

Abstract—This paper presents a mixed integer linear

programming model of scheduling parallel batch processing
machines that minimizes total tardiness of jobs. The proposed
model incorporates several practical issues such as unequal job
ready times, arbitrary job sizes, and arbitrary job processing
times. Due to the NP-hardness of problem under study, this
paper proposes a hybrid differential evolution (HDE)
algorithm to solve large-sized instances. To avoid the
premature convergence, simulated annealing is incorporated in
HDE to help the algorithm escape from local optima. The
performance of presented model and proposed algorithm is
verified by extensive experiments. The related results show the
effectiveness of the proposed model and HDE for small and
large-sized problems. In addition, some statistical tests are
conducted to find the best performance of HDE due to its
parameters.

Index Terms—Scheduling, Parallel batch processing

machine, Differential evolution, Simulated annealing, Total
tardiness

I. INTRODUCTION

HIS paper addresses the scheduling problem of batch
processing machines. Batch processing machines

(BPM) can process several jobs simultaneously. These
machines are commonly used in manufacturing industries
such as wafer fabrication, metal working, burn-in ovens and
testing electrical circuits. In recent years, there have been
many studies of the BPM scheduling problem. Mathirajan
and Sivakumar [1] and Potts and Kovalyov [2] provide an
extensive review on scheduling with batching.

The problem under study considers a set of BPM in
parallel which commonly used to test printed circuit boards.
The BPM can process a batch of jobs as long as the total
size of all the jobs in the batch does not exceed the machine
capacity. The processing time of the jobs, the ready time of
the jobs and their size are different and are given in advance.
Consequently, the processing time of the batch is equal to

Manuscript received June 17, 2012; revised August 07, 2012.
 A. Jafari is the assistant professor in the Department of Industrial

Engineering, University of Science and Culture, Tehran, Iran, (e-mail:
jafari@usc.ac.ir).

S. Hassani is with Department of Industrial Engineering, University of
Science and Culture, Tehran, Iran, (e-mail: somayeh.hasani@gmail.com).

P. Chiniforooshan is with the Department of Industrial Engineering,
Science and Research Branch, Islamic Azad University, Tehran, Iran
(corresponding author to provide phone: +989125104151, fax:
+982155634107, e-mail: p.chiniforooshan@gmail.com;
p.chiniforooshan@srbiau.ac.ir).

the longest processing job in the batch and a batch can be
processed only when all the jobs in a batch are ready.

A mixed-integer linear programming (MILP) model is
proposed to formulate the problem under study. The
objective is to minimize the total tardiness in order to
maximize on-time delivery performance. A special case of
the problem, when the processing times of all the jobs are
identical, the batch formation problem is equivalent to the
bin packing problem which is known as a NP-hard problem
[3]. Consequently, the under study problem is NP-hard.
Therefore, meta-heuristic algorithms, such as genetic
algorithm [4], simulated annealing [5, 6] are used to find a
good solution for this problem.

Differential evolution (DE) is a novel evolutionary
algorithm recently introduced by Storn and Price [7] for
optimization problems over continuous spaces. Due to its
ease of use, fast convergence and robustness, DE has
successfully been applied to diverse domain of science and
engineering [8]. Besides other applications, all of the DE
implementations in scheduling literature focused on the
single machine scheduling [9], flow shop scheduling [10],
hybrid flow shop [11], job shop scheduling problem [12]
and project scheduling [13].

In this paper a hybrid differential evolution algorithm
(HDE) is proposed to solve the proposed model. In order to
enhance the exploitation ability of the proposed algorithm
and to avoid premature convergence, simulated annealing
(SA) algorithm based local search is incorporated into HDE.
The standard differential evolution algorithm cannot be used
to generate discrete job permutation since it is originally
designed to solve continuous optimization problems.
Therefore, smallest position value (SPV) rule based on
random key representation [14] is used to enable the
continuous DE to be applied to the scheduling problem.

Two computational experiments are conducted to
evaluate the performance of the model and algorithm. The
first one includes small-sized instances by which the
performance of the HDE is verified with comparing its
results with the best solution obtained by the CPLEX. In the
second one, to test the applicability of proposed algorithm to
solve large-sized instances, datasets are randomly generated
and results are compared with the results obtained by
random key genetic algorithm. The results show the
effectiveness of the proposed model and algorithm. In
addition, calibration of HDE is investigated so that it is
ensured that the algorithm performs in a high efficiency.

The remaining sections of this paper are organized as
follows. In Section 2, the problem formulation is described.

A Hybrid Differential Evolution Algorithm for
Scheduling Parallel Batch Processing Machine

with Unequal Job Ready Times

Azizollah Jafari, Somayeh Hassani, Payam Chiniforooshan

T

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

The solution approach for the problem is presented in detail
in Section 3. The experiments carried out and the analysis
conducted to compare the different solution approaches is
presented in Section 4. Section 5 summarizes the research
findings and contributions of this paper.

II. PROBLEM FORMULATION

Formally, the considered problem can be described as
follows: The set J of jobs and a set M of non-identical batch
processing machines are given. Each job j is described by
the triplet representing, its processing time (pj), ready time
(r j), and size (sj), respectively. The objective is to find a set
B of batches and to schedule these batches such that the
tardiness is minimized. The number of batches formed
depends upon the number of jobs considered in an instance.
Batch ready time is equal to the largest ready time of all the
jobs in the batch.

The main assumptions made considered in this paper are:
(1) job processing times, job ready times and sizes are
deterministic and known in advance, (2) job splitting and
preemption are not allowed, (3) machines are available and
empty at time zero, (4) machine breakdowns are not
considered. According to the standard classification notation
of Graham et al. [15], the problem under study problem can
be denoted as Pm|r j,batch|∑Tj.

The mathematical model describing the characteristic of
the problem can be formulated based on following variables
and parameters:

Sets:
J Set of jobs, j∈J
M Set of machines, m∈M
B Set of batches, b∈B

Parameters:
Pj Processing time of job j
r j Ready time of job j
sj Size of job j
S Maximum capacity of machine m

Variables:
Xjbm if job j is assigned to batch b and processed by

machine m
Pbm Start time of batch b on machine m
CTbm Completion time of batch b on machine m
Cj Completion time of job j
Tj Tardiness of job j

The mixed integer linear formulation for the considered

problem is presented below:

Min Z= ∑
=

n

j
jT

1

 (1)

Subject to:

∑∑
∈ ∈

=
Mm Bb

jmbX 1 j∈J (2)

∑
∈

≤
Jj

jmbj SXs m∈M, b∈B (3)

jmbjmb XrP ≥ j∈J, m∈M, b∈B (4)

11 −− +≥ jmbjmbmb XPPP j∈J, m∈M, b∈B (5)

jmbjmbmb XPPCT +≥ j∈J, m∈M, b∈B (6)

jmbmbj XCTC ≥ j∈J, m∈M, b∈B (7)

jjj dCT −≥ j∈J (8)

}1,0{∈jmbX j∈J, m∈M, b∈B (9)

0,,, ≥jjmbmb TCPCT j∈J, m∈M, b∈B (10)

The objective function (1) minimizes total tardiness of
jobs. Constraint set (2) ensures that each job is assigned to
exactly on batch on one machine. Constraint set (3) enforces
machine capacity constraint. The sum of all job sizes in a
batch cannot exceed the machine capacity. Constraint set (4)
impose that the ready times of the jobs are not violated.
Constraint set (5) ensures that there is no overlapping
between batches scheduled on the same machine. The bth
batch can start on machine m only after the machine
completes processing the (b-1)st batch. Constraint set (6)
determines the completion time of batches on each machine.
Constraint set (7) determines the completion time of each
job. Constraint set (8) measures the degree to which each
job is tardy. Constraint sets (9) and (10) define the type of
decision variables.

III. PROPOSED SOLUTION APPROACH

Differential Evolution (DE) algorithm, introduced by
Storn and Price [7] is an extremely powerful optimization
algorithm that solves real-valued problems based on the
principles of natural evolution. As other evolutionary
algorithms, DE starts with an initial population vector,
which is randomly generated when no preliminary
knowledge about the solution space is available (Storn,
1997). At every generation G, DE maintains a population
P(G) of NP (population size) vectors of solutions which
evolve through the optimization process to find global
solution:

[]G
NP

GG XXP ,...,1= (11)

The population size, NP, is constant during the
optimization process. The dimension of each vector of
candidate solutions correspond to the number of the decision
parameters, D, to be optimized. Therefore,

[]G
iD

G
i

G
i XXX ,,1 ,...,= i= 1,2,…,NP (12)

The optimization process is conducted by means of three
main operations: mutation, crossover and selection.
Comprehensive history and development of DE is presented
in the [16].

The Proposed Hybrid Differential Evolution optimization
procedure is conducted by means of the following
operations:

A. Solution representation

Since DE algorithm is originally designed to solve
problems with continuous variables, it cannot be used
directly to solve discrete problems. In this paper, the
smallest position value (SPV) rule based on random key
representation, proposed by bean [14], is used to encode

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

solutions. According to SPV rule, []G
iD

G
i

G
i XXX ,,1 ,...,= are

firstly ranked by ascending order to get the sequence
[]G

Di
G
i

G
i ,1, ,...,ϕϕϕ = . Then the job permutation πi is calculated

by the following formula:

kG
kii

=
,,ϕπ (13)

Table 1 illustrates the solution representation of vector
Xi

G for DE. According to the SPV rule, the smallest
dimension value is Xi,5

G= 0.65, so 15, =G
iϕ . Therefore

dimension k= 5 assigned to be the first job in the
permutation. After decoding each vector, the fitness of each
vector is evaluated by equation (1).

TABLE I
Solution Representation

Dimension k 1 2 3 4 5
G
iX 1.24 3.32 2.88 1.94 0.65

G
Di ,ϕ 2 5 4 3 1

G
kii ,,ϕπ

5 1 4 3 2

B. Initialization

In order to establish a starting point for the optimization
process, each decision parameter in every vector of the
initial population is assigned a randomly chosen value from
within its corresponding feasible bounds:

),(0
,

L
j

U
j

L
jij XXrandXX −+= i= 1,2,…,NP

j= 1,2,…,D
(14)

Where Xj
L and Xj

U is considered between [0,4], and rand
represent a uniformly distributed random value that ranges
from 0 to 1.

C. Mutation

At every generation G, each vector in the population has
to serve once a target vector. For each target vector, a
mutant vector Vi

G is defined by:

)(G
c

G
b

G
a

G
i XXFXV −+= (15)

With random indexes a,b,c ∈NP [7], integer, mutually
different, and different to the target vector. F is a user
defined constant (also known mutation scaling factor),
which is typically chosen from the range (0,2]. Larger
values for F result in higher diversity in the generated
population and lower values cause faster convergence

D. Crossover

DE utilizes the crossover operation to generate new
solutions by shuffling competing vectors and also to
increase the diversity of the population. To this end, the trial

vector, i.e., []G
D

G
i

G
i UUU ,...,,1= is formed, where





 =≤

=
OtherwiseX

kjorCRrandifV
U G

ij

j
G
ijG

ij
,

,
, (16)

In (16), randj is the j th evaluation of a uniform random
number generator with outcome between 0 and 1. CR is the
crossover rate constant and is a user-defined parameter
within the range [0,1]. Large CR usually increases the
convergence rate. K is a random parameter index chosen
from the set, which is used to make sure that at least one
parameter is always selected from a Vi

G.

E. Improvement by simulated annealing

Simulated annealing (SA) is a effective optimization
algorithm motivated from an analogy between the
simulation of the annealing of solid and the strategy of
solving combinatorial optimization [17]. In this paper, in
order to enhance the exploitation ability of the proposed
algorithm, DE is hybridized with a simulated annealing (SA)
algorithm. All current solution vectors are improved by
using SA.

The applied SA could be briefly introduced as follows: It
starts with an initial solution, each solution vector of the
current generation, and for each vector a neighbor solution
is generated. In the proposed SA, a neighbor vector

[]iDii NNN ,,1 ,...,= for each solution vector Xi is

generated according to Equation 17.

ρ×−+=)(L
j

U
jjii XXrandXN (17)

where ρ is used to ensure that parameter values lies inside
their allowed ranges in neighbor vector. Let F(X) and F(N)
denote the objective function values of the current solution
and the neighbor solution, respectively and define ∆ as the
difference between these objectives; that is ∆= F(X) - F(N).

If 0≤∆ the neighbor solution is accepted; otherwise it is

accepted with probability equal to Te
∆−

. Where T is the
temperature parameter such that T > 0. At the beginning, the
temperature is set at the initial temperature T0. Then T is
decreased after generations according to the formula T=α×T,
where α is the coefficient controlling the cooling schedule
(0<α<1).

In this study, the T0 is determined by the following
empirical equation:

)15.0ln(
minmax

0

FF
T

−−= (18)

Where Fmax and Fmin are the maximum and minimum
objective function values of the initial solution vectors,
respectively. Besides, it was found during experiments that
the α= 0.8 produce best results. Therefore, it is selected for
the α value.

F. Termination Condition

Termination strategy can be defined differently based on
the problem nature, application, or the purpose of the
experiment. In this paper, the execution time is used as
termination criterion. The pseudo code for the proposed
HDE algorithm is given in Fig 1.

IV. COMPUTATIONAL EXPERIMENTS

In this section, extensive experiments are illustrated to
evaluate the performance of the HDE to solve the proposed
model. The performance of HDE for small-sized instances is
compared with optimal solution obtained by the CPLEX
software. In order to test the effectiveness and applicability
of proposed algorithm to solve large size problems, since the
CPLEX requires long computational times, its results are
compared with random key genetic algorithm (RKGA)
introduced by Bean [14] and the proposed SA explained in
section III.

RKGA begins by assigning a random number to each job.
The jobs are then initially sorted according to their key

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

value. Then, crossover operator is applied to each job’s
value. In this algorithm, the migration operator replaces the
traditional mutation operator. In the migration phase, new
individuals are randomly generated and added to the new
population. The migration is used to ensure diversity.
RKGA is developed for a more highly constrained problem
and does not use of a local search. Bean shows the
robustness of RKGA by using it to evaluate machines
scheduling, vehicle routing, and quadratic assignment
problems. This algorithm is implemented according to its
description in the literature [14].

Moreover, in order to evaluate the performance of
hybridizing SA into the algorithm, the proposed differential
evolution (DE) algorithm without local search engine is also
considered in the experiments. All these algorithms are
coded in MATLAB 7.12.0 and executed on an Intel® Core 2
DuoE4500 at 2.20 GHz with 2.0GB of RAM.

In order to provide a fair comparison between meta-
heuristic algorithms, the stopping criteria is set to a
maximum elapsed time of (m+n)×Ω, where m is a number of
machines, n is a number of jobs, and Ω is a constant
coefficient. While different limits could be obtained by
different values of Ω, the preliminary tests showed its
proper amount as 0.6. Therefore, the computational effort
increases as the number of jobs and machines increases.

Data for a set of random instances are randomly generated
in small and large sizes. To generate model’s data, such as
processing times, Job’s ready times and job’s sizes, the
methods presented in [18] is used.

A. Parameter setting

In this section, an experimental study is conducted to
determine the best values for the proposed algorithm
parameters (i.e., NP, CR, F). The different values considered
for each parameter are shown in Table II. Experiment
instances are randomly generated by varying the total
number of jobs (i.e. n= 20, 40, 60, 80, and 100 jobs) and
total number of machines (i.e. m= 2, 4, and 8 machines). For
each combination of n×m ten instances are generated for a
total of 150.

Statistical experiments are carried out by means of a
design of experiments (DOE) [19]. Confidence level is
selected as %95 in this study. Table III demonstrates the P-
values of these experiments. The performance measure of
interest is the total tardiness.

TABLE II
Experimental parameters of HDE

Parameters Level 1 Level 2 Level 3
CR o.5 0.7 0.9
F 0.3 0.5 0.9

NP 100 150 200

Table III shows the HDE algorithm performs better with
crossover rate 0.9 than 0.7. In mutation scaling factor (F), it
is observed that HDE performs better with mutation rate 0.5
than 0.3. In addition increasing this rate to 0.9 has no
significant influence on HDE performance. Increasing
population size from 100 to 150 can improve the results
significantly, although there is not a significant difference in
quality of solution by increasing it from 150 to 200.
According to the obtained results, with NP= 100, CR= 0.9,
and F= 0.5, proposed HDE yield better solutions.

TABLE III
Experimental test results

Parameters Level of experiment P-value

CR
2×1 0.3016
2×3 0.0197

F
2×1 0.0078
2×3 0.3841

NP
2×1 0.0271
2×3 0.2697

B. Comparative evaluation for small-sized instances

Experiments with small-sizes instances consist of 15
different size instances, and each size contains 20 randomly
generated instances. Therefore, 300 instances are considered
in experiments. To evaluate the performance of the proposed
algorithm, generated instances are solved, and related results
are compared with SA and optimum solutions obtained by
the commercial solver CPLEX. The maximum CPU time for
the MILP model is set to three hours, that is, if after three
hours no optimal solution is obtained, the best current
solution is returned.

Regarding the performance measure, the average Relative
Percentage Deviation (RPD) is used according to the
following equation:

100×−=
sol

solsol

Best

BestMethod
RPD (19)

Where Bestsol is the best known solution obtained after all
experiments carried out through the paper, and Methodsol is
the solution obtained with a given algorithm.

In Table IV, results for small instances are shown for all
evaluated methods including the MILP model, proposed
HDE, proposed SA, and RKGA. As Table 2 shows, CPLEX
is able to obtain the optimal solution of MILP model for all
instances with 8, 10, and 12 jobs. For small instances the
solutions from the HDE algorithm are also optimal;
however, for larger instances (i.e., with 20 jobs) the solution
from HDE is better than commercial software. Regarding
the rest of the methods, according to Table IV, the best
results are provided by proposed HDE, and the results of
proposed SA and RKGA is very similar.

C. Comparative evaluation for large-sized instances

In order to test the efficiency of proposed algorithm to
solve large size problems, experiments with 18 different
sizes jobs are considered. Each size of this problem contains
10 randomly generated instances, and a total of 180

Procedure of hybrid differential evolution
 Set parameters: NP, F, CR;
 Initialize target population;
 While stopping criterion is not satisfied Do
 Obtain mutant population;
 Obtain trial population;
 Evaluation;
 Selection;

Update new vectors;
Apply simulated annealing based local search;

End While
End

Fig. 1. The pseudo code for the proposed HDE

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

TABLE IV
Comparison results for small-sized instances in terms of RPD

No. Instance MILP RKGA SA HDE

1 6×2 0.00 0.11 0.13 0.00

2 6×3 0.00 0.12 0.15 0.00

3 6×4 0.00 0.17 0.22 0.00

4 8×2 0.00 0.15 0.20 0.00

5 8×3 0.00 0.18 0.26 0.02

6 8×4 0.00 0.21 0.19 0.00

7 10×2 0.27 0.41 0.46 0.02

8 10×3 0.20 0.40 0.49 0.03

9 10×4 0.11 0.54 0.89 0.04

10 12×2 2.24 0.67 0.64 0.06

11 12×3 2.38 1.66 1.88 0.02

12 12×4 2.98 0.82 0.75 0.07

13 15×2 3.51 0.79 0.71 0.04

14 15×3 4.29 0.72 0.62 0.03

15 15×4 5.37 0.85 0.74 0.05

Average 1.42 0.52 0.56 0.03

instances are considered as large size problems. Regarding
the performance measure, the RPD is used following
Equation 19. In this case MILP model is not tested.

TABLE V
Comparison results for large-sized instances in terms of RPD

No. Instance RKGA SA HDE

1 50×10 3.77 2.44 0.85

2 50×15 4.77 2.87 0.31

3 50×20 3.19 4.98 0.89

4 80×10 3.33 5.75 0.71

5 80×15 5.39 3.73 0.39

6 80×20 4.55 4.15 0.27

7 100×10 3.87 3.83 0.27

8 100×15 4.55 3.24 0.62

9 100×20 5.59 3.55 1.10

10 150×10 7.47 3.64 0.69

11 150×15 6.12 2.02 0.52

12 150×20 4.77 3.03 0.78

13 200×10 9.70 4.40 0.65

14 200×15 9.43 3.35 0.95

15 200×20 4.35 3.38 0.74

16 250×10 5.71798 4.02162 1.89777

17 250×15 8.16644 3.38313 0.66819

18 250×20 8.44362 4.18157 0.40195

Average 5.73 3.66 0.71

In Table V the summary of results for large-sized
instances are reported. From the table, it is seen that the
HDE exhibits the best performance with the average RPD of
0.71%. As seen in Table V, while the average gap between

the best solution and the HDE is less than 1%, the average
gap for the SA and RKGA are less than 4% and 6%,
respectively. HDE show a very good performance and
provide the best results in most cases.

TABLE VI
ANOVA for average RPD in large-sized instances

Source
Degree of
freedom

Sum of
squares

Mean
square

F P-value

Methods 2 2371.76 1185.88 112.53 0.000
Test

Problems
9 87.46 9.72 0.92 0.505

Interaction 18 475.73 26.43 2.51 0.001
Error 540 5690.5 10.54

Total 569 8625.45

To further precisely analysis the results, an analysis of
variance (ANOVA) is applied. The ANOVA is shown in
Table VI. Confidence level is selected as %95 in this study.
It can be seen in Table VI that there are significant
differences between the algorithms with p-value very close
to zero. Figure 2 present average RPD obtained by these
algorithms. From table VI and figure 2 it is obvious that
HDE statistically supersedes the other algorithms; also SA is
superior to RKGA.

SARKGAHDE

6

5

4

3

2

1

0

Methods

M
ea

n
95% CI for the Mean

Fig 2. Method effects plot for average RPD in large size

V. CONCLUSION

This paper considered the scheduling batch processing
machines in parallel to minimize total tardiness. Also,
several practical issues such as unequal job ready times,
arbitrary job sizes, and arbitrary job processing times was
considered. A mixed integer linear programming (MILP)
model was proposed and evaluated to optimally solve this
problem using the CPLEX solver. However, the CPU time
required by this procedure increases exponentially as the
problem size increases and only small-sized instances can be
solved optimally using CPLEX. Therefore, a hybrid
algorithm based on differential evolution and simulated
annealing algorithm (SA), namely HDE, proposed to find
optimal or near optimal solution for large size problems.
The proposed HDE approach uses smallest position value
(SPV) rule based on random key representation to encode
solutions, which can convert the job sequences to
continuous position values. In addition, calibration of HDE
was investigated so that it is ensured that the algorithm
performs in a high efficiency.

The performance of the proposed HDE was verified for
small size problems with comparing its results with the best
solution obtained by the CPLEX, SA and random key

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

genetic algorithm (RKGA). The results showed that the
solutions from the HDE algorithm were also optimal for
these problems. In order to test the applicability of proposed
algorithm to solve large-sized instances, 180 instances were
generated and the results of HDE were compared with the
results obtained by SA algorithm as well as RKGA. The
achieved results indicated the effectiveness of the proposed
HDE algorithm.

As an interesting future research, a further interesting
issue is the consideration of realistic assumption such as
machine breakdown in the model. Improving proposed
algorithm by combination of other meta-heuristic algorithm
is also of interest.

REFERENCES

[1] M. Mathirajan and A. I. Sivakumar, "A literature review,
classification and simple meta-analysis on scheduling of batch
processors in semiconductor," The International Journal of Advanced
Manufacturing Technology, vol. 29, pp. 990-1001, 2006/07/01 2006.

[2] C. N. Potts and M. Y. Kovalyov, "Scheduling with batching: A
review," European Journal of Operational Research, vol. 120, pp.
228-249, 2000.

[3] M. R. Garey and D. S. Johnson, Computers and Intractability; A
Guide to the Theory of NP-Completeness: W. H. Freeman \\&
Co., 1990.

[4] A. H. Kashan, B. Karimi, and M. Jenabi, "A hybrid genetic heuristic
for scheduling parallel batch processing machines with arbitrary job
sizes," Comput. Oper. Res., vol. 35, pp. 1084-1098, 2008.

[5] P. Y. Chang, P. Damodaran *, and S. Melouk, "Minimizing makespan
on parallel batch processing machines," International Journal of
Production Research, vol. 42, pp. 4211-4220, 2004/10/01 2004.

[6] H.-M. Wang and F.-D. Chou, "Solving the parallel batch-processing
machines with different release times, job sizes, and capacity limits
by metaheuristics," Expert Syst. Appl., vol. 37, pp. 1510-1521, 2010.

[7] R. Storn and K. Price, "Differential Evolution \– A Simple and
Efficient Heuristic for Global Optimization over Continuous Spaces,"
J. of Global Optimization, vol. 11, pp. 341-359, 1997.

[8] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A
Practical Approach to Global Optimization (Natural Computing
Series): Springer-Verlag New York, Inc., 2005.

[9] M. F. Tasgetiren, Q.-K. Pan, and Y.-C. Liang, "A discrete differential
evolution algorithm for the single machine total weighted tardiness
problem with sequence dependent setup times," Comput. Oper. Res.,
vol. 36, pp. 1900-1915, 2009.

[10] Q.-K. Pan, M. F. Tasgetiren, and Y.-C. Liang, "A discrete differential
evolution algorithm for the permutation flowshop scheduling
problem," Comput. Ind. Eng., vol. 55, pp. 795-816, 2008.

[11] Q. Niu, T. Zeng, and Z. Zhou, "A novel cultural algorithm based on
differential evolution for hybrid flow shop scheduling problems with
fuzzy processing time," presented at the Proceedings of the 2011
international conference on Integrated uncertainty in knowledge
modelling and decision making, Hangzhou, China, 2011.

[12] F. Liu, Y. Qi, Z. Xia, and H. Hao, "Discrete differential evolution
algorithm for the job shop scheduling problem," presented at the
Proceedings of the first ACM/SIGEVO Summit on Genetic and
Evolutionary Computation, Shanghai, China, 2009.

[13] N. Damak, B. Jarboui, P. Siarry, and T. Loukil, "Differential
evolution for solving multi-mode resource-constrained project
scheduling problems," Comput. Oper. Res., vol. 36, pp. 2653-2659,
2009.

[14] j. c. Bean, genetics and random keys for sequencing and optimization,
1993.

[15] R. L. Graham, E. L. Lawler, J. K. Lenstra, and R. Kan, "Optimization
and approximation in deterministic sequencing and scheduling: a
survey," Ann. Discrete Math., vol. 4, pp. 287-326, 1979.

[16] V. Feoktistov, Differential Evolution: In Search of Solutions
(Springer Optimization and Its Applications): Springer-Verlag New
York, Inc., 2006.

[17] S. Kirkpatrick, "Optimization by simulated annealing: Quantitative
studies," Journal of Statistical Physics, vol. 34, pp. 975-986, 1984.

[18] P. Damodaran, M. C. V, #233, lez-Gallego, and J. Maya, "A GRASP
approach for makespan minimization on parallel batch processing
machines," J. Intell. Manuf., vol. 22, pp. 767-777, 2011.

[19] D. C. Montgomery, Design and Analysis of Experiments: John Wiley
\\& Sons, 2006.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

