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Abstract—The key issue for an efficient and reliable multi-
objective evolutionary algorithm is the ability to converge to the
True Pareto Front with the least number of objective function
evaluations, while covering it as much as possible. To this
purpose, in a previous paper performance comparisons showed
that the Genetic Diversity Evolutionary Algorithm (GeDEA)
was at the same level of the best state-of-the-art MOEAs due to
it intrinsic ability to properly conjugate exploitation of current
non-dominated solutions and the exploration of the search
space. In this paper, an improved version, namely the GeDEA-
II, is proposed which features a novel crossover operator, the
Simplex-Crossover, and a novel mutation operator, the Shrink-
Mutation.

GeDEM operator was left unchanged and completed using
the non-dominated-sorting based on crowding distance. The
comparison among GeDEA-II and GeDEA, as well as with
three other modern elitist methods, on different extremely
multidimensional test problems, clearly indicates that the per-
formance of GeDEA-II is, at least in these cases, superior. In
addition, authors aimed at putting in evidence the very good
performance of GeDEA-II even in extremely multidimensional
landscapes. To do this, four test problems were considered, and
the GeDEA-II performance tested as the number of decision
variables was increased. In particular, ZDT test functions
featured a number of decision variables ranging from the
original proposed number up to 1000, whereas on DTLZ the
decision variables were increased up to 100 times the original
proposed number. Results obtained contribute to demonstrate
further the GeDEA-II breakthrough performance.

Index Terms—Evolutionary algorithms, Simplex Crossover,
Shrink Mutation, Pareto optimality, multi objective optimiza-
tion, Empirical - Comparison.

I. INTRODUCTION

In the past, a number of powerful Multi-Objective Evolu-
tionary Algorithms (MOEAs) were proposed, e.g. NSGA-II
[1], SPEA-II [2] and IBEA [3]. GeDEA [4] algorithm, which
was designed around the genetic diversity preservation mech-
anism called GeDEM, proved to be able to compete and, in
some cases, to outperform, the aforementioned MOEAs as
far as speed of convergence and covering uniformity of the
Pareto Front are concerned. However, the common drawback
of all of the previously mentioned multi-objective evolu-
tionary algorithms concerns the huge amount of objective
function evaluations (or number of generations) required to
reach and sufficiently cover the Pareto Front.

To try to overcome this common weakness, during the
last decade several authors started hybridizing evolutionary
algorithms (EAs) with local search (LS) operators.
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Several examples can be found in literature (some recent
works are presented in [5] and [6]).

In spite of the different frameworks, in all the previously
mentioned works, the local search, based on the Simplex
algorithm, and the global exploration based on the Evolu-
tionary algorithm, are performed separately, in a sequential
manner, that is, a point of the search space is calculated via
either the first or the latter.

In the authors’ opinion, the previously mentioned exam-
ples of hybridization with local search often degrade the
global search ability of MOEAs. Moreover, local search
based on the Nelder and Mead requires additional and several
functions evaluations.

In this paper, GeDEA-II is presented, aiming at reducing
the potential weaknesses of its predecessor and competitors,
while retaining its very good performance, that is, a good
balance between exploration and exploitation. In particular,
we propose a different approach to combine the Evolutionary
algorithm-based global search and the Simplex theory, since
global exploration and local search are intimately related
and performed simultaneously, in such a way that they
take advantage from each other. In details, we introduce
a novel crossover operator, which we called the “Simplex-
crossover” and which will be described hereafter; following
this, the individuals created by the proposed algorithm via the
Simplex-based crossover undergo mutation in a subsequently
step, using another new typer of operator, which we called
the “Shrink-Mutation”, so as to promote global search capa-
bilities of the algorithm. Moreover, important modifications
have been brought about to the original Simplex theory, in
order to enhance further the local search capabilities without
penalizing the exploration of the search space.

The main differences of GeDEA-II in comparison with
GeDEA regard its new Simplex-Crossover operator, and
its new Shrink-Mutation operator. The diversity preserving
mechanism, the Genetic Diversity Evaluation Method (Ge-
DEM) already used in the GeDEA release, was retained in
GeDEA-II and left unchanged due to its superior perfor-
mance compared to other types of mechanisms.

II. GENETIC DIVERSITY EVOLUTIONARY ALGORITHM
(GEDEA)

The Genetic Diversity Evolutionary Algorithm II
(GeDEA-II), is a framework that is strictly designed around
GeDEM [4] to exalt its characteristics. To briefly introduce
the GeDEM principle, it is worth underlining that the
multi-objective optimization process has two objectives,
which are themselves conflicting: the convergence to the
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Pareto-optimal set and the maintenance of genetic diversity
within the population. The basic idea of GeDEM is to
actually use these objectives during the evaluation phase
and to rank the solutions with respect to them, emphasizing
the non-dominated solutions as well as the most genetically
different. To this purpose, GeDEM computes the actual
ranks of the solutions maximizing (i) the ranks scored
with respect to the objectives of the original MOOP, the
non-dominated solutions having the highest rank, and (ii)
the values assigned to each individual as a measure of
its genetic diversity, calculated according to the chosen
distance metric, i.e. the (normalized) Euclidean distance in
the objective functions space.

III. GENETIC DIVERSITY EVOLUTIONARY
ALGORITHM-II (GEDEA-II)

GeDEA proved to be an efficient algorithm, able to explore
widely the search space, while exploiting the relationships
among the solutions. In order to enhance GeDEA algorithm
performance further, several main features were added to
the previous GeDEA version, yet retaining its constitutive
framework. The main innovation is the novel crossover op-
erator, namely the Simplex-crossover, which substitutes the
previous Uniform crossover. A novel mutation operator was
also developed, namely the Shrink-mutation, which allows
exploring more effectively the design space. The remaining
steps characterizing GeDEA algorithm, in particular the
GeDEM, were left unchanged. The latter was integrated
with the Non-Dominating sorting procedure based on the
crowding distance, developed and thoroughly described in
[1].

A. The SIMPLEX Crossover

In [7], authors proposed a simplex crossover (SPX), a
new multi-parent recombination operator for real-coded GAs.
The experimental results with test functions used in their
studies showed SPX well performed on functions having
multimodality and/or epistasis. However, the authors did
not consider the application of the SPX to multiobjective
problems. Moreover, they did not consider the possibility to
take into account the fitness of the objective function/s as
the driving force of the simplex. Therefore, we decided to
integrate in the GeDEA-II the simplex crossover with these
and further new distinctive features. Unlike the Simplex-
crossover presented in [7], in GeDEA-II only two parents
are required to form a new child. These two parents are se-
lected according to the selection procedure from the previous
population, and combined following the guidelines of the
simplex algorithm. Let assume p1, p2 being the two parent
vectors, characterized by different, multiple fitness values,
the child vector Child is formed according to the reflection
move described in [8]:

Child := (1 +Refl) ·M−Refl · p2 (1)

where Child is the new formed child and Refl is the reflection
coefficient. It is assumed that p1 is the best fitness individual
among the two chosen to form the Child, whereas p2 the
worst one. Refl coefficient is set equal to a random number
(refl ∈ [0, 1]), unlike the elemental Simplex theory, which
assumes a value equal to 1 for the Refl coefficient. This

choice allows to create a child every time distant in a random
manner from the parents, hence to explore more deeply
the design space. Since the Simplex algorithm is itself a
single-objective optimizer, a strategy was implemented to
adapt it to a multi-objective algorithm: the objective function
considered to form the new child is chosen randomly in order
to enhance the design space exploration of the crossover,
required in highly dimensional objective spaces. This new
crossover operator was expected to combine both exploration
and exploitation characteristics. In fact, the new formed child
explores a design space region opposite to that covered by
the worst parent, that means it explores a region potentially
not covered so far. In the early stages of the evolution, this
means that child moves away from regions covered from bad
parents, while exploring new promising ones. In addition, the
characteristics of the good parents are deeply exploited to
accelerate the evolution process. During evolution, GeDEA-
II makes use exclusively of the Simplex Crossover until
three-quarters of the generations has been reached. After that,
Simplex Crossover is used alternatively with the Simulated
Binary Crossover (SBX) (described for the first time in [9])
with a switching probability of 50 percent.

B. The Shrink Mutation

As far as mutation is concerned, a new Shrink-mutation
operator is introduced in the GeDEA-II.

In the literature, this kind of mutation strategy is referred
to as Gaussian mutation [10], and conventional implemen-
tations of Evolutionary Programming (EP) and Evolution
Strategies (ES) for continuous parameter optimization using
Gaussian mutations to generate offspring are presented in
[11] and [12], respectively.

In general, mutation operator specifies how the genetic
algorithm makes small random changes in the individuals in
the population to create mutation children. Mutation provides
genetic diversity and enables the genetic algorithm to search
a broader space. Unlike the previous version of mutation
featuring GeDEA algorithm, where some bits of the offspring
were randomly mutated with a probability pmut, here the
mutation operator adds a random number taken from a
Gaussian distribution with mean equal to the original value of
each decision variable characterizing the entry parent vector.
The shrinking schedule employed is:

Shrinki := Shrinki−1 ·
(
1− ignr

ngnr

)
(2)

where Shrinki is a vector representing the current mutation
range allowed for that particular design variable, ignr rep-
resents the current generation and ngnr the total number of
generations. The shape of the shrinking curve was decided
after several experimental tests. The fact that the variation
is zero at the last generation is also a key feature of
this mutation operator. Being conceived in this manner, the
mutation allows to deeply explore the design space during
the first part of the optimization, while exploiting the non-
dominated solutions during the last generations. Once the
current variation range has been calculated, one decision
variable of a selected child is randomly selected, and mutated
according to the following formula:

Childmut := Childcross + [Shrinki] (3)
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Unlike crossover operator, which generates all the offspring,
mutation is applied only on a selected part of the offspring.
Before starting offspring mutation, offspring population is
randomly shuffled to prevent locality effects. After that, a
pre-established percentage (fixed to 40% for all of the test
problems) of the individuals are selected for mutation. The
initial Shrink factor is set equal to the whole variation range
of the design variables. This mutation operator was found to
be powerful especially in multi-objective problems requiring
a huge exploration of the design space.

IV. COMPARISON WITH OTHER MULTIOBJECTIVE
EVOLUTIONARY ALGORITHMS

In order to judge the performance of the GeDEA-II, a com-
parison with other different state-of-the-art multi-objective
EAs was performed. SPEA-2 [2], NSGA-II [1] and IBEA [3]
were chosen as competitors, and their performance against
GeDEA-II was measured on two test problems featuring the
characteristics that may cause difficulties in converging to
the Pareto-optimal front and in maintaining diversity within
the population [13]: discrete Pareto fronts, and biased search
spaces. In addition, their performance was tested also on two
more recent and more challenging benchmark test functions
chosen among the scalable Test Problems presented in [14].
The four test functions, the methodology and the metric of
performance used in the comparison are briefly recalled in
the following for easy reference.

A. Test Functions

Here only four test problems are presented due to layout
constraints. The original version of ZDT3 and ZDT6 pre-
sented in [15] featured 30 and 10 decision variables, respec-
tively. Here we propose them with 100 decision variables.
As regards DTLZ3, the number of variables suggested in
[14] is 12. Here we propose it with 22 decision variables,
respectively. As regards DTLZ7, we increased the number of
decision variables from the original one equal to 22, up to
100.

B. Methodology

The methodology used in [15] is strictly followed. GeDEA
and competitors are executed 30 times on each test function.
There are different parameters associated with the various
algorithms, some common to all and some specific to a
particular one. In order to make a fair comparison among all
the algorithms, most of these constants are kept the same. In
GeDEA-II, GeDEA and in competitors algorithms, the pop-
ulation size is set to 100. In the following, the parameters of
the competitors MOEA are reported following the terminol-
ogy used in PISA implementation. The individual mutation
probability is always 1 and the variable mutation probability
is fixed at 1/n, n being the number of the decision variables
of the test problem considered. The individual recombination
probability along with the variable recombination probability
are set to 1. The variable swap probability is set to 0.5.
ηmutation is always set to 20 and ηrecombination is fixed
to 15. For IBEA algorithm, tournament size is always set
to 2, whereas additive epsilon is chosen as the indicator.
Scaling factor kappa is set to 0.05, and rho factor is fixed
to 1.1. For all of the competitors, tournament size is given

a value equal to 2. NSGA-II, SPEA-2 and IBEA are run
with the PISA1 implementation [16], with exactly the same
parameters and variation operators. The maximum number
of generations for test functions ZDT6 is set to 30 for all the
algorithms and to 40 for test function ZDT3. For test function
DTLZ 7 the number of generations is set to 100, whereas to
150 for DTLZ 3 test function. In Table I, the original number
of generations characterizing test problems presented in [15]
and [14], is compared to the ones used here. The number
of generations was intentionally reduced in order to test the
convergence properties of the investigated algorithms, and
contribute to justify the different results reported here, when
compared to those presented in the original papers [15], [14].

TABLE I
ORIGINAL AND PROPOSED NUMBER OF GENERATIONS FOR THE ZDT

AND DTLZ TEST PROBLEMS.

Number of generations
Original version prob-
lems

Proposed test problems

ZDT3 250 40
ZDT6 250 30

DTLZ3 500 150
DTLZ7 200 100

C. Metric of Performance

Different metrics can be defined to compare the perfor-
mance of EAs with respect to the different goals of opti-
mization itself [15]: how far is the resulting non-dominated
set from the Pareto front, how uniform is the distribution
of the solutions along the Pareto Approximation set/front,
how wide is the Pareto Approximation set/front. For mea-
suring the quality of the results, we have employed the
Hypervolume approach, due to its construction simplicity
and for the reason, which will be soon explained. The
hypervolume approach measures how much of the objective
space is dominated by a given nondominated set. Zitzler et
al. [17] state it as the most appropriate scalar indicator since
it combines both the distance of solutions (towards some
utopian trade-off surface) and the spread of solutions. The
Hypervolume2 is defined as the area of coverage of PFknown

with respect to the objective space for a two-objective MOP.
In this work we use the version implemented by Fonseca et
al. and presented in [19].

D. Results of Comparison

As in Zitzler et al. [15], Figures 1, 3 and 4 show an excerpt
of the non-dominated fronts obtained by the EAs and the
Pareto-optimal fronts (continuous curves). The points plotted
are the non-dominated solutions extracted from the union
set of the outcomes of the first five runs, the best and the
worst one being discarded. The performance of GeDEA-II
is also compared to that of the competitors according to the
hypervolume metric as defined in [19]. The distribution of
these values is shown using box plots in Figures 2 and 5. On
each box, the central line represents the median, the edges of

1This software is available for public use at PISA website
http://www.tik.ee.ethz.ch/pisa/

2The Hypervolume is a Pareto compliant indicator as stated in [18].
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the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points not considered outliers, and
outliers are plotted individually, with a Plus sign. Results
are normalized with the best Hypervolume value coming
from the union set of all of the runs, extended to all of
the algorithms. For each test problem, the reference point
is assumed equal for all of the algorithms, and equal to the
maximum value for each objective function from the union
of all of the output points.

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

f1

f2

T3 test function

 

 

GeDEA−II
GeDEA
IBEA
NSGA−II
SPEA2
True P.F.

0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

f1

f2

T6 test function

 

 

GeDEA−II
GeDEA
IBEA
NSGA−II
SPEA2
True P.F.

Fig. 1. Test functions ZDT3 (AT THE TOP) and ZDT6 (AT THE
BOTTOM).

In general, the experimental results show that GeDEA-II
is able to converge towards the True Pareto-optimal front
and to develop a widely and well distributed non-dominated
set of solutions. The comparison with the other three best-
performing MOEAs according to the Hypervolume metric
proves that the performance of GeDEA-II is somewhat
superior. Considering the specific features of the two ZDT
test functions, GeDEA-II shows similar performance both
on multi-front and biased Pareto-optimal fronts. NSGA-II,
SPEA-2 and IBEA seem instead to have more difficulties
with discreteness (test function ZDT3). The performance of
GeDEA-II is particularly remarkable in the case of biased
search space (test function ZDT6) where it is also able to
evolve a well-distributed non-dominated set. These results
gain even more significance, since the number of decision
variables was set to 100, unlike the original values of 30 (10
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Fig. 2. Box plots based on the Hypervolume metric. Each square contains
six box plots representing the distribution of Hypervolume values for the
six algorithms. Results refer to the ZDT3 (AT THE TOP) and ZDT6 (AT
THE BOTTOM) test functions.

for the test function ZDT6).
As far as DTLZ3 and DTLZ7 test functions is concerned,

GeDEA-II is able to reach the True Pareto Front, whereas
the competitors remain trapped in the local Pareto Approxi-
mation Sets, as shown in Fig. 3 and 4.

Finally, box plots prove, in general, that the performance
of GeDEA-II is superior to those of the competitors also as
far as the repeatability of the results is concerned.

E. GeDEA-II Performance on Extremly Multidimensional
Landscapes

In this section, authors aim at putting in evidence the
outstanding performance of GeDEA-II even on high mul-
tidimensional environments. To do this, two test problems,
chosen among those presented in Section IV-A are consid-
ered, and the GeDEA-II performance tested by changing
every time the number of decision variables. Test functions
chosen for this test are the ZDT4 and DTLZ3, that is, the
most difficult to solve problems, as stated in [15] and [14].

In Table II, the number of variables and generations char-
acterizing these tests are reported. In particular, ZDT4 test
function feature a maximum number of decision variables
of 1000, whereas on DTLZ3 test functions the maximum
number of decision variables is increased up to 100 times
the original proposed number [14].

To the best of the authors’ knowledge, this is the first
time a MOEA is tested on these test problems, with these
number of decision variables. For each test problems, we
performed 30 independent runs for each number of decision
variables, and the boxplots were then built, following the
guidelines already given in Section IV-D. Y-axes are scaled
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Fig. 3. Test function DTLZ3. From the left, Auto scale axes, Medium
zoom and True Pareto Front region.

TABLE II
MINIMUM AND MAXIMUM NUMBER OF DECISION VARIABLES FOR THE

ZDT4 and DTLZ3 test problems.

Number of gener-
ations

Minimum num-
ber of decision
variables

Maximum num-
ber of decision
variables

ZDT4 40 10 1000
DTLZ3 80 12 1200

in such a way the best run is given a value equal to 1. In
Figure 6, the boxplots showing GeDEA-II performance are
presented, as the decision variables are increased from the
minimum value up to the maximum one. Results clearly
states that GeDEA-II performance is high-level. In each
test problem, performance is never lower than 99% of the
maximum value, no matter how many the decision variables

Fig. 4. Test function DTLZ7.

0.94

0.95

0.96

0.97

0.98

0.99

1

GeDEA−II GEDEA    SPEA2    NSGA−II     IBEA

DTLZ4 test function

H
yp

er
vo

lu
m

e−
In

di
ca

to
r

0.4

0.5

0.6

0.7

0.8

0.9

1

GeDEA−II GEDEA    SPEA2    NSGA−II     IBEA

DTLZ4 test function

H
yp

er
vo

lu
m

e−
In

di
ca

to
r

Fig. 5. Box plots based on the Hypervolume metric. Each square contains
six box plots representing the distribution of Hypervolume values for the
six algorithms. Results refer to the DTLZ1 (AT THE TOP) and DTLZ7

(AT THE BOTTOM) test functions.

are. This clearly demonstrate GeDEA-II manages to evolve
the initial population near to the True Pareto front, even when
the number of decision variables is dramatically increased.
Figure 7 shows in the objective space, the distribution of
the final solutions obtained in the run with the lowest
Hypervolume-value by the GeDEA-II for each test instance,
for the maximum number of decision variables. It is evident
that as regards the convergence to the True Pareto Front and
spread of solutions, GeDEA-II performance is high level.

V. CONCLUSION

In this paper, we have presented GeDEA-II, an improved
multi-objective evolutionary algorithm that employs novel
variation operators compared to its predecessor GeDEA.
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Fig. 6. Box plots based on the Hypervolume metric. Each square contains
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six number of decision variables.Results refer to the ZDT4 (AT THE TOP)
and DTLZ3 (AT THE BOTTOM) test functions.
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Fig. 7. Final Approximation Set reached by the GeDEA-II on test function
ZDT4 (AT THE TOP) and the non dominated solutions found by GeDEA-II
on DTLZ3 (AT THE BOTTOM), featuring 1200 decision variables.

Extensive numerical comparisons of GeDEA-II with GeDEA
and with NSGAII, SPEA-2 and IBEA, three state-of-the-

art recently proposed algorithms, have been carried out on
various test problems. Moreover, optimization difficulties
have been enhanced further, in order to test the robustness
of the codes. The key results of the comparison show the
excellent performance of the GeDEA-II, when compared to
the competitors algorithm, in terms of both exploration and
exploitation capabilities. Boxplots show that the reproducibil-
ity of results of GeDEA-II is high-level, when compared
to that of the NSGAII, SPEA-2 and IBEA. In extremely
high dimensional spaces, GeDEA-II clearly shows excellent
performance. In addition to these characteristics, GeDEA-
II performs these tasks with a reduced number of objective
functions evaluations, a very useful feature when considering
its application to real-world engineering problems.
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dimension-sweep algorithm for the hypervolume indicator,” IEEE
Congress on Evolutionary Computation, pp. 1157–1163, 2006.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012




