, Linear and nonlinear rotordynamics. New York: 
Wiley-Interscience, 2001. 

[20] A. Argeseanu, E. Ritchie, and K. Leban, "New Balancing Equipment 
for Mass Production of Small and Medium-Sized Electrical 
Machines," in 12th International Conference on Optimization of 
Electrical and Electronic Equipment, Brasov, 2010, pp. 506 - 511. 

[21] H. Dresig and F. Holzweißig, Maschinendynamik, 9th ed. Berlin, 
Heidelberg, Germany: Springer, 2009. 

[22] H. H. Rosenbrock, "The stability of linear time-dependent control 
systems," International Journal of Electronics and Control, vol. 15, 
pp. 73–80, 1963. 

 

20 40 60 80 100
0

0.1

0.2

rotational speed (Hz)

di
sp

la
ce

m
en

t 
(m

m
)

 

 
ctrl off, experiment

ctrl on, experiment

20 40 60 80 100
0

50

100

150

rotational speed (Hz)

co
nt

ro
l i

np
ut

 (
V

)

 

 
Ux, experiment

Uy, experiment

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012




