


Abstract—An extensible main-memory data model is

presented with applications in writing client-server
components both on the server side as well as in the client
applications domain. Such a model is required in applications
where end user base clients have specific needs and it offers a
framework within which various services are implemented
based on a common extensible core. The end result of the
proposed implementation is a core set of services that uses an
XML based API which can be used to define data structures,
events and actions in an easily usable package that allows
iterative updates and evolution of the environment. Use cases
are presented for the implementation of trading systems used
in the capital markets.

Index Terms—main-memory database, client-server,
framework, API

I. INTRODUCTION

HE work on EDM came about as the personal struggle
of the author while building the Fusion Order eXecution

platform [4] to find a way of building complex trading
systems that also allow a great degree of customization.
After several very successful attempts at building bespoke
order-execution trading systems, the complications arise
from the need to develop and maintain a platform for many
clients who tend to have different, sometimes mutually
exclusive requirements. Some trading systems vendors, such
as Fidessa [6] have been successful at introducing such
platforms. One of the main ingredients in building this type
of system is an easily configurable in-memory database,
using a script based language. There are a limited number of
practically usable in-memory-database systems and most are
proprietary implementations owned by large corporations,
for ex. Oracle owned TimesTen [8]. As such an enterprise
wishing to use a high performance, flexible platform
allowing customizable implementations while maintaining
costs low may go through the route of using a proprietary
developed framework. EDM is such an environment. The
subject of main memory database systems is not new and
has been analyzed of some time, as early as the ‘80s [5], yet
due to their still somewhat esoteric nature, when compared
with traditional relational database systems, main-memory
database systems remain worthy of more intense research.
The paper presents the detailed approach to implementing
such a main-memory database system, with application
directly in building systems used in the capital markets.

Manuscript received July 22, 2012; revised Aug 10, 2012.
I. Ziman is with BFAM Partners (Hong Kong) Ltd. (e-mail: iziman@

bfam-partners.com).

Aspects considered are the building of relevant language
and parser constructs, database primitives and data
hierarchy, and offers an in-depth view of the mechanisms
and level of detail required to consider when building the
framework.

II. THE PURPOSE OF EDM

The main reason for using a model like EDM is to
formalize the approach to building customizable, service
and main-memory based trading systems in the capital
markets space. While such systems have many common
needs with other systems that require stability, high volume
throughput, low latency (such as in the case of
telecommunications), one of the relevant aspects for trading
systems is their perpetual evolution and need to customize
to the level of each, possibly, individual client. Such a
degree of development and maintenance is not possible to
be executed by software providers, and so the need to allow
clients themselves to offer “in-house” customization. When
building such a framework we have consulted environments
already existing [4] as well as studied theoretical aspects
related to ways of approaching building such systems as
well [6-7].

The key areas that EDM is looking to propose a solution
for are thus: use cases where different clients have different
service needs; different clients need different data views
where the data is computed based on different rules, etc..
The situation, when not using a customizable system is that:
writing a server that provides all of the services is
impossible; writing applications that provide all of the
services that the server does not support is impossible;
writing applications that support all user interface views
needed by the client is impossible. The good news are that
we can identify a set of core primitives and services needed
by all the clients (API calls to AddOrder, AddRelease, etc),
and we can also identify a set of core data types used by all
the clients (like Order, Release, etc.). This way, the different
client needs in terms of the views applied on the data can be
considered a customization of the core data types with
additional (and different) attributes.

III. EXTENSIBLE DATA MODEL

A possible solution to the problem that specific clients
need specific data views can be to create a data model that
enables the customization of its data types. This paper
proposes such a dynamic model. In this model new types
can be created and existing types can be changed by adding
new fields to them. The values of these additional fields are
computed based on rules specified by the clients.

Extensible Data Model with Applications for
Trading Systems

Iosif Ziman

T

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

A. Step 1 – Customizable Data types

Our main requirement is to give the client the ability to
customize existing data types. Let’s look into the problem
in more detail. Consider a class that has a set of attributes
expressed in terms of instance variables. How can we add a
new attribute to such a class? In the traditional approach,
this is possible only by sub-classing our class with another
one that contains the desired attributes. This method is both
inflexible (the client app must be rebuilt each time a data
type is customized) and impractical (if different users using
the same client application need different customized data
types, we end up with an ever growing class hierarchy).

The source of the problem is the fact that attributes are
represented as instance variables. A better approach would
be to represent the attributes of an object as a collection,
rather than as its instance variables. In this approach, every
object will have a dictionary called “attributes” that maps
the name of the attribute to its value. An Attribute class will
hold not only the name and value of the attribute but also its
type. We are now able to create different instances of this
class that have different attributes.

Type orderObject;
orderObject.AddAttribute(Attribute(“ID”, “string”));
orderObject.AddAttribute(Attribute(“clientID”, “string”));
Type releaseObject;
ReleaseObject.AddAttribute(Attribute(“ID”, “string”));
ReleaseObject.AddAttribute(Attribute(“orderID”, “string”));

In our application domain we have also collection objects
that contain collections of orders, releases, etc. Using the
above approach, every object in our collections would be
represented as a set of three-tuples of (name-type-value).
One can easily see that the name and type information is
duplicated throughout the collection. The solution to this
problem is to put the type information in the collection,
because every object is of the same type. The Value
attribute of the Attribute class is also removed because from
now the collection is the one who manages the values.

However, this approach doesn’t capture the fact that our
application domain has different data types (Orders are not
Releases) and those types can be related to each other (using
foreign keys). We could subclass the “CollectionType” class
to obtain different types. Relationships could be represented
but using a special type of attributes ForeignKeyAttribute
that contains both the name of the related type and the name
of the related attribute.

The problem with this design arises from the fact that
there are also simple objects that have the same type. We
have not only order collections, but also orders and events
that have orders as their content. To solve this problem, we
could create a similar model for simple objects, too.
However, in this way we are duplicating the type
information and the relations between the types. For
example, in the simple object diagram, we can have a
ForeignKeyAttribute named “orderID” of a ReleaseType
object that points to the “ID” attribute of an OrderType
object. Likely, in the collection diagram, we will have a
ForeignKeyAttribute named “orderID” of a
ReleaseCollectionType object that points to the “ID”
attribute of an OrderCollectionType object.

A more difficult problem is that each instance of a simple
object contains the set of attributes it has. In case of the
collections we know that they are unique, that is we have

only one order table, one release table, and so on. But how
can we guarantee that the simple object instances are also
singletons? In this way, every instance of a release object
would contain the list of attributes that data type has. The
problem is that we keep the type information in the objects.
This problem can be solved by separating the type
information from the actual instances. We can create types
as objects and let each simple object or collection object to
have an attribute called “type” that points to an actual type
object. This way we can specify types once and reuse them
for multiple objects. This approach also eliminates the need
of sub-classing the object and the collection hierarchy.
Using this model, we can create different type objects (one
object for every type) and customize them by adding
different attributes. For example, the construction of an
Order type will look something like this:

// Create a new type called Order
Type Order;
Order.AddAttribute(Attribute(“ID”, “string”));
Order.AddAttribute(Attribute(“clientID”, “string”));

. . .
Now we are able to create different objects (both simple and
collection objects) by specifying their type in the
constructor:
// Create a simple order object of type Order
Object order(Order);
// Create a collection of orders
Collection orders(Order);

B. Step 2 – Rules

As presented, the object and collection classes have
methods that get and set the values of different attributes. In
our application domain, the core set of attributes in each
type are set using well defined business rules. What happens
with the values of the attributes added by the client? A
generic client application cannot know the semantic
meaning of the attributes added to the types. This meaning
must be specified by the client by means of rules that
compute the values of those attributes.

At this point, we have to apply a specialization in the
design. There are attributes that are part of the core data
model - we will call them native attributes. There are also
attributes added by the clients – we will call them added
attributes. The difference between them is that added
attributes get their value by evaluating user specified rules
while native attributes are computed based on hard coded
business rules. Added attributes and their associated rules
will be specified by the client. In order to do this, the client
can use a configuration file or (a better approach) an utility
application possibly with a graphical interface for
customizing the data types and for specifying the rules.

The problem to resolve next is how to represent rules and
functions in the system. The most obvious way to represent
rules and functions is with a language. This requires
therefore implementing the language. There are lots of ways
to do this: use a compiler tied to the underlying machine,
define a simple virtual machine and compile it the virtual
machine or develop an interpreter. These implementation
techniques trade off ease of implementation with speed of
the final program.

Rules can be represented by a rule hierarchy that
corresponds to the grammar that is being interpreted. There
are subclasses that represent constants, attributes, table
lookups, and perform arithmetic or aggregation operations.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Every component in the hierarchy must support an operation
called “evaluate” that evaluates an instance of a given
component. Using these components, we can build up
program trees that can be later interpreted.

There are different types of rules. The primary distinction
between them is that some of them generate a single value,
while some of them generate multiple values.

Single value generator rules:
 A Constant rule always evaluates to the same value.

This value is specified during construction.
 A CollectionElement rule evaluates the value of a given

collection element’s attribute (for example, the value of
the “orderID” attribute of the 5th row in a releases
collection).

 An EventElement rule evaluates an attribute of a given
event.

 A TableLookup rule evaluates the value of an attribute
from a given row in a given table.

 A BinaryOperation rule always has two operands. It
evaluates by applying a binary operator to the evaluated
values of its operands. One can see that the operands
can theirselves be rules that generate single values.

 An AggregationRule applies an aggregation operator on
its operands. The operands can be any types of rules.
First the operands are evaluated, resulting a list of
values. Then, the aggregation operator is used to obtain
the final value.

Multiple value generator rules:
 MultipleTableLookup evaluates to a list of values. Each

element in the list is the evaluation of the same attribute
from a table but for different rows. The values of the
rows for which the attribute is evaluated (the selector)
are computed using another rule. This mechanism
enables the implementation of the join operations.

 CollectionElements rule evaluates the same attribute for
a collection object but for different rows. The values of
the rows for which the attribute is evaluated (the
selector) are computed using another rule. This
mechanism enables the implementation of the join
operations.

There can be many other rules not included in the class
diagram. To make the language complete, we must identify
all the representative rules by means of which every
program can be implemented.

An important thing to consider is the fact that rules are
always evaluated relative to a given context. This context
contains additional “run-time” information needed for the
evaluation of a rule. This context is passed to the root node
of the program and is propagated down the three during the
evaluation process. Every node can add additional
information to the context, but a given node should not alter
the original context. One of the most common kinds of
contexts is a name space, which is usually represented as a
dictionary that maps names to objects. If a rule needs to
know the value of an attribute, it uses the context to read or
to find that value.

For example, in the case of a CollectionElement rule, the
element itself identifies the collection and the attribute that
is evaluated. The only missing information is the row for
which this evaluation should be made. One of the
possibilities of specifying the identifier of the row is by
inserting it into the context. During the evaluation, the

CollectionElement rule will inspect the context for such a
value, and if finds it, it will use it for the subsequent
computation.

Let’s consider a simple expression and build for it the
program that represents it. The expression is:

2+3*5

 The following section of code builds the program that
describes this expression:

Constant c1(2), c2(3), c3(5);
BinaryOp op1(MULTIPLY, c2, c3);
BinaryOp op2(ADD, c1, op1);

To evaluate the value of the expression, one can execute the
following instruction:

op2.Evaluate();

C. Step 3 – Relations

One can easily observe that there are actually two data
models in the client application. One of them is the model
we try to build, and the second is the built-in data model,
which is hard coded in the implementation. In fact, our data
model is built on top of the built-in data model. This is why
our data model must be at least as powerful as the
underlying one. The hard coded data model expresses
relationships between different types (in a hardcoded
manner). The consistency of the model is preserved by the
operations. Our data model must also be able to express
relations.

To model as close as possible the relational data model
encoded in the existing built-in model, we define relations
in terms of foreign keys. Foreign keys are attributes of data
types that refer to other attributes in other data types.

IV. IMPLEMENTATION ISSUES

A. The Configuration File
There must be a place where the customized data types as

rules are saved for later reuse. This can be a configuration
file - a file consisting of several sections, each section
holding a related group of declarations/statements/rules. By
comparison CSQL [4] is not persisting rules.

One section would describe the additional fields of each
data type. This section may look like this:

<Extensions>
 <Type Name=”Order”>
 <NewField Name=”O1” Type=”Integer”>
 <Rule> // rule to compute O1
 </Rule>
 </NewField>
 <NewField Name=”O2” Type=”Float” Format=”xxx.xx”>
 <Rule> // rule to compute O2
 </Rule>
 </NewField>
</Type>
<Type Name=”Release”>
 <NewField Name=”R1” Type=”String” Length=”25”>
 <Rule> // rule to compute R1
 </Rule>
 </NewField>
</Type>
</Extensions>

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

In the previous example, the Order data type is extended
by two additional fields. The first field has the name “O1”
and it is an integer. Second field is named “O2” and it is a
float. For each new field there is a rule that computes its
value. Rules are described in the next section.

The format of the file is selected randomly. The end user
can manipulate the data model through an interface program
that will hide the details of the configuration file.

Another section of the configuration file would describe
the events that can occur and the fields that are evaluated
every time a specific event occurs.

<Evaluations>
 <OnEvent Name=”NameOfEvent1”>
 <Evaluate Field=”O1” Of=”Order”/>
 <Evaluate Field=”O2” Of=”Order”/>
 <Evaluate Field=”R1” Of=”Release”/>
 </OnEvent>
 <OnEvent Name=”NameOfEvent2”>
 . . .
 </OnEvent>
</Evaluations>

B. The Language for Rules

The language for rules must be as simple as possible, but
in the same time it must be powerful enough to enable the
client to express a large category of operations. Another
important issue is that rules must be intuitive. This means
that some kind of implicit information must exist every time
a rule is evaluated. The writer of the rule must not specify
this information in order to enable the rule to be evaluated.

Simple rules enable the computation of a given attribute’s
value by using the different mathematical operators,
constants, table lookups, collection elements and event
elements.

Order.O1 = 100
Order.O2 = SUM(Release.R5)
Order.O3 = Order.Sent – Order.Done
Order.O4 = AVG(TAB1.Field1)
Order.O5 = RTP.ASK

Complex rules enable the specification of the join
operation. An example of a complex rule is:

Order.O6 = SUM [Order.O1 = Order.O5] Order.O3

This rule computes the value of the O6 field of the Order
data type as the sum the O3 fields of the same data type.
Between brackets a self-join operation is expressed. The
equivalent SQL statement for this rule would be:

SELECT SUM Order1.O3
FROM Order1, Order2
WHERE Order1.O1 = Order2.O5

V. THE EVALUATION MODEL

This paper presents a model that can serve as the
underlying data model for both client and server
applications. The main characteristics of the model are:
 It captures the existing hard coded relations between

the data types
 It enables the dynamic customization of existing data

types
 It enables the computation of different attributes’ values

based on user-defined rules

Another important aspect of the model is that, while it is
probably not complete, it is stable. This means that
additions to the model can be made in order to achieve
completeness without the need to change the main design
issues. Just to remember, these main decisions are:
 Keeping type information apart from object instances
 Representing rules as a language for which an

implementation grammar draft exist

A. Case Studies

We can present case studies related to the ways these
evaluation methods can be used to map the required
operations on the following type of containers:
 retrieval of data from DBs together with operations on

this data
 operations on data acquired from RTP (Real Time

Pricing) services.
As can be seen, the following cases are only two specific

ways to use the model we have described.
DBs Representing the DB data as collections the

following operations are available:
 retrieval of individual fields
 operations on individual and column type data
 operations on composite type of data (JOIN)

RTP Representing the RTP data as collections we have
access to the same set of operations as described for DBs.

VI. WORKFLOW

This section describes different run-time scenarios
explaining the behavior of the system from the
implementation point of view. We will consider client
applications. In an extensible application scenario, since
additional columns should be displayed on the GUI, the
display function will be extended to display the additional
columns as well.

A. Initialization

Every app will generate at start-up the Type instances for
every data type. For each Type object, the core attributes
will be added. Finally, the relations between these data types
are established.

B. Parsing

We need a parser to read, validate and interpret the
configuration file and data definition file at the start-up of
the app. We may optionally implement some logic in the
parser, like verification of field names used for additional
fields, validity of the evaluation order, validity of the rules,
type matching, etc.

 While the parser reads the configuration file, it
customizes the existing Type objects by adding new
attributes to them. For every added attribute, a program tree
is generated for evaluating its value.

C. Reacting on Events

Every time an event occurs, the app will make some
processing and after that it will pass the control to the rule
interpreter. The interpreter evaluates each rule and after that
returns the control to the main app.

Every event carries some data that has a given type. We
will denote this type with the identifier EventType. The
attribute for which a rule is evaluated will be called
TargetAttribute and the type of the collection for which this

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

attribute is evaluated will be referred as TargetCollection.
They will be referred generically as the Target of the
operation. The operand of a rule will be generically called
Operand. The attribute of an Operand that participates in the
computing process will be referred as OperandAttribute and
the type of the collection from which this attribute comes
will have the name OperandType.

For example, in the rule below

Order.O1 = AVG (Release.R5)

that is evaluated when a ReleaseAdded event comes, we
will have:

EventType: Release
Target: Order.O1
TargetAttribute: O1
TargetType: Order
Operand: Release.R5
OperandAttribute: R5
OperandType: Release

D. Determining the Target

Let’s take a closer look to this process. As it was stated
before, the rules are specified in an intuitive manner. In the
rule:

Order.O1 = AVG (Release.R5)

there is no information regarding the row in the Order
collection for which the evaluation is made. That is, the rule
only states the name of the collection and the name of the
attribute. The extra information must come from the event
itself. Consider for example a ReleaseAdded event. When
the app receives such an event, the event also contains some
additional data, in our case a release. But every release
contains the ID of the order for which it was generated. We
can use this information to identify the specific row in the
Order collection for which the O1 field is computed. But
how can the program know what are the fields in the event
that uniquely identify the target? There are three cases
described below. In any case, the same restriction holds:
there must be a relation between the type of the object
associated with an event and the type of the collection for
which an attribute is evaluated. The two types can be
identical or the EventType must directly or indirectly refer
the TargetType.
1. EventType is the same as TargetType. In this case we

can use the primary key fields of the common type in
order to determine the row for which TargetAttribute is
evaluated.

2. EventType directly refers the TargetType. In this case
we can use those foreign key attributes from the
EventType that point to the TargetType, so the
identification is done.

3. EventType indirectly refers the TargetType. In this case
we can use a recursive algorithm to determine the target
row. At each step we have a current collection type for
which we determine those foreign key attributes that
directly or indirectly point to the TargetType. Based on
the values of these attributes, we can determine the row
in the directly referred collection. Then, the type of this
collection becomes the current type, and the process is
repeated until we reach the TargetType.

After the computation of TargetAttribute’s row, this value
is inserted into the context that will be passed to the
interpreter to evaluate the rules.

E. Evaluating the Rules

Evaluating a rule means evaluating the program tree
associated with that rule. In order for this to be done, the
rules expressed in the configuration files must first be
transformed in a convenient format that fits into our rule
class diagram.
Consider the following rule:

Order.O1 = AVG (Release.R5)

This rule can be rewritten as:

Order.O1 = SELECT AVG (R5)
FROM Release
WHERE OrderId = Order.Id

One can observe that at the moment of the evaluation of

this rule, Order.Id is already computed, i.e. it is a constant.
Now let’s take a look at our internal rule grammar. This
grammar can be followed in the rule class diagram. One
component of this diagram is the CollectionElements class.
This class contains the following important instance
members:
 A reference to a collection type on which the rule

operates. In the above example, this reference can be
the Type object associated with the Release type. This
type name is the operand of the FROM part of the
statement.

 A reference to the attribute of the collection whose
values are extracted. In the above example, this will be
the string “R5” that is the name of the attribute. This
attribute is the operand of the SELECT part of the
statement.

 A list of attributes that must satisfy some conditions in
order to make that row to participate in the evaluation
process. In the above example, this will be the string
“OrderId”. This is attribute is the first operand of the
WHERE part of the statement.

 A reference to a set of rules that compute the permitted
values of the attributes in the WHERE part of the
statement. In the above case, this will be a reference to
a single Constant rule object.

Evaluating an instance of the CollectionElements class
means executing the following statement:

SELECT selectedAttributeName
FROM collectionType
WHERE selectorAttributeNames = selectorValues

For each attribute name in the selectorAttributeNames list

there must be a corresponding rule in the selectorValues.
One should note that the selectorValues list is a list of Rule
objects! Considering the fact that a CollectionElements is a
Rule, this means that we can use as a selector value the
evaluation of another CollectionElements object. This
facility enables the specification of the join operation
between collections.

Consider the example:

Order.O6 = SUM [Order.O1 = Order.O5] Order.O3

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

As we could see, the equivalent SQL statement is:

SELECT SUM Order1.O3
FROM Order1, Order2
WHERE Order1.O1 = Order2.O5

This rule can be further rewritten as:

SELECT SUM Order.O3
FROM Order
WHERE Order.O1 =
(SELECT Order.O5 FROM Order)

In this case, the CollectionElements object that can be

constructed will have the following fields:
 The collectionType field will contain a reference to an

order type object
 The selectedAttributeName field will contain the

attribute name “O3”
 The selectorAttributeNames list will contain only the

“O1” field name
 The selectorValues list will contain a single object. This

object will be another instance of the
CollectionElements class.

This is the way a join operation is represented.

VII. DEVELOPMENTS

Developments may be considered using ideas proposed or
available in implementations such as DBCache[3],
FastDB[4] and Sprint [10].

A. Extensible Data Model on both the Server and Client

The extensible data model may be used both on the server
and client side. At start-up the server can read the data
model from a configuration file or, more generally, from a
“data model repository”. When a client logs in to the
system, it will also receive the same data model from the
repository.

B. Extensible Service Model

The server can be considered as an environment in which
state machines corresponding to each data types are
instantiated and executed. For example, in the case of the
Order Execution Server, every data type has a
corresponding state diagram. When a CancelOrder request
arrives from a client, the server makes the state transition of
the corresponding order object from the “ADDED” state
into the “CANCELLED” state.

Every service offered by the server can be described as a
transition between two states for a given object (order,
release, etc.). New services can be simply added by creating
new states and new transitions between states. Existing
services can be refined by modifying the guards in the
transitions and by modifying the actions performed during
transitions. Every operation request can be then mapped into
a state transition generating event in the corresponding state
machine.

C. The Application Programming Interface

The API must support both the extensible data model as
well as the extensible service model. In order to achieve
this, there can’t be a fixed set of service request functions,
like AddOrder, AddRelease, etc. Instead, the API needs to
support a service request primitive named Request that

will request a specific operation form a service. The general
format of this primitive can be:

Request(“OperationName”, parameterObject)

In the case of the Order Execution Server, the requested
operations could be AddOrder, AddRelease, etc.

D. Extensible Validation Model

Every time a client requests an operation from a service,
there are two validation aspects to consider:
 Whether the client is authorized to execute the operation

requested
 Whether the preconditions of the requested operation are

satisfied
The second aspect directly relates to the business rules of

the application. This type of validation can be easily
modeled in the server side state machine by the means of
guards. Every transition has an associated guard that must
evaluate to true in order to let the transition to proceed.
Business related validations could be described as guards in
a rule-like language.

The first aspect needs a separate validation model. This
model could enable the specification of roles. Every role
could have a set of permitted events that can be generated
by entities that have that role. Also, every role could have a
set of accessible data types and a set of restrictions.

VIII. CONCLUSION

EDM is an original high performance framework that
allows a flexible customization of solutions that may be
used in the capital markets electronic exchange interactions
domain. Specific consideration has been given to the
requirements of building an extensible service model as well
as an extensible validation model, these components needs
to be built in a way that enables co-operation between them.
The components presented are based on frameworks that
enable the building of highly extensible and configurable
new generation applications.

REFERENCES
[1] Jerry D. Baulier et all, The DataBlitz “Main-Memory Storage

Manager: Architecture, Performance, and Experience”, 1998, The
VLDB Journal

[2] P. A. Boncz et all . MonetDB/XQuery: “A Fast XQuery Processor
Powered by a Relational Engine”. Proceedings of the ACM SIGMOD
International Conference on Management of Data, Chicago, IL, USA,
June 2006.

[3] CSQL – DBCache http://csql.sourceforge.net/
[4] FastDB: a main-memory database object-relational database system,

Available: http://www.garret.ru/~knizhnik/fastdb/FastDB.htm
[5] FOX, Fusion Order eXecution platform, internal documentation, 1999
[6] I. Lee, H. Y.Yeon, T. Park, “A New Approach for Distributed Main

Memory Database Systems: A Causal Commit Protocol”, IEICE
Trans. Inf. & Syst., Vol.ES7, No.1 January 2004

[7] S. Manegold, P. A. Boncz, and M. L. Kersten. “Optimizing Main-
Memory Join on Modern Hardware”, IEEE Transactions on
Knowledge and Data Engineering (TKDE), Vol.14, No.4, pp.709–
730, July 2002

[8] H. Garcia-Molina, K.Salem, “Main Memory Database Systems: An
Overview”, IEEE Transactions On Knowledge And Data Engineering,
Vol. 4, No. 6, Dec 1992

[9] RoyalBlue Fidessa http://www.fidessa.com/
[10] Sprint, Adaptive data management for in-memory database clusters,

http://www.inf.unisi.ch/projects/sprint/
[11] TimesTen, http://www.timesten.com

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

