
 

  
Abstract—This paper presents a mixed integer linear 

programming model of scheduling parallel batch processing 
machines that minimizes total tardiness of jobs. The proposed 
model incorporates several practical issues such as unequal job 
ready times, arbitrary job sizes, and arbitrary job processing 
times. Due to the NP-hardness of problem under study, this 
paper proposes a hybrid differential evolution (HDE) 
algorithm to solve large-sized instances. To avoid the 
premature convergence, simulated annealing is incorporated in 
HDE to help the algorithm escape from local optima. The 
performance of presented model and proposed algorithm is 
verified by extensive experiments. The related results show the 
effectiveness of the proposed model and HDE for small and 
large-sized problems. In addition, some statistical tests are 
conducted to find the best performance of HDE due to its 
parameters. 

 
Index Terms—Scheduling, Parallel batch processing 

machine, Differential evolution, Simulated annealing, Total 
tardiness 

 

I. INTRODUCTION 

HIS paper addresses the scheduling problem of batch 
processing machines. Batch processing machines 

(BPM) can process several jobs simultaneously. These 
machines are commonly used in manufacturing industries 
such as wafer fabrication, metal working, burn-in ovens and 
testing electrical circuits. In recent years, there have been 
many studies of the BPM scheduling problem. Mathirajan 
and Sivakumar [1] and Potts and Kovalyov [2] provide an 
extensive review on scheduling with batching. 

The problem under study considers a set of BPM in 
parallel which commonly used to test printed circuit boards. 
The BPM can process a batch of jobs as long as the total 
size of all the jobs in the batch does not exceed the machine 
capacity. The processing time of the jobs, the ready time of 
the jobs and their size are different and are given in advance. 
Consequently, the processing time of the batch is equal to 
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the longest processing job in the batch and a batch can be 
processed only when all the jobs in a batch are ready. 

A mixed-integer linear programming (MILP) model is 
proposed to formulate the problem under study. The 
objective is to minimize the total tardiness in order to 
maximize on-time delivery performance. A special case of 
the problem, when the processing times of all the jobs are 
identical, the batch formation problem is equivalent to the 
bin packing problem which is known as a NP-hard problem 
[3]. Consequently, the under study problem is NP-hard. 
Therefore, meta-heuristic algorithms, such as genetic 
algorithm [4], simulated annealing [5, 6] are used to find a 
good solution for this problem. 

Differential evolution (DE) is a novel evolutionary 
algorithm recently introduced by Storn and Price [7] for 
optimization problems over continuous spaces. Due to its 
ease of use, fast convergence and robustness, DE has 
successfully been applied to diverse domain of science and 
engineering [8]. Besides other applications, all of the DE 
implementations in scheduling literature focused on the 
single machine scheduling [9], flow shop scheduling [10], 
hybrid flow shop [11], job shop scheduling problem [12] 
and project scheduling [13]. 

In this paper a hybrid differential evolution algorithm 
(HDE) is proposed to solve the proposed model. In order to 
enhance the exploitation ability of the proposed algorithm 
and to avoid premature convergence, simulated annealing 
(SA) algorithm based local search is incorporated into HDE. 
The standard differential evolution algorithm cannot be used 
to generate discrete job permutation since it is originally 
designed to solve continuous optimization problems. 
Therefore, smallest position value (SPV) rule based on 
random key representation [14] is used to enable the 
continuous DE to be applied to the scheduling problem.  

Two computational experiments are conducted to 
evaluate the performance of the model and algorithm. The 
first one includes small-sized instances by which the 
performance of the HDE is verified with comparing its 
results with the best solution obtained by the CPLEX. In the 
second one, to test the applicability of proposed algorithm to 
solve large-sized instances, datasets are randomly generated 
and results are compared with the results obtained by 
random key genetic algorithm. The results show the 
effectiveness of the proposed model and algorithm. In 
addition, calibration of HDE is investigated so that it is 
ensured that the algorithm performs in a high efficiency. 

The remaining sections of this paper are organized as 
follows. In Section 2, the problem formulation is described. 
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The solution approach for the problem is presented in detail 
in Section 3. The experiments carried out and the analysis 
conducted to compare the different solution approaches is 
presented in Section 4. Section 5 summarizes the research 
findings and contributions of this paper. 

II. PROBLEM FORMULATION 

Formally, the considered problem can be described as 
follows: The set J of jobs and a set M of non-identical batch 
processing machines are given. Each job j is described by 
the triplet representing, its processing time (pj), ready time 
(r j), and size (sj), respectively. The objective is to find a set 
B of batches and to schedule these batches such that the 
tardiness is minimized. The number of batches formed 
depends upon the number of jobs considered in an instance. 
Batch ready time is equal to the largest ready time of all the 
jobs in the batch. 

The main assumptions made considered in this paper are: 
(1) job processing times, job ready times and sizes are 
deterministic and known in advance, (2) job splitting and 
preemption are not allowed, (3) machines are available and 
empty at time zero, (4) machine breakdowns are not 
considered. According to the standard classification notation 
of Graham et al. [15], the problem under study problem can 
be denoted as Pm|r j,batch|∑Tj. 

The mathematical model describing the characteristic of 
the problem can be formulated based on following variables 
and parameters: 

Sets: 
J Set of jobs, j∈J 
M Set of machines, m∈M 
B Set of batches, b∈B 

Parameters: 
Pj Processing time of job j 
r j Ready time of job j 
sj Size of job j 
S Maximum capacity of machine m 

Variables: 
Xjbm if job j is assigned to batch b and processed by 

machine m 
Pbm Start time of batch b on machine m 
CTbm Completion time of batch b on machine m 
Cj Completion time of job j 
Tj Tardiness of job j 

 
The mixed integer linear formulation for the considered 

problem is presented below: 

Min Z= ∑
=

n

j
jT

1

 (1) 

Subject to: 

∑∑
∈ ∈

=
Mm Bb

jmbX 1 j∈J (2) 

∑
∈

≤
Jj

jmbj SXs  m∈M, b∈B (3) 

jmbjmb XrP ≥  j∈J, m∈M, b∈B (4) 

11 −− +≥ jmbjmbmb XPPP  j∈J, m∈M, b∈B (5) 

jmbjmbmb XPPCT +≥  j∈J, m∈M, b∈B (6) 

jmbmbj XCTC ≥  j∈J, m∈M, b∈B (7) 

jjj dCT −≥  j∈J (8) 

}1,0{∈jmbX  j∈J, m∈M, b∈B (9) 

0,,, ≥jjmbmb TCPCT  j∈J, m∈M, b∈B (10) 

The objective function (1) minimizes total tardiness of 
jobs. Constraint set (2) ensures that each job is assigned to 
exactly on batch on one machine. Constraint set (3) enforces 
machine capacity constraint. The sum of all job sizes in a 
batch cannot exceed the machine capacity. Constraint set (4) 
impose that the ready times of the jobs are not violated. 
Constraint set (5) ensures that there is no overlapping 
between batches scheduled on the same machine. The bth 
batch can start on machine m only after the machine 
completes processing the (b-1)st batch. Constraint set (6) 
determines the completion time of batches on each machine. 
Constraint set (7) determines the completion time of each 
job. Constraint set (8) measures the degree to which each 
job is tardy. Constraint sets (9) and (10) define the type of 
decision variables. 

III.  PROPOSED SOLUTION APPROACH 

Differential Evolution (DE) algorithm, introduced by 
Storn and Price [7] is an extremely powerful optimization 
algorithm that solves real-valued problems based on the 
principles of natural evolution. As other evolutionary 
algorithms, DE starts with an initial population vector, 
which is randomly generated when no preliminary 
knowledge about the solution space is available (Storn, 
1997). At every generation G, DE maintains a population 
P(G) of NP (population size) vectors of solutions which 
evolve through the optimization process to find global 
solution: 

[ ]G
NP

GG XXP ,...,1=  (11) 

The population size, NP, is constant during the 
optimization process. The dimension of each vector of 
candidate solutions correspond to the number of the decision 
parameters, D, to be optimized. Therefore, 

[ ]G
iD

G
i

G
i XXX ,,1 ,...,=  i= 1,2,…,NP (12) 

The optimization process is conducted by means of three 
main operations: mutation, crossover and selection. 
Comprehensive history and development of DE is presented 
in the [16]. 

The Proposed Hybrid Differential Evolution optimization 
procedure is conducted by means of the following 
operations: 

A. Solution representation 

Since DE algorithm is originally designed to solve 
problems with continuous variables, it cannot be used 
directly to solve discrete problems. In this paper, the 
smallest position value (SPV) rule based on random key 
representation, proposed by bean [14], is used to encode 
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solutions. According to SPV rule, [ ]G
iD

G
i

G
i XXX ,,1 ,...,=  are 

firstly ranked by ascending order to get the sequence 
[ ]G

Di
G
i

G
i ,1, ,...,ϕϕϕ = . Then the job permutation πi is calculated 

by the following formula: 

kG
kii

=
,,ϕπ   (13) 

Table 1 illustrates the solution representation of vector 
Xi

G for DE. According to the SPV rule, the smallest 
dimension value is Xi,5

G=  0.65, so 15, =G
iϕ . Therefore 

dimension k= 5 assigned to be the first job in the 
permutation. After decoding each vector, the fitness of each 
vector is evaluated by equation (1). 

TABLE I 
Solution Representation 

Dimension k 1 2 3 4 5 
G
iX  1.24 3.32 2.88 1.94 0.65 

G
Di ,ϕ  2 5 4 3 1 

G
kii ,,ϕπ  

5 1 4 3 2 

B. Initialization 

In order to establish a starting point for the optimization 
process, each decision parameter in every vector of the 
initial population is assigned a randomly chosen value from 
within its corresponding feasible bounds: 

),(0
,

L
j

U
j

L
jij XXrandXX −+=  i= 1,2,…,NP 

j= 1,2,…,D 
(14) 

Where Xj
L and Xj

U is considered between [0,4], and rand 
represent a uniformly distributed random value that ranges 
from 0 to 1. 

C. Mutation 

At every generation G, each vector in the population has 
to serve once a target vector. For each target vector, a 
mutant vector Vi

G is defined by: 

)( G
c

G
b

G
a

G
i XXFXV −+=   (15) 

With random indexes a,b,c ∈NP [7], integer, mutually 
different, and different to the target vector. F is a user 
defined constant (also known mutation scaling factor), 
which is typically chosen from the range (0,2]. Larger 
values for F result in higher diversity in the generated 
population and lower values cause faster convergence 

D. Crossover 

DE utilizes the crossover operation to generate new 
solutions by shuffling competing vectors and also to 
increase the diversity of the population. To this end, the trial 

vector, i.e., [ ]G
D

G
i

G
i UUU ,...,,1=   is formed, where 





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=
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j
G
ijG

ij
,

,
,  (16) 

In (16), randj is the j th evaluation of a uniform random 
number generator with outcome between 0 and 1. CR is the 
crossover rate constant and is a user-defined parameter 
within the range [0,1]. Large CR usually increases the 
convergence rate. K is a random parameter index chosen 
from the set, which is used to make sure that at least one 
parameter is always selected from a Vi

G.  

E. Improvement by simulated annealing  

Simulated annealing (SA) is a effective optimization 
algorithm motivated from an analogy between the 
simulation of the annealing of solid and the strategy of 
solving combinatorial optimization [17]. In this paper, in 
order to enhance the exploitation ability of the proposed 
algorithm, DE is hybridized with a simulated annealing (SA) 
algorithm. All current solution vectors are improved by 
using SA. 

The applied SA could be briefly introduced as follows: It 
starts with an initial solution, each solution vector of the 
current generation, and for each vector a neighbor solution 
is generated. In the proposed SA, a neighbor vector 

[ ]iDii NNN ,,1 ,...,= for each solution vector Xi is 

generated according to Equation 17. 

ρ×−+= )( L
j

U
jjii XXrandXN   (17) 

where ρ is used to ensure that parameter values lies inside 
their allowed ranges in neighbor vector. Let F(X) and F(N) 
denote the objective function values of the current solution 
and the neighbor solution, respectively and define ∆ as the 
difference between these objectives; that is ∆= F(X) - F(N). 

If 0≤∆  the neighbor solution is accepted; otherwise it is 

accepted with probability equal to Te
∆−

. Where T is the 
temperature parameter such that T > 0. At the beginning, the 
temperature is set at the initial temperature T0. Then T is 
decreased after generations according to the formula T=α×T, 
where α  is the coefficient controlling the cooling schedule 
(0<α<1). 

In this study, the T0 is determined by the following 
empirical equation:  

)15.0ln(
minmax

0

FF
T

−−=   (18) 

Where Fmax and Fmin are the maximum and minimum 
objective function values of the initial solution vectors, 
respectively. Besides, it was found during experiments that 
the α= 0.8 produce best results. Therefore, it is selected for 
the α value. 

F. Termination Condition 

Termination strategy can be defined differently based on 
the problem nature, application, or the purpose of the 
experiment. In this paper, the execution time is used as 
termination criterion. The pseudo code for the proposed 
HDE algorithm is given in Fig 1. 

IV.  COMPUTATIONAL EXPERIMENTS 

In this section, extensive experiments are illustrated to 
evaluate the performance of the HDE to solve the proposed 
model. The performance of HDE for small-sized instances is 
compared with optimal solution obtained by the CPLEX 
software. In order to test the effectiveness and applicability 
of proposed algorithm to solve large size problems, since the 
CPLEX requires long computational times, its results are 
compared with random key genetic algorithm (RKGA) 
introduced by Bean [14] and the proposed SA explained in 
section III. 

RKGA begins by assigning a random number to each job. 
The jobs are then initially sorted according to their key 
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value. Then, crossover operator is applied to each job’s 
value. In this algorithm, the migration operator replaces the 
traditional mutation operator. In the migration phase, new 
individuals are randomly generated and added to the new 
population. The migration is used to ensure diversity. 
RKGA is developed for a more highly constrained problem 
and does not use of a local search. Bean shows the 
robustness of RKGA by using it to evaluate machines 
scheduling, vehicle routing, and quadratic assignment 
problems. This algorithm is implemented according to its 
description in the literature [14]. 

Moreover, in order to evaluate the performance of 
hybridizing SA into the algorithm, the proposed differential 
evolution (DE) algorithm without local search engine is also 
considered in the experiments. All these algorithms are 
coded in MATLAB 7.12.0 and executed on an Intel® Core 2 
DuoE4500 at 2.20 GHz with 2.0GB of RAM. 

In order to provide a fair comparison between meta-
heuristic algorithms, the stopping criteria is set to a 
maximum elapsed time of (m+n)×Ω, where m is a number of 
machines, n is a number of jobs, and Ω is a constant 
coefficient. While different limits could be obtained by 
different values of Ω, the preliminary tests showed its 
proper amount as 0.6. Therefore, the computational effort 
increases as the number of jobs and machines increases. 

Data for a set of random instances are randomly generated 
in small and large sizes. To generate model’s data, such as 
processing times, Job’s ready times and job’s sizes, the 
methods presented in [18] is used.  

A. Parameter setting  

In this section, an experimental study is conducted to 
determine the best values for the proposed algorithm 
parameters (i.e., NP, CR, F). The different values considered 
for each parameter are shown in Table II. Experiment 
instances are randomly generated by varying the total 
number of jobs (i.e. n= 20, 40, 60, 80, and 100 jobs) and 
total number of machines (i.e. m= 2, 4, and 8 machines). For 
each combination of n×m ten instances are generated for a 
total of 150.  

Statistical experiments are carried out by means of a 
design of experiments (DOE) [19]. Confidence level is 
selected as %95 in this study. Table III demonstrates the P-
values of these experiments. The performance measure of 
interest is the total tardiness. 

 

 

TABLE II 
Experimental parameters of HDE 

Parameters Level 1 Level 2 Level 3 
CR o.5 0.7 0.9 
F 0.3 0.5 0.9 

NP 100 150 200 

Table III shows the HDE algorithm performs better with 
crossover rate 0.9 than 0.7. In mutation scaling factor (F), it 
is observed that HDE performs better with mutation rate 0.5 
than 0.3. In addition increasing this rate to 0.9 has no 
significant influence on HDE performance. Increasing 
population size from 100 to 150 can improve the results 
significantly, although there is not a significant difference in 
quality of solution by increasing it from 150 to 200. 
According to the obtained results, with NP= 100, CR= 0.9, 
and F= 0.5, proposed HDE yield better solutions. 

TABLE III 
Experimental test results 

Parameters Level of experiment P-value 

CR 
2×1 0.3016 
2×3 0.0197 

F 
2×1 0.0078 
2×3 0.3841 

NP 
2×1 0.0271 
2×3 0.2697 

B. Comparative evaluation for small-sized instances 

Experiments with small-sizes instances consist of 15 
different size instances, and each size contains 20 randomly 
generated instances. Therefore, 300 instances are considered 
in experiments. To evaluate the performance of the proposed 
algorithm, generated instances are solved, and related results 
are compared with SA and optimum solutions obtained by 
the commercial solver CPLEX. The maximum CPU time for 
the MILP model is set to three hours, that is, if after three 
hours no optimal solution is obtained, the best current 
solution is returned. 

Regarding the performance measure, the average Relative 
Percentage Deviation (RPD) is used according to the 
following equation: 

100×−=
sol

solsol

Best

BestMethod
RPD   (19) 

Where Bestsol is the best known solution obtained after all 
experiments carried out through the paper, and Methodsol is 
the solution obtained with a given algorithm. 

In Table IV, results for small instances are shown for all 
evaluated methods including the MILP model, proposed 
HDE, proposed SA, and RKGA. As Table 2 shows, CPLEX 
is able to obtain the optimal solution of MILP model for all 
instances with 8, 10, and 12 jobs. For small instances the 
solutions from the HDE algorithm are also optimal; 
however, for larger instances (i.e., with 20 jobs) the solution 
from HDE is better than commercial software. Regarding 
the rest of the methods, according to Table IV, the best 
results are provided by proposed HDE, and the results of 
proposed SA and RKGA is very similar. 

C. Comparative evaluation for large-sized instances 

In order to test the efficiency of proposed algorithm to 
solve large size problems, experiments with 18 different 
sizes jobs are considered. Each size of this problem contains 
10 randomly generated instances, and a total of 180  

Procedure of hybrid differential evolution 
 Set parameters: NP, F, CR; 
 Initialize target population; 
 While stopping criterion is not satisfied Do 
  Obtain mutant population; 
  Obtain trial population; 
  Evaluation; 
  Selection; 

Update new vectors; 
Apply simulated annealing based local search; 

End While 
End 

Fig. 1.  The pseudo code for the proposed HDE 
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TABLE IV 
Comparison results for small-sized instances in terms of RPD 

No. Instance MILP RKGA SA HDE 

1 6×2 0.00 0.11 0.13 0.00 

2 6×3 0.00 0.12 0.15 0.00 

3 6×4 0.00 0.17 0.22 0.00 

4 8×2 0.00 0.15 0.20 0.00 

5 8×3 0.00 0.18 0.26 0.02 

6 8×4 0.00 0.21 0.19 0.00 

7 10×2 0.27 0.41 0.46 0.02 

8 10×3 0.20 0.40 0.49 0.03 

9 10×4 0.11 0.54 0.89 0.04 

10 12×2 2.24 0.67 0.64 0.06 

11 12×3 2.38 1.66 1.88 0.02 

12 12×4 2.98 0.82 0.75 0.07 

13 15×2 3.51 0.79 0.71 0.04 

14 15×3 4.29 0.72 0.62 0.03 

15 15×4 5.37 0.85 0.74 0.05 

      
Average 1.42 0.52 0.56 0.03 

instances are considered as large size problems. Regarding 
the performance measure, the RPD is used following 
Equation 19. In this case MILP model is not tested. 

TABLE V 
Comparison results for large-sized instances in terms of RPD 

No. Instance RKGA SA HDE 

1 50×10 3.77 2.44 0.85 

2 50×15 4.77 2.87 0.31 

3 50×20 3.19 4.98 0.89 

4 80×10 3.33 5.75 0.71 

5 80×15 5.39 3.73 0.39 

6 80×20 4.55 4.15 0.27 

7 100×10 3.87 3.83 0.27 

8 100×15 4.55 3.24 0.62 

9 100×20 5.59 3.55 1.10 

10 150×10 7.47 3.64 0.69 

11 150×15 6.12 2.02 0.52 

12 150×20 4.77 3.03 0.78 

13 200×10 9.70 4.40 0.65 

14 200×15 9.43 3.35 0.95 

15 200×20 4.35 3.38 0.74 

16 250×10 5.71798 4.02162 1.89777 

17 250×15 8.16644 3.38313 0.66819 

18 250×20 8.44362 4.18157 0.40195 

     
Average 5.73 3.66 0.71 

In Table V the summary of results for large-sized 
instances are reported. From the table, it is seen that the 
HDE exhibits the best performance with the average RPD of 
0.71%. As seen in Table V, while the average gap between 

the best solution and the HDE is less than 1%, the average 
gap for the SA and RKGA are less than 4% and 6%, 
respectively. HDE show a very good performance and 
provide the best results in most cases. 

TABLE VI 
ANOVA for average RPD in large-sized instances 

Source 
Degree of 
freedom 

Sum of 
squares 

Mean 
square 

F P-value 

Methods 2 2371.76 1185.88 112.53 0.000 
Test 

Problems 
9 87.46 9.72 0.92 0.505 

Interaction 18 475.73 26.43 2.51 0.001 
Error 540 5690.5 10.54 

  
Total 569 8625.45 

   

To further precisely analysis the results, an analysis of 
variance (ANOVA) is applied. The ANOVA is shown in 
Table VI. Confidence level is selected as %95 in this study. 
It can be seen in Table VI that there are significant 
differences between the algorithms with p-value very close 
to zero. Figure 2 present average RPD obtained by these 
algorithms. From table VI and figure 2 it is obvious that 
HDE statistically supersedes the other algorithms; also SA is 
superior to RKGA. 

SARKGAHDE

6

5

4

3

2

1

0

Methods

M
ea

n
95% CI for the Mean

 
Fig 2. Method effects plot for average RPD in large size 

V. CONCLUSION 

This paper considered the scheduling batch processing 
machines in parallel to minimize total tardiness. Also, 
several practical issues such as unequal job ready times, 
arbitrary job sizes, and arbitrary job processing times was 
considered. A mixed integer linear programming (MILP) 
model was proposed and evaluated to optimally solve this 
problem using the CPLEX solver. However, the CPU time 
required by this procedure increases exponentially as the 
problem size increases and only small-sized instances can be 
solved optimally using CPLEX. Therefore, a hybrid 
algorithm based on differential evolution and simulated 
annealing algorithm (SA), namely HDE, proposed to find 
optimal or near optimal solution for large size problems. 
The proposed HDE approach uses smallest position value 
(SPV) rule based on random key representation to encode 
solutions, which can convert the job sequences to 
continuous position values. In addition, calibration of HDE 
was investigated so that it is ensured that the algorithm 
performs in a high efficiency. 

The performance of the proposed HDE was verified for 
small size problems with comparing its results with the best 
solution obtained by the CPLEX, SA and random key 
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genetic algorithm (RKGA). The results showed that the 
solutions from the HDE algorithm were also optimal for 
these problems. In order to test the applicability of proposed 
algorithm to solve large-sized instances, 180 instances were 
generated and the results of HDE were compared with the 
results obtained by SA algorithm as well as RKGA. The 
achieved results indicated the effectiveness of the proposed 
HDE algorithm. 

As an interesting future research, a further interesting 
issue is the consideration of realistic assumption such as 
machine breakdown in the model. Improving proposed 
algorithm by combination of other meta-heuristic algorithm 
is also of interest. 
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