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Abstract— In this paper an innovative method for one and 

seven-day forecast of electricity load is proposed. The new 

approach has been tested on three different cases from south-

west Western Australia’s interconnected system. They have 

been tested under the most realistic conditions by considering 

only minimum and maximum forecasts of temperature and 

relative humidity as available future inputs. Two different 

nonlinear approaches of neural networks and decision trees 

have been applied to fit proper models. A modified version of 

mean absolute percentage error (MMAPE) of each model over 

the test year is presented. By applying a developed criterion to 

recognize the dominant component of the electricity load, user 

of this work will be able to choose the most efficient forecasting 

method.  

Index Terms— load forecasting, neural networks, decision 

trees, signal reconstruction 

I. INTRODUCTION 

HE complexities of nowadays electricity markets are 

enormous [1]. Electricity is traded based on bilateral 

contracts between energy providers and energy consumers. 

The role of electricity demand forecasting is very significant 

in present electricity markets and an accurate load forecast 

introduces significant savings in costs and improvement in 

network reliability. Forecasts ranging from several hours to 

seven days are known as short term load forecasts (STLF). 

Applications of STLF are in dispatching and commitment of 

generators, load shedding and determining the market prices. 

Because of its importance many methods have been 

developed to perform STLF. A review of the previous 

methods are addressed in [2–4]. The focus of this paper is on 

two methods of artificial neural networks (ANN), and 

decision trees. References [5], [6] have applied neural 

networks for hourly load forecasts. Applications of artificial 

neural networks in one-day load forecasts have been 

addressed in [7], [8]. Weather inputs have not been 

considered in [7], and [8] has assumed measured values of 

temperatures during the test period. Using the measured 

values of weather variables in load forecasting instead of 

simulated or reconstructed values, makes the method 

incapable of performing the forecast in real world problems 

when measured values of weather variables are not available 

at the time of forecasting. An adaptive neural network 

approach has been used for seven-day forecast of electricity 
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load in [9], in which the weather variables have not been 

directly considered as inputs. Electricity load is decoupled 

into three different ranges of frequencies and each range is 

forecasted by one neural network. Deviation of the achieved 

load forecast from the real one defines the temperature 

sensitive component which is forecasted by another neural 

network. Unfortunately the method has been tested during 

the winter time in the north east of USA where, because of 

heavy snow and freezing cold weather during the winter 

time, electric heating is not common. According to [1] 

temperature-load curve of such a kind of load makes a 

hockey stick shape with very small correlation between 

temperature and load in the cold season. Reference [10] 

applied decision trees to forecast the demand in retail sale. 

Decision trees have been introduced as a potential method to 

predict a one-day load in Spanish power systems in [11].  

Although numerous methods have been proposed for the 

short-term forecasting of electricity load, there is no superior 

forecasting approach that can be applied on all the different 

systems [1]. The main reasons for that are the unique 

characteristics of each system, and also the different 

consumer behaviours. Such characteristics become more 

significant in spatial load forecasting applications. More 

vital information from the grid can be extracted by having 

the spatial load forecast in hand. As mentioned by [12] a 

spatial forecast that covers all the regions of the service area 

can assure the planner that nothing has been missed in the 

utility transmission and distribution planning. Spatial load 

forecasting divides the service area into different regions and 

each region load has its own characteristics. In this paper 

different load behaviours of a sample service area will be 

thoroughly investigated and the efficiency of two forecasting 

methods will be tested. By defining a load type 

determination criterion the best approach for the presented 

benchmarks will be selected.  

II. CASE STUDY 

In real world problems the electricity load data are 

composed of residential, industrial and commercial 

components. To study the characteristics of each component 

individually, three different benchmarks will be used. A pure 

residential area, an industrial area, and a dominantly 

commercial area in south-west Western Australia have been 

selected as the case studies. The main reason for choosing a 

pure residential load for model testing is that there are no 

high autocorrelations of industrial load in the data, so the 

model should be able to capture all the behaviours of 
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households. The selected residential area load is highly 

temperature sensitive. The region is called East Perth 

metropolitan area and consists of one 6.6 kV and six 22 kV 

distribution substations and the total of seventeen 

transformers. Kalgoorlie
1
 area has been selected as the 

industrial load sample. Industrial loads have their own 

complexities; for example the random behaviour of a large 

industrial customer can dramatically deviate the real load 

from the forecasted one. The region consists of one 11 kV 

and three 33 kV distribution substations and the total of 

seventeen transformers. And finally, Perth CBD with nine 

substations and the total of twenty five transformers has been 

selected as the dominantly commercial load. Compared to 

residential loads, commercial loads exhibit higher 

temperature sensitivity in hot seasons and lower temperature 

sensitivity in cold seasons.  

The load information of each individual transformer has 

been extracted from the database of Western Power, the 

company that is responsible for building, maintaining and 

operating SWIS
2
 electricity grid. The load data are then 

added up to find the electricity load of the test regions. The 

weather data are provided by the Australian Bureau of 

Meteorology (BOM). The specifications of raw data for the 

short term forecasting framework are presented in Table I. 

 

Table I.  Raw data specifications 

Data Unit Resolution Start date End date 

Load MW 
Half an 

Hourly 

01-Apr-

1995 

01-Jan-

2011 

Temperature °C Hourly 
01-Apr-

1995 

01-Jan-

2011 

Relative 

Humidity 
% Hourly 

01-Apr-

1995 

01-Jan-

2011 

 

III. DATA PREPARATION 

A.  Removing Outliers and Missing Data Points 

The raw input data are composed of seven-day minimum 

and maximum temperature and relative humidity forecasts 

and also the historical data of load, temperature and relative 

humidity. A plot of Kalgoorlie load data for fifteen years of 

observation is presented in Fig. 2. The presented figure 

contains the raw data. It can be seen that during the first 

50,000 samples the load has been dramatically increased. 

The main reason for that is commissioning new industrial 

projects. In the future steps this part will be excluded from 

the industrial load data to increase the forecasting accuracy. 

As it can be seen, the raw data have some outliers. There 

also exist some missing data points in this figure that are not 

observable unless you zoom in. 

 
1 Also known as country goldfields 
2 SWIS: South west interconnected system 

 

Fig. 1. Kalgoorlie raw data for fifteen years of observation 

 

After resolution adjustment, outliers and missing data 

points need to be removed. According to the available 

literature on electricity load consumption behaviours [13–

15] and also the practical methods that are being used in 

electricity industries a transformer load in a specific time of 

a day is closely related to previous and future weeks
3
 load 

data at the same time of the same day. Missing data points 

have been replaced by the average of previous and future 

weeks’load of the same hour of the same weekday. 

As being recommended by [1], one dimensional median 

filtering can be used for outliers removal. But median 

filtering by itself is not capable of removing all the outliers 

automatically. To capture normal outliers a short window 

should be used. A long window needs to be applied after that 

to capture outliers in a row. Human supervision is also 

required for outlier removals. The human expert can change 

the window sizes and investigate the data graphs and Q-Q
4
 

plots to make sure that the outliers have been removed 

properly. Supervised one dimensional median filtering has 

been used for outliers’ removal. Q-Q plots of the three 

systems, before, and after the outliers’ removal step are 

presented in Fig. 2 Outliers can be easily identified in panel 

(a), (c) and (e) which contain the raw data of Perth CBD, 

East Perth and Kalgoorlie respectively. Panels (b), (d) and 

(f) confirm the capability of this method in outliers’ removal.  

 
3 The correlation between the load data decreases as the number of 

weeks increases. In this study the maximum number of two future weeks 

and two previous weeks has been used for missing data estimation. 
4 Quantile-Quantile or Q-Q plot is a graph that shows the probability of 

two distributions against each other. By using Q-Q plots similarities and 

differences of two different distributions can be investigated. 
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Fig. 2. Q-Q plot of load data versus standard normal, (a) raw 

commercial load, (b) commercial load without outliers and missing data 

points, (c) raw residential load, (d) residential load without outliers and 

missing data points, (e) raw industrial load, (f) industrial load without 

outliers and missing data points 

 

B.  Clustering and Signal Reconstruction 

Clustering has been intensively used in load forecasting 

applications [16–18]. Because of the seasonal nature of 

weather variables and electricity consumption, clustering can 

help in deriving very important information out of the data 

set. Weather forecasters are usually capable of giving out 

seven-day forecasts of weather variables in a limited 

resolution
5
 of time. Because of the unpredictable nature of 

influential variables on weather systems, forecasts of beyond 

this horizon cannot be accurate enough to rely on. 

The most important elements of weather for electricity 

demand forecasting are temperature and relative humidity 

[12]. In load forecasting applications the input data to the 

framework should be realistic and available at the time of 

running the framework. If not, the framework would become 

useless for practical applications. To avoid this issue, only 

the minimum and maximum values of temperature and 

relative humidity for seven days are considered as the future 

weather inputs of this framework.  

To extract the weather distribution data out of the 

available minimum and maximum forecasts, historical data 

of temperature and relative humidity are clustered. Data sets 

of each cluster follow a similar pattern. By recognizing such 

a kind of pattern in the clusters and using the maximum and 

minimum forecasts of temperature and relative humidity, 

their signals are reconstructed. Fig. 3 shows daily 

temperature of a representative cluster with a regular pattern 

to be easily be seen in that. With the help of clustering, and 

using the available seven-day forecast of maximum and 

minimum temperature and relative humidity, weather signals 

can be accurately reconstructed as a feed to training models.  

 
5 Although sometimes these forecasts are available for every three hour 

of the following week, to avoid the loss of generality only minimum and 

maximum values of temperature and humidity are considered to be 

available to this framework at the time of forecasting. 

IV. BEHAVIORS OF RESIDENTIAL, INDUSTRIAL AND 

COMMERCIAL LOADS 

Behaviors of residential, industrial and commercial loads 

are different. Although in the practical case the load can be a 

combination of all the three types, it is worthwhile to study 

the properties of each separately. In this section the ways 

that these loads can be distinguished from each other will be 

presented. A criterion will be proposed to recognize the 

dominancy of any of the mentioned types in a load data set. 

This criterion can then be used in places where the dominant 

type of load is not known.  

A.  Temperature Sensitivity 

The following are the region’s load versus temperature for 

15 years of data. The white line in each graph roughly shows 

the regression between load and temperature during the hot 

and cold seasons. In most of the cases, the slope of the line 

shows positive regression in the hot season and negative 

regression for the cold season. 

Fig. 4 shows the scatter plot of East Perth electricity 

consumption versus temperature over fifteen years of 

observation. It can be seen that, in the residential case, 

electricity consumption is very sensitive to temperature 

changes, and household cooling and heating demands 

strongly affect the load. The temperature correlation with 

load exhibits seasonal changes. At around 20°C, which is 

known as the comfort region, the temperature-load 

correlation is close to zero. Positive regression for the hot 

season and negative regression for the cold season is very 

clear in this figure. The reason behind this type of graph is 

the fact that East Perth is mainly a residential area and 

people of that area use electricity both for cooling and 

heating purposes. 

 

 

Fig. 3. Daily temperature distribution of a representative cluster from 

East Perth 

 

Fig. 5 shows the scatter plot of the Perth CBD load versus 

temperature. The white lines in this plot are very similar to 

East Perth. There are two main differences between 

commercial loads and residential loads. Commercial loads 

drop dramatically after the business hours, and they usually 

have less heating demand and larger cooling demand. This 

fact increases the white line slope in the hot season and 

decreases the slope in the cold season. The main reason for 

this observation is the heating load which is generated by 

electronic devices inside commercial buildings. 
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Fig. 6 shows the electricity load of country goldfields 

versus temperature. White lines are almost flat in this graph. 

That illustrates a negligible temperature sensitivity of load 

for this case. Irrespective of the outside temperature, load 

varies based on the factory demand. This confirms the fact 

that this region is dominated by industrial loads. 

It can be concluded that more integration of residential 

load into a grid will introduce more temperature sensitivity 

and on the other hand more integration of industrial load will 

reduce it. The behavior of commercial loads is very similar 

to residential loads in the hot season and resembles 

industrial loads in cold seasons. It is very important to 

mention that such kind of conclusions can be only valid for 

the places where people use electricity for both cooling and 

heating purposes. If the users do not use electricity for 

heating purposes then the temperature-load regression 

during the winter will be zero (flat line) and the similar case 

will happen if the users do not use electricity for cooling 

purposes. The latter case is very rare but the example would 

be the customers who are using absorption chillers. 

 

 

Fig. 4. Half an hourly electrical load consumption (MW) of the 

residential region versus temperature data (degrees Celsius) from fifteen 

years of observation 

 

Fig. 5. Half an hourly electrical load consumption (MW) of the 

commercial region versus temperature data (degrees Celsius) from fifteen 

years of observation 

 

Fig. 6. Half an hourly electrical load consumption (MW) of the 

industrial region versus temperature data (degrees Celsius) from fifteen 

years of observation 

 

B. Data Distributions 

Another way of distinguishing among the three types of 

loads is distribution analysis. Q-Q plots of the electricity 

load versus three different distributions are presented 

bellow. 

Fig. 7 and Fig. 8 illustrate the Q-Q plots of all three types 

of load versus Rayleigh (R) and generalized Pareto (GP) 

distributions. In both figures the best fit is for commercial 

load. It is not completely fitted for the residential load but it 

is a fairly good fit compared to the industrial one which 

shows a totally different distribution.  

Generalized extreme value (GEV) distribution has been 

used in Fig. 9. Unlike the previous ones, the fit is very good 

for the industrial and the residential cases. The commercial 

load cannot be fitted by this type of distribution. 

Based on the above observations a load type 

determination criterion can be developed. User of this 

criterion may plot the load versus Rayleigh, generalized 

Pareto and generalized extreme value distributions and 

compare the output with the rule of the thumb presented in 

Table II to find the dominant component of the load in hand. 

The authors of this paper would like to mention again that 

this criterion can be applicable only to the places where 

electrical heating and cooling are being used by the 

customers. 
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Fig. 7. (a). Q-Q plot of commercial load versus Rayleigh distribution, 

(b). Q-Q plot of residential load versus Rayleigh distribution, (c). Q-Q plot 

of industrial load versus Rayleigh distribution 

 

 

Fig. 8  (a). Q-Q plot of commercial load versus generalized Pareto 

distribution, (b). Q-Q plot of residential load versus generalized Pareto 

distribution, (c). Q-Q plot of industrial load versus generalized Pareto 

distribution 

 

Fig. 9 (a). Q-Q plot of commercial load versus generalized extreme 

value distribution, (b). Q-Q plot of residential load versus generalized 

extreme value distribution, (c). Q-Q plot of industrial load versus 

generalized extreme value distribution 

Table II  Load type determination criterion 

Distribution Commercial Residential Industrial 

R good fairly good bad 

GP good fairly good bad 

GEV bad good good 

 

V. RESULTS, OBSERVATIONS AND DISCUSSIONS 

After pre-processing and clustering the data, thirteen sets 

of input variables are defined based on the available 

temporal and weather data as the feed for the training 

models. Preparing a proper set of input variables is a very 

significant step in any training procedure and it can strongly 

affect the accuracy of the method. Proper input data includes 

either variables with good correlation with the output data or 

variables that help to classify the other input variables. The 

input variables are year, month, day of the week, hour of the 

day, temperature, relative humidity, previous-day same-hour 

demand, previous-week same-hour demand, holidays
6
, 

average past-twenty-four-hour demand, average past-seven-

day demand, summer temperature to help the classification 

of temperature in hot days, and winter temperature to 

distinguish the cold-day temperature.  

The set of feed variables to train the models consists of 

thirteen column vectors of input variables with, a total of 

275,513 observations in each vector and one column vector 

of the same size for target variables. The number of 

observations in each column of industrial load is 225,513. 

Two different nonlinear training methods of artificial 

neural networks (ANN), and decision trees learning have 

been used in this study. Input and target variables for the 

training period have been used to find the optimum 

configuration for ANN, and bagging decision trees. The 

neural network has 13 input neurons, 40 hidden neurons and 

one output neuron. The network trained using the back error 

propagation algorithm. Because of its performance under 

classification noise, bagging has been selected for 

ensembles’ construction of decision trees [19]. 40 bagged 

regression trees have been used for the training purpose. 

The residential and commercial models have been trained 

with fourteen years of data from April, 1995 to December, 

2009. And, the industrial load model has been trained with 

eleven years of data from January 1998 to December, 2009. 

The testing period is the year 2010 for all the cases. Once 

the training procedures are done, the trained models can be 

used for future simulations. Using the single-day forecast 

and the reconstructed temperature and humidity signals as a 

new input set to the trained models, the forecasting horizon 

can be stretched from one day to seven days. 

Because different benchmarks have different average 

load, mean absolute percentage error (MAPE) may not be 

able to present a good comparison. For a better comparison 

of the performance of the models for out of sample data 

 
6 A list of Western Australian public holidays has been used 

to generate the holidays input variables. 
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(during the test year), modified mean absolute percentage 

error has been defined in (1).  
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Equation (1) will basically multiply the MAPE value by a 

coefficient which is a function of average load in different 

regions. The resulting MMAPE is not affected by the 

average load of the region itself. 

Daily and weekly MMAPE of both models have been 

calculated for each month of the test period. The results are 

shown in Tables III, IV and V. It can be seen that both 

methods perform very similarly. The daily MMAPE of all of 

the applied methods is less than 5% which as investigated by 

[20] is within the range of adequate forecast and the 

economic impact of more accurate forecasts is very small. 

 
Table III.  MMAPE of East Perth for out of sample data (2010 test 

year) 
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Jan 2.8 3.4 3.9 4.1 24.3 

Feb 2.3 2.4 3.5 3.7 24.7 

Mar 2.6 2.4 3.6 3.5 22.6 

Apr 2.2 1.4 3.3 2.8 18.3 

May 2.3 1.4 3.3 2.9 14.2 

Jun 2.1 1.5 2.9 2.7 11.2 

Jul 2.3 1.8 3.1 2.9 11.8 

Aug 2.3 1.6 3.3 2.7 12.2 

Sep 2.1 1.4 3.0 2.8 15.1 

Oct 1.9 1.3 3.0 2.5 17.5 

Nov 2.1 2.5 3.3 3.8 22 

Dec 2.3 2.3 3.3 3.6 22.6 

 

It can be observed that for hot months neural networks is 

a better choice for forecasting the electricity load of 

residential and commercial load. On the other hand it would 

be better to use decision trees for the rest of year. The 

situation is totally different for the industrial case. It can be 

seen that decision trees perform better for all the months of 

the test year of the industrial case irrespective of the 

temperature. Decision trees perform better than neural 

networks when the system’s nonlinearity is low. But when 

the system’s nonlinearity increases, neural networks will be 

a better choice. In load forecasting applications the higher 

the temperature sensitivity, the higher the nonlinearities will 

be in the system. 

 
Table IV.  MMAPE of Perth CBD for out of sample data (2010 test 

year) 
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(C
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Jan 4.3 4.9 5.5 5.8 25.5 

Feb 3.7 4.0 4.7 4.9 24.4 

Mar 4.1 4.5 5.4 5.6 23.1 

Apr 3.0 3.0 4.0 3.8 18.7 

May 2.0 1.4 2.8 2.3 14.7 

Jun 2.5 2.4 3.4 3.3 12.3 

Jul 2.6 2.0 3.7 3.0 11.3 

Aug 2.6 1.4 3.8 2.3 12.3 

Sep 2.9 1.6 3.8 2.5 14.8 

Oct 2.7 1.5 3.8 2.5 17.4 

Nov 3.3 2.8 4.3 4.0 22.0 

Dec 4.7 4.2 5.6 5.1 22.5 

 

Table V.  MMAPE of Kalgoorlie for out of sample data (2010 test 

year) 
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Feb 3.1 2.6 4.1 3.5 

Mar 3.0 2.3 4.0 3.2 

Apr 3.1 2.6 4.0 3.4 

May 3.9 2.1 4.8 3.1 

Jun 4.5 2.3 6.5 3.2 

Jul 3.6 2.3 4.7 3.9 

Aug 3.9 2.4 5.6 3.3 

Sep 3.3 2.6 4.2 3.8 

Oct 3.8 2.0 4.8 3.0 

Nov 4.1 2.5 5.3 3.1 

Dec 3.7 2.5 4.8 3.6 

 

Finally it can be concluded that both methods are capable 

of forecasting the electricity load with a very high accuracy, 

but depending on the characteristics of the case study, one of 

them may perform better than the other. Using the 

introduced load type determination criterion will help the 

planner to extract the dominant component of the electricity 

load and help him/her to decide which method to use. This 

study suggests bagging decision trees for dominantly 

industrial loads. Based on the temperature sensitivity of the 
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system decision trees or a combination of decision trees and 

neural networks can be used for dominantly commercial and 

residential cases. 
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