

Abstract— Although grid structures were built to increase the

performance of the system and process the job in less time, most
of the individual grid groups (hives) only perform one task at a
time which can cause hotspots. However, introducing multi-
purpose hives eliminates big amount of possible hot spots that
can be forecasted. In this study, a matrix is developed to identify
which grid groups can perform the same task. Moreover, a grid
scheduling algorithm is provided for multi-purpose hives. A
simulation of the proposed system shows a substantial decrease in
the hotspots, compared to the original setup.

Index Terms—Grid Computing, Grid Scheduling, Job
Scheduling, Multi-Purpose Grids

I. INTRODUCTION

echnology is quickly developing in computational
devices. This trend should continue, considering the new

requirements by all fields of science for capable computers.
Solving problems in almost all of the scientific fields such as
astronomy, physics, mathematics, bioengineering, and
bioinformatics requires more computational, storage and
visualization resources and devices then ever before. These
trends will always demand much more then the existing
technology. To overcome these difficulties, parallel computing
techniques or the use of more than one CPU are being used. In
addition to these solutions the concept of grid computing was
presented in order to solve massive computational problems.
Grid computing adds value by making use of the unused
resources of large numbers of nodes, often desktops or servers,
by using the nodes’ cpu cycles, and/or disk storage. The main
difference between a grid and traditional distributed
computing is that the grid computing focuses on the ability to
support computation across large (administrative) domain sets.
 The advances in these fields also lend themselves favorably
to the industrial and commercial tasks that drive a business.
As the needs of the business partner continually emerge in
computational devices, the need to better utilize existing
hardware to a higher capacity through innovative ideas will
remain in the forefront. As the number of nodes or frequency
of jobs of the grid increase, the task scheduling and
management environment become more difficult. Managing
the grid nodes based on the performance of the system is a
challenging job.

Manuscript received July 23, 2012; revised August 9, 2012.
C. Varol is an Assistant Professor in the Department of Computer Science,

Sam Houston State University, Huntsville, TX 77341 USA (phone: (936) 294-
3930, e-mail: cvarol@shsu.edu).

The system itself changes quickly and there is a need to
evaluate the effects of the changes in the environment before
the changes are introduced to the system. Moreover, there is
also a need for an automated decision tool to help respond to
performance issues. Before applying a model to the system,
simulating the behavior helps to ensure the success of the
applied model. Therefore, this paper aims to provide better
task scheduling between groups of nodes by using a model
and simulating the results.

II. BACKGROUND

In current grid computing systems the availability of
computational resources is unpredictable and jobs are
allocated on a first come first served basis. However, it is
known that occasionally the first-come-first-served systems
fail to provide the results in a timely manner. Therefore, a
number of attempts have been developed to facilitate economy
based scheduling systems [1, 2, 3, 4, 5, 6, and 7]. Besides the
listed, Nimrod-G, Condor-G, and GRaDS are other well
known techniques. Nimrod-G is part of the Grid Architecture
for Computational Economy (the GRACE project) and as such
it is an economy based scheduler which allows requesting
resources of more than one machine for a single job. It may
perform load balancing of workload across multiple systems.
Each system would then have its own local scheduler to
determine how its job queue is processed which requires
advance reservation capability of local schedulers. Nimrod-G
also supports quality of service based scheduling [1]. Condor-
G is task broker designed to front end a computational grid. It
acts as an entry point to the grid dispatching jobs to run on the
various nodes available [2]. On the other hand, GRaDS
provides software execution environment for code to be run on
a computational grid. The GRaDS attempts to adapt the
application according to changes in the available resources
while attempting to maintain as high performance as possible.
Feedback is an important part of this algorithm, because it
updates its own behavior with the current status [3]. These
three scheduling algorithms assume one entry point into the
grid, control the scheduling policies for all the nodes and the
nodes are closely linked to the grid. However in real world,
there might be more than one entrance points to the grid, the
resource allocation would be done on the basis of market
trading, which determines the allocation of resources to nodes
and all nodes will have different, unknown job execution
policies.

Our simulation involves real time data collected over a
period of time from grid architecture. The purpose of the grid

Dynamic Job Scheduling in Multilayer Grid
Networks

Cihan Varol, Member, IEEE

T

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

is to provide services for the organizations business functions.
In an effort to find a system solution to minimize the number
of hotspots, a simulation must be constructed to prove and
validate an efficient modeling of the new system. A new
method of handling the processes has been devised.

Based on the hypothetical business grid environment, the
main goal is to apply existing performance models and
workload characterization techniques to the system to reveal
various factors that affect the system performance, to realize
the potential performance problems (hotspots) before they
arise in the system. The layout and language used throughout
the paper is listed below. The computers for the business have
groups of computers dedicated to special jobs and moreover
each individual computer in the within a group can perform a
specialized function. Each group of computers will be referred
to as a hive. Each hive has a primary function and no two
hives share the same task. For instance one hive of computers
may perform only email operations while another handles
server requests. Each hive only does its job and doesn’t share
it with the others. When hives work in conjunction with each
other, the hive with no hotspots is the hobby hive. All of the
hives together compose the grid. All jobs entering the system
that have e-mail operations will go to a hive. Once the job is
sent to a hive, other decisions are made to determine which
individual computer within the hive will actually perform the
job. Each individual computer within a hive is called a node.
The nodes can be further stratified to break up the job as
needed. For instance, once a job reaches a hive, the nodes may
be split into alphabetical categories with each node assigned
specific letters to handle according to the last name of a
customer. Or, on the other hand it can be first come first serve
wherein all nodes will perform the same type of work.
Occasionally, some hives work load may exponentially
increase beyond the hives capacity to accommodate them.
When this happens, a hot spot occurs. A hot spot is when the
hive is so busy completing other tasks that it can’t continue to
process its incoming job. In the occurrence of a hotspot,
human intervention is used to manually configure other hives
to temporarily handle the workload until the jobs take on a
more steady arrival time. An example of an instance that may
cause a hot spot are banks that send the processing of there
accounts at approximately the same time and overload
portions of the system. Just as some hives incur frequent hot
spots, others may exhibit none. The determination of which
hives have common hotspots are found by examining the
history of the jobs entering the system and monitoring the load
of the system. This history is stored in a database. The goal is
to eliminate the hotspots. After looking at historical data, one
can

1. Find problematic hives that have frequent hot spots
2. Identify low volume hives that only use a small

amount of its capabilities
3. Configure the low volume hive to also do the work

of the hotspot laden hive.

The hive that is found to work the best with a hot spot laden
hive will only serve as the hobby to one hive. This hobby hive
will be configured to perform the same operations as the
original hive. A simulation will have scenarios of both hives
having a full load and the job transfer mechanism. We can
subsequently take the hotspots from the system or at the very
least drastically minimize them. In this study we have
provided an algorithm that determines which hives are best to
run together. This solution will increase throughput, energy,
and possibly increase processing capabilities by translating
into less configuration changes in the event of a hot spot and
better reliability for customers.

III. METHODOLOGY

A node in a grid may be a single CPU. Equally, it may be a
vast super computer or a private array of workstations. It is
generally estimated that each node in the grid will have a
single scheduling policy and single high level scheduler.
Instructions are not only dependent from one client, but also
from the individual machines. Widely used scheduling
techniques are:

 Determining the tasks that the user wants to

complete first.
 Evaluating the current load on the machine against

the loading requirements given by the application
 Splitting a processor into time slices and allocation

all jobs to it equally or an a first come first served
basis

However, the GRaDS project [3] first verified that the

applications made there scheduling decisions based on
conditions of the system when competing applications are
executing. It then temporarily stopped long running and
resource consuming jobs in order to run the shorter ones. This
facilitated new applications to execute faster by stopping
certain competing applications and thereby minimizing the
impact of new applications on already running applications.
However, the system is avoiding from killing jobs, since
dropped or skipped tasks may cause some unexpected results
and delays to the system performance.

As the first task, a Java program code written was to
determine which hive can be used as a hobby hive. The java
code connects to a database that has two different information
in it. One contains information about the activity in the hive
and the other about the nodes. They correlate with each other.
Starting at the first time point, the system evaluates the
incoming data, then a point system is assigned and the job is
run against its hive and all other hives. The output is a matrix
that has numbers that indicate if the two hives acted as hobby
hive, this is the resulting number of times a job would have
been killed because the job couldn’t be completed. So, this
translates into both hives being very busy and working to
capacity. The purpose of this java program is to simply use
historical data to determine which hives are best to run
together.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

As a second task an algorithm is developed for scheduling
the jobs between the nodes of the original and hobby hives.
For the proof of concept, only one original and one hobby hive
are selected for the scheduling mechanism. Presuming we
know the node in the original hive that performs the task, a
node needs to be selected in the hobby hive that will be the
best match to do the hobby job of the original node. The
algorithm is dynamic. That is every time a job needs to be sent
of from the original hive to the hobby hive, the algorithm is
executed to find the best match at that given time. This means
that if two random nodes were linked once, there is no
guarantee that they will be linked together again. The accepted
assumption is any node in the hobby hive has to be able to
perform every job that is performed in the original hive
(Figure 1).

Figure 1. Structure of the Original and Hobby Hives

For the purposes of the algorithm, an input file which
consists of Job Name, required CPU to perform the particular
task, job process time, and job arrival time based on the data
obtained from the database (Table 1) was created. With this
input information, we are able to discern which node of the
hobby hive is currently in use, or the current CPU usage at a
given node. Moreover, we are able to present the busy “tied
up” nodes and the kind of the job is being performed.

Table 1: Input Data for the Simulation
 K1 K2 K3 K4 K5 K6 … Km
State Up Down Down Down Up Up … Up
CPU 24 3 27 95 23 76 … 49
Hobby 1 0 0 1 1 1 1

The algorithm uses a simple selection of the node that is up

and has the least amount of the CPU used. However, a
threshold value F that allows predicting if there is going to be
a possibility of the hot spot needed to be set. The tool accepts
any value as the threshold. In the simulation 80% has been
selected as the determining point.

Typically task reallocation can occur when a given node
needs to execute some other process more urgently than the
one on which it is currently executing. Moreover, the
algorithm takes place when the scheduler feels that a particular
application would benefit by moving it to a lightly loaded
CPU. One of the possible solutions is to look at the average

CPU usage at each hive (Figure 2). If we have job A coming
into the system, we are looking at the average CPU of the
nodes that are capable of processing this job at the original
node.

Figure 2. Average CPU of Nodes

If the average CPU of the nodes performing job A on the

original node is low, that means more than half of the nodes
are using small amounts of CPU. On the other hand, if it is
high, then they use a big amount of CPU. The average CPU
usage of Hobby Hive (H) is useful for the following reasons:
for instance we have H=76%, and the average CPU for job
A=60%; in this case we can predict that most likely, if another
job will be send to the hive, it will create a hot spot. At the
same time, if the average CPU of the nodes in the hobby hive
is low, we can simply route incoming job there, without fear
of creating a hot spot.

This approach recognizes the priority of a task which not
only evaluates the current workload, but also splits the job to
the nodes that have the lowest CPU usage at the current
moment. Moreover, the determination of the node is done by
prediction based on the history. Lets say for any given node
we look at the N past jobs and calculate how much time they
spent in the system (how long did it take any given node to
process N past jobs). Then, we select the node with the
smallest number T, where T is:

N=5;
for(j=0; j<num_nodes_given_job; j++)
{

time=0;
for(i=0; i<N; i++)
{

time += (end_time – start_time);
}
T = time/N;

}

This approach tells us that current node had to perform the

least amount of tasks in a given time period. It suggests that
the tasks it gets are small in processing. So, when new tasks
are to be processed they are not likely to create the hot spot on
this node.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

After running some experiments which have different
values for the required CPU and process time, it can be said
that the solution that is proposed provides acceptable results
for the problem. Based on the two simulation cases, we can
see the decline in the number of hot spots. Looking at the
results in the Table 2 and Figure 3, even though the numbers
of hot spots at the hobby hive slightly increased for the
proposed solution, the overall number of hot spots
dramatically decreases. For example, for input of 100 at the
hobby hive, the number of hot spots at the hobby hive
increased by 12%. However, the decrease of hot spots in
original hive is around 95%.

Table 2: Results from First Experiment

Figure 3: Number of Hot Spots from First Experiment

Since, the second experiment involves high CPU usage and
processing time, more hot spots were seen in the system.
However, using a Hobby Hive shows its effect if there are
more than 50 or 75 jobs that need to be processed as shown in
Table 3 and Figure 4.

Table 3: Results from Second Experiment

IV. CONCLUSION

In this study, as a first task, an algorithm is developed to
determine which hives can collaborate together based on the
recorded historical data. After determining the hives, a custom
job scheduling algorithm is designed for the system to
overcome the hot spot deficiency. It is reflected from the
simulation of the proposed system that hotspots are eliminated
substantially, compared to the original setup. However,
although the algorithm provides acceptable results, more
flexible hives and nodes will result in less problematic job
processes.

Figure 4: Number of Hot Spots from Second Experiment

REFERENCES
[1] Buyya, R., Murshed, M, Abramson, D., Venugopal, S.: Scheduling

parameter sweep applications on global Grids: a deadline and budget
constrained cost-time optimization algorithm, Software—Practice &
Experience, v.35 n.5, p.491-512, 25 April 2005

[2] Baraglia, R., Ferrini, R, Ritrovato, P.: A static mapping heuristics to
map parallel applications to heterogeneous computing systems:
Research Articles, Concurrency and Computation: Practice &
Experience, v.17 n.13, p.1579-1605, November 2005

[3] Bidot, J.: A General Framework Integrating Techniques for Scheduling
under Uncertainty. PhD thesis, Institut National Polytechnique de
Toulouse, France (2005).

[4] Buyya, R., Murshed, M.: GridSim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for Grid
computing. The Journal of Concurrency and Computation: Practice and
Experience (CCPE) 14, 1175-1220 (2002).

[5] Capannini, G., Baraglia, R., Puppin, D., Ricci, L., Pasquali, M: A job
scheduling framework for large computing farms, Proceedings of the
2007 ACM/IEEE conference on Supercomputing, November 10-16,
2007, Reno, Nevada [doi>10.1145/1362622.1362695]

[6] Fibich, P., Matyska, L., Rudová, H.: Model of Grid Scheduling
Problem, Exploring Planning and Scheduling for Web Services, Grid
and Autonomic Computing, Papers from the AAAI 2005 workshop.
Technical Report WS-05-03, AAAI Press (2005).

[7] Klusáček, D., Matyska, L., Rudová, H.: Local Search for Deadline
Driven Grid Scheduling. In: Third Doctoral Workshop on Mathematical
and Engineering Methods in Computer Science (MEMICS 2007), pp.
74-81 (2007).

[8] Abramson, D., Sosic, R., Giddy, J., Hall, B.: Nimrod: A tool for
performing parameterized simulations using distributed workstations. In
HPDC, pages 112–121, 1995.

[9] Condor-G (http://www.cs.wisc.edu/condor/)
[10] Vadhiyar, S. S., Dongar, J. J: A metascheduler for the grid, 2002.

http://www.cs.utk.edu/˜vss/publications/ vadhiyar-metascheduler.pdf.

Overal Improvement for 5 inputs

0

5000

10000

15000

20000

25000

1 2 3 4 5 6

#
 o

f
H

ot
 S

p
ot

s

Before Hobby

After Hobby

Overal Improvement for 5 inputs

0

100

200

300

400

500

600

700

1 2 3 4 5

#
 o

f
H

ot
 S

p
ot

s
Before Hobby

After Hobby

Sample Input

10 50 75 100 200 300
Original

Problem Total
5 28 157 165 577 22675

Solution w/
Hobby Total

0 0 0 56 260 1849

 Sample Input
10 50 75 100 200 300

Original
Problem

At
Original

5 28 115 121 402 21545

At
Hobby

0 0 42 44 175 1130

Solution
w/

Hobby

At
Original

0 0 0 6 46 201

At
Hobby

0 0 0 50 214 1648

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

