
A New Anytime Dynamic Navigation Algorithm
Weiya Yue, John Franco, Weiwei Cao∗, Qiang Han

Abstract—Dynamic navigation algorithm has been an impor-
tant component in planning. Navigation algorithm is required
to find out an optimal solution to its goal. However, under
some environments where time is more critical than optimality,
a sub-optimal solution is acceptable. Therefore for practical
applications it is useful to find a high sub-optimal solution
in limited time. The dynamic algorithm Anytime D*(AD*) is
currently the best anytime algorithm which aims to return
a high sub-optimal solution with short corresponding time
and control of sub-optimality. In this paper, a new algorithm
named Improved Anytime D*(IAD*) is introduced. Experiment
comparison is made to show IAD* better outperforms Anytime
D* in various random benchmarks.

Index Terms—Planning, Dynamic Navigation Algorithm,
Anytime, Incremental

I. INTRODUCTION

W ITH development of techniques, it is highly possible
to develop autonomous vehicles, intelligent agents,

etc. Because of this, navigation algorithm has been more and
more important. In navigation algorithm, an agent is required
to find out one optimal solution to its goal under changing
environment. Many algorithms have been developed to solve
this problem and gained big success [1], [2], [3], [4], [5],
[6], [7]. But under some environments, where there is no
sufficient resources for the agent to find out an optimal
solution, a sub-optimal solution is acceptable. In this paper,
we will focus on the environment where time is more critical
than optimality.

Time-limited search algorithms, called anytime planning
algorithms, have been developed to fit in time critical envi-
ronment. The basic idea is to find one solution as soon as
possible, then to progressively replace a stored path with
a better path when one is discovered during search until
the time available for search expires [8], [9], [10]. Then
the stored, probably sub-optimal path is the one that is
used. In [8], [11], [12], it has been demonstrated that a so-
called weighted A* algorithm variant which uses “inflated”
heuristics (described below) can expand fewer vertices than
the normal A* algorithm.

In A*, the vertices in OPEN are sorted by their values
f = g + h. By assuming h is admissive, in A* algorithm
if we use f = g + ϵ · h, then the returned path can be
guaranteed to be ϵ sub-optimality, i.e. g(vg) ≤ ϵ·g∗(vg) [13].
This strategy is called inflated heuristics, and the benefit
is the control of ϵ sub-optimality. The A* algorithm us-
ing inflated heuristics is named weighted A* algorithm.
In [8], one general method, named Anytime Weighted A*, to
transform heuristic search algorithms to anytime algorithms

Manuscript received August 18, 2012.
W. Yue and J. Franco and Q. Han are with the Depart-

ment of Computer Science, University of Cincinnati, Cincinnati, OH,
45220 USA e-mail: weiyayue@hotmail.com, franco@gauss.ececs.uc.edu,
hanqg@ucmail.uc.edu.

W. Cao is with Institute of Information Engneering, Chinese Academy of
Science, Beijing, China, 100093 e-mail: weiwei.cao@hotmail.com.

is proposed. Anytime Weighted A* is a anytime planning
algorithm which returns one sub-optimal solution as soon as
possible then whenever allowed continues to improve current
solution until one optimal solution returned.

Anytime Weighted A* does initialization on most variants
as A* algorithm, and as Weighted A*, the heuristic function
h used is admissive. Different from normal A* algorithm, in
Anytime Weighted A* p is used to record current returned
path which may be improved later; ERROR is used to
estimate how far away current solution is from optimal
path; ϵ is the parameter used to inflate h; in one vertex
v ∈ OPEN , the stored values are ⟨g(v), f ′(v)⟩ instead of
⟨g(v), f(v)⟩, in which f ′(v) = g(v)+ϵ·h(v). I.e., in Anytime
Weighted A* in priority queue OPEN , the vertices are
sorted by f ′ value instead of f value in normal A* algorithm.
Although Anytime Weighted A* uses inflated heuristic value
f ′ to sort vertices, normal f values are also recorded, which
is used to prune searching space [9].

Under the changing environment, to search a path between
a fixed pair of vertices within limited time, incremental any-
time algorithm Anytime Repairing A*(ARA*) algorithm [14]
was developed to mitigate this problem. ARA* runs weighted
A* algorithm many times. Every time changes observed,
ARA* needs to run weighted A* to find the new sub-optimal
path. Most important to the performance of ARA* is that it
reuses previously calculated information to avoid duplicating
computation. This is done in accordance with ideas taken
from [15], [16]. By observing that in weighted A* when
h is admissive, if every vertex is allowed to be expanded
only once, the returned path is still ϵ sub-optimal, every
time ARA* needs to recalculate, ARA* will only update
a vertex at most one time. ARA* starts with a large value
for the so-called inflated parameter ϵ and then reducing ϵ on
each succeeding round until either ϵ = 1 or available time
expires. ARA* performs similarly as Anytime Weighted A*
algorithm and give the ability to control the sub-optimality
ϵ.

D* Lite algorithm can be treated a dynamic version of
lifelong A* algorithm [15], [16]. As D* algorithm [3], [4],
D* lite searches backward from vg to vs. This is likely the
critical point to the success of D* and its descendants because
the g value of every node is exactly the path cost from that
node to the goal vg and can be used after the agent moves
to its next position. The function rhs is defined by

rhs(v) =

{
minv′∈succ(v) g(v

′) + c(⟨v, v′⟩) v ̸= vg
0 otherwise,

The “more informed” rhs function assists in making better
vertex updates during expansion. Call vertex v locally con-
sistent if rhs(v) = g(v), locally overconsistent if rhs(v) <
g(v), and locally underconsistent if rhs(v) > g(v). In the
latter two cases v is said to be inconsistent. A “best” path
can be found if and only if, after expansion of vs, all vertices
on the path are locally consistent and can be computed

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

by following the maximum-g-decrease-value vertices one by
one from target vg . If some changes that have been made
since the last round cause a vertex v to become inconsistent
then D* Lite will update g(v) to make v locally consistent
by setting g(v) = rhs(v). Because D* Lite algorithm
will only propagate inconsistent vertices to update partial
vertices’ (g, rhs) values instead of updating all vertices’
(g, rhs) values, D* Lite can perform much better than other
navigation algorithms.

Anytime D* [17] intends for dynamic navigation ap-
plications where optimality is not as critical as response
time. It may be thought of as a descendant of both the
Anytime Repairing A*(ARA*) and D* Lite algorithms. It
may re-calculate a best path more than once in a round with
decreasing ϵ-suboptimality until ϵ = 1 or time has run out.
Thus, Anytime D* will try to give a relatively good, available
path quickly and, if time allows, will try to improve the path
incrementally as is the case for Anytime A*.

In [5], [6], D* Lite algorithm has been improved by avoid-
ing unnecessary calculations further, in which if the original
optimal path is still available and can not be improved by
changes observed, that path will be chose without computing.
In [7], the ID* Lite algorithm uses a threshold number
which is estimated to control the propagation of inconsistent
vertices. Every time only changes may contribute a path
whose weight is less or equal with the threshold number
are propagated. The threshold number is increased until an
optimal path found or all inconsistent vertices have been
updated.

In this paper, we will combine the techniques used in
ID* Lite to improve Anytime D* algorithm and get an
algorithm names Improved Anytime D* algorithm, and IAD*
for abbreviation. In Section II, pseudo code of IAD* is
listed and described. Then in Section III, IAD* and AD*
are compared in various random benchmarks. At last, we
concludes and discuss the next step of work.

II. IMPROVED ANYTIME D* ALGORITHM

In this section at first we explain how IAD* algorithm
works and then give its pseudo code. As Anytime D*
algorithm, when changes observed, IAD* will try to update
inconsistent vertices to get a new sub-optimal date. Every
time, after recalculating, it is required to return a sub-optimal
path whose weight is no bigger than ϵ′ · g∗ in which ϵ′ is
a preset parameter to control sub-optimality and g∗ is the
weight of current optimal path.

Every time, when recalculating needed, the sub-optimality
parameter ϵ is reset to be ϵ′ which is relatively big. By doing
this, we expect to return a path as soon as possible [8], [12],
[11]. In [18], it is recommended that in weighted A* ϵ can
be set to be bigger than ϵ′ and experiments show that the first
path can be returned faster. This technique can be combined
with any weighted A* algorithm easily. In order to speed
up returning the first path, Anytime D* allow one vertex to
be expanded at most one time which will be explained later.
But it has been shown that in some benchmarks this may
delay propagation of some critical vertices and slow down
the algorithm [8]. In Section III, we will run experiments to
compare these results.

After the first path returned, as any other anytime algo-
rithm, IAD* will try to improve current path until time runs

out or an optimal path has been found. In Anytime D*, in
order to do so, ϵ is decreased to look for a new path until
ϵ = 1 which means the returned path is optimal. When ϵ is
decreased, in Anytime D* all inconsistent are inserted into
priority queue to be updated. As in ID* Lite [7], IAD* will
not do any recalculating at all. Given a ϵ, at first, IAD* will
try to find one consistent ϵ′ sub-optimal path which is not
affected by changes observed, and if such a path exists, it
is returned immediately as the first path found. If no such
a path found, IAD* will only choose part of overconsistent
vertices whose propagation may lead to a ϵ sub-optimal path.

The pseudo code of IAD* is listed in Figure 1. Function
Initialize() defines and initializes ϵ, and the priority queues
OPEN, CLOSED, and INCONS, and initialize values for g,
rhs and type values of vertices. The initial value of ϵ0 is
relatively large in order to make sure some path is returned
quickly. And vertex vg and its key is inserted into priority
queue OPEN.

In Function key(s), under-consistent vertices have their
key-values updated as g(s) + h(s) which is smaller than
key(vs). This processing can guarantee such kind of increas-
ing changes can be propagated. Function UpdateVertex(s)
updates one vertex in the same way as Anytime D* by
using INCONS to store some of the inconsistent vertices
and making sure that one vertex is expanded at most once in
one execution of ComputeOrImprovePath(). After doing
this, there is still returned solution generated satisfies ϵ-
suboptimality [17].

Functions ComputeorImprovePath(), MiniCompute()
and GetBackVertex(v) are the same as in ID* Lite. Function
GetAlternativePath(vc) returns TRUE if and only if there
is a path from vc to vg and, if it returns TRUE, it has
changed type values on vertices so that a least cost path
from vc to vg can be traversed by visiting neighboring
vertices of lowest positive type until vg is reached. Different
from ID* Lite, at line 05, instead of choosing a child of
r, one successor y of r with rhs(y) + c(r, y) ≤ rhs(r) is
chose. The reason is that here we only need a suboptimal
path.

Different from ID* Lite, here the returned path may
be not optimal, but is guaranteed to be ϵ′ suboptimal. It
worths to notice that if a path returned, and on which
there are overconsistent vertices, then the path returned
is better than ϵ′ suboptimal. If no path can be returned
by function GetAlternativePath(vc), every vertex c ∈ C
is updated by function UpdateVertex. Observe that c is
underconsistent and that this is the only place in the code
where underconsistent vertices are placed in OPEN as in
ID* Lite [7]. This is because only increased changes will
cause underconsistent vertices, and increased changes are
only inserted here. Decreased changes have been inserted
before GetAlternativePath(vc) was called.

ProcessChanges acts similarly as ID* Lite. But differ-
ently, at line 07 and 17, to test whether a overconsistent
vertex should be put in OPEN to propagate, ϵ ∗ h(vc, u) +
rhs(u) < t is used instead of h(vc, u) + rhs(u) < t.
Functions Main() and MoveAgent() are the same as Anytime
D*.

We end this Section with the Theorem of correctness of
IAD*.

Theorem 2.1: In Improved Anytime D* algorithm, the

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Procedure Initialize()
01. OPEN = CLOSED = INCONS = catch=∅;
02. for all v ∈ V , rhs(v) = g(v) = ∞; type(v) = −1;
03. rhs(vg) = g(vg) = type(vg) = 0; ϵ = ϵ0
04. OPEN.insert([vg , [h(vg), 0]]);

Procedure key(s):
01. if (g(s) > rhs(s))
02. return [rhs(s) + ϵ · h(s), rhs(s)];
03. else
04. return [g(s) + h(s), g(s)];

Procedure UpdateVertex(s):
01. if s has not been visited
02. g(s) = ∞;
03. if (s ̸= vg)rhs(s) = mins′∈succ(s)(c(⟨s, s′⟩) + g(s′));
04. if (s ∈ OPEN) OPEN.remove(s);
05. if (g(s) ̸= rhs(s))
06. if (s ∈ CLOSED)
07. OPEN.insert([s, key(s)]);type(v) = 0;
08. else
09. insert s into INCONS;

Procedure ComputeOrImprovePath():
01. while (OPEN.TopKey() < key(vs) OR rhs(vs) ̸= g(vs))
02. s = OPEN.Top(), OPEN.remove(s);
03. if (g(s) > rhs(s))
04. g(s) = rhs(s);
05. CLOSED.insert(s);
06. for all s′ ∈ pred(s) UpdateVertex(s′);
07. else
08. g(s) = ∞;
09. for all s′ ∈ pred(s) ∪ {s} UpdateVertex(s′);

Procedure MiniCompute()
01. while (OPEN.TopKey() < key(vc))
02. u = OPEN.Top(), OPEN.remove(u);
03. if (g(u) > rhs(u))
04. g(u) = rhs(u);
05. CLOSED.insert(s);
06. for all s′ ∈ pred(s) UpdateVertex(s′);
07. else
08. OPEN.Remove(u);

Procedure GetAlternativePath(vc)
01. Vertex r = vc;C = ∅
02. while (r ̸= vg)
03. update r’s type value;
04. if (type(r) > 0)
05. r = one successor y of r with rhs(y) + c(r, y) ≤ rhs(r)

and type(y) ̸= −3 and type(y) ̸= −2;
06. else if (type(r) == 0)
07. type(r) = -2;
08. if (r == vc)
09. for every vertex c ∈ C UpdateVertex(c);
10. return FALSE;
11. C = C ∪ r′s type value −3 children; r = parent(r);
12. return TRUE.

Procedure GetBackVertex(v)
01. if (v ̸= NULL and type(v) < 0)
02. if (rhs(p) ̸= g(p))
03. return;
04. type(v) = 0;
05. v = parent(v);
06. GetBackVertex(v);

Procedure ProcessChanges()
01. Boolean better=FALSE, recompute = FALSE, t = rhs(vc).
02. for every edge e = ⟨u, v⟩ where c(e) has changed since the previous round:
03. Update rhs(u);
04. if (type(u) = −3) GetBackVertex(u);
05. if (rhs(u) == g(u)) type(u) = 0;
06. else
07. if (g(u) > rhs(u)) and ϵ ∗ h(vc, u) + rhs(u) < t
08. better = TRUE, UpdateVertex(u);
09. else
10. catch.add(u), type(u) = −3;
11. if (better == TRUE) MiniCompute();
12. while (!GetAlternativePath(vc))
13. told = t, ComputeShortestPath(), t = rhs(vc);
14. if t > told
15. better=FALSE;
16. for every u ∈ catch such that type(u) ̸= 0
17. if (ϵ ∗ h(vc, u) + rhs(u) < t and g(u) > rhs(u))
18. better = TRUE, UpdateVertex(u);
19. catch.remove(u).
20. if (better == TRUE) MiniCompute().

Procedure Main():
01. Initialize();
02. ComputeOrImprovePath();GetAlternativePath(vc);
03. publish current ϵ-suboptimal solution;
04. repeat the following:
05. for all directed edges ⟨u, v⟩ with changed edge costs
06. Update the edge cost c(⟨u, v⟩);
07. UpdateVertex(u);
08. if significant edge cost changes were observed
09. increase ϵ or replan from scratch;
10. else if (ϵ > 1)
11. decrease ϵ;
12. CLOSED = ∅;
13. ProcessChanges();
14. publish current ϵ-suboptimal solution;
15. if (ϵ == 1)
16. wait for changes in edge costs;

Procedure MoveAgent():
01. while (vs ̸= vg)
02. wait until a plan is available;
03. Set type(vc) = 0;
04. vc = u where u is a child of vc and type(u) == 0;
05. Move the agent to vc;
06. vs = argminss∈succ(vss)(c(⟨vs, s⟩) + g(s));
07. move agent to vs;

Fig. 1. Main functions of IAD*

returned path between vc and vg has its cost no larger than
ϵ∗g′(vc) in which g′(vc) is the cost of optimal path between
vc and vg .

Proof: This Theorem follows the correctness of ID* Lite
algorithm and Anytime D* algorithm.

III. EXPERIMENTS AND ANALYSIS

In this section, the performance of IAD* is compared
experimentally with Anytime D* on random grid world ter-
rains. In each experiment the terrain is a square, 8-direction
grid world of size2 vertices. Special vertices vs and vg are
chosen randomly from the terrain. Initially percent%∗size2
of the vertices are selected randomly and blocked, percent
being a controlled parameter. The parameter sensor-radius
is used to set the maximum distance to a vertex that is
observable from the current agent position. Before naviga-
tion, the traveling agent has a old map, in which an obstacle
may be wrongly considered to be blank with a fifty percent
possibility.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

To compare the anytime dynamic navigation algorithms,
we control the sub-optimality by setting parameter ϵ. I.e.
solutions returned by the algorithm is ϵ sub-optimal. One
criterion of anytime algorithm is the time of returning the first
sub-optimal path. In this condition, the less operations used,
the better is the algorithm. We will run two kinds of random
benchmarks to compare IAD* algorithm and Anytime D*
algorithm with constant sub-optimality parameter ϵ. The first
set of results are on random rock-and-garden benchmarks.
That is, a blockage is set initially and will remain for the
entire experiment. The second set of results are on a col-
lection of benchmarks that model agent navigation through
changing terrain, named as Parking-lot benchmarks. I.e., a
blockage may move to its neighborhood randomly during
the navigation.

Form Figure 2 to 5, AD* and IAD* are compared on rock-
and-garden benchmarks. From Figures 2 to 5, the results
of percent = 10 and sensor − radius = 0.1 ∗ size are
presented for size = 300 and size = 500 respectively. These
figures show the number of heap operations and also the
time consumed as a function of sub-optimality EPSILON(ϵ).
From the figures, we can see that IAD* gains more than
one order of speeding up than AD* in some cases. About
the consumed time, IAD* needs extra time to calculate the
alternative path besides the time of applying heap operations
which is different from AD*. From the figures we can see
that in IAD* the time to calculate alternatives cost only takes
a very small percentage of the whole time, which means
it does not affect the speed of IAD* much. It also shows
that heap operations consist the main time complexity in
navigation algorithms. Compared with the speeding up of
ID* Lite for D* Lite [7], the speed up performance of IAD*
for AD* is much better. There are two main reasons, the
first one is that there are more alternatives because of sub-
optimality. In order to find an alternative of path P1, in ID*
Lite, only pathes with the same cost as P1 can be used
as alternatives and there are no pathes with cost smaller
than P1. But in IAD*, all pathes with cost ≤ P1 can be
used as alternatives. The second one is that AD* needs to
reorder its priority queue OPEN every time of recalculating.
If IAD* can avoid the recalculating, then the reordering of
priority queue can be skipped. The method used in [3] to
avoid reordering priority queue can also be used in AD* by
modifications introduced in [17]. Unfortunately, the heuristic
used in AD* is not consistent, hence that method will cause
a lot of reinsertion of key values of vertices because of
updating. In [17], the authors choose to reorder the priority
queue when recalculating and consider this operation is
bearable for time.

The second set of benchmarks, Parking-lot benchmarks, is
intended to model agent navigating in the presence of terrain
changes. Compared with rock-and-garden benchmarks, we
are more interested in parking-lot benchmarks. The reason is
the later can simulate the practical environment better. Hence
we will give more comparisons between IAD* and AD*
on this kind of benchmarks. Terrain changes are commonly
encountered by autonomous vehicles of all kinds and may
represent the movement of other vehicles and structures in
the agent’s environment. A number of tokens equal to a
given fixed percentage of vertices are initially created and
distributed over vertices in the grid, at most one token

1.0^3
2.0^4

4.0^4

8.0^4

1.2^5

1 1.5 2 3 5 10

H
ea

p
P

er
co

la
tio

ns

Sub-Optimality (Epsilon)

Anytime D*
IAD*

Fig. 2. size = 300, percent = 10, sensor − radius = 30(rock −
and− garden)

2

20

40

80

120

1 1.5 2 3 5 10

T
im

e(
m

ill
is

ec
on

ds
)

Sub-Optimality (Epsilon)

Anytime D*
IAD*

Fig. 3. size = 300, percent = 10, sensor − radius = 30(rock −
and− garden)

covering any vertex. As an agent moves from vertex to vertex
through the grid tokens move vertex to vertex as well. Tokens
are never destroyed or removed from the grid and the rules
for moving tokens do not change: on each round a token on
vertex v moves to a vertex adjacent to v with probability 0.5
and the particular vertex it moves to is determined randomly
and uniformly from the set of all adjacent vertices that do
not contain a token when the token is moved. Tokens are
moved sequentially so there is never more than one token on
a vertex. Any vertex covered by a token at any point in the
simulation is considered blocked at that point which means
all edge costs into the vertex equal ∞. A vertex with no

4.0^3
5.0^4
1.0^5

2.0^5

4.0^5

1 1.5 2 3 5 10

H
ea

p
P

er
co

la
tio

ns

Sub-Optimality (Epsilon)

Anytime D*
IAD*

Fig. 4. size = 500, percent = 10, sensor − radius = 50(rock −
and− garden)

5
50

150

250

350

1 1.5 2 3 5 10

T
im

e(
m

ill
is

ec
on

ds
)

Sub-Optimality (Epsilon)

Anytime D*
IAD*

Fig. 5. size = 500, percent = 10, sensor − radius = 50(rock −
and− garden)

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

token is unblocked and edge costs into it are not ∞.
From Figure 6 to 9, IAD* and AD* are compared similarly

as from Figures 2 to 5. We can see that IAD* can also get one
order of speeding up, but not as good as in rock-and-garden
benchmarks. The reason is that in parking-lot benchmarks,
more recalculating are needed by IAD*. This is similar as
ID* Lite compared with D* Lite [7]. As we have seen, the
time has similar plot as heap percolation, hence below we
only show the heap percolation plot because of the limited
space.

5.0^3
5.0^4

1.0^5

2.0^5

3.0^5

1 1.5 3 5 10

H
ea

p
P

er
co

la
tio

ns

Sub-Optimality (Epsilon)

Anytime D*
IAD*

Fig. 6. size = 300, percent = 10, sensor−radius = 30(Parking−
lot)

10

70

140

280

1 1.5 3 5 10

T
im

e(
m

ill
is

ec
on

ds
)

Sub-Optimality (Epsilon)

Anytime D*
IAD*

Fig. 7. size = 300, percent = 10, sensor−radius = 30(Parking−
lot)

2.0^4
2.0^5

4.0^5

6.0^5

1.2^6

1 1.5 3 5 10

H
ea

p
P

er
co

la
tio

ns

Sub-Optimality (Epsilon)

Anytime D*
IAD*

Fig. 8. size = 500, percent = 10, sensor−radius = 50(Parking−
lot)

In Figures 10 and 11, AD* and IAD* are compared
similarly as in Figures 6 and 8, but with percent = 20. This
is to show whether IAD* can perform well in dramatically
changing environments. We can see IAD* can still achieve up
to one order times of speeding up than AD*. Also, from such
figures we can see that the plot of AD* decreases faster than
IAD*. Hence we can say that with other conditions made
certain, the smaller the sub-optimality required, the better
IAD* performs.

20

200

400

600

1100

1 1.5 3 5 10

T
im

e(
m

ill
is

ec
on

ds
)

Sub-Optimality (Epsilon)

Anytime D*
IAD*

Fig. 9. size = 500, percent = 10, sensor−radius = 50(Parking−
lot)

2.0^4

1.0^5

2.0^5

3.0^5

4.0^5

1 1.5 3 5 10

H
ea

p
P

er
co

la
tio

ns

Sub-Optimality (Epsilon)

Anytime D*
IAD*

Fig. 10. size = 300, percent = 20, sensor − radius =
30(Parking − lot)

In Figure 12, results are compared with different sensor-
radius given size = 300, percent = 3 and ϵ = 3. We can
see the heap operations increases with sensor−raduis. The
reason is that in parking-lot benchmarks the blockages are
keeping moving, hence a larger sensor-radius means more
changes observed which may cause more updating.

In Figure 13, results are compared with different percent
given size = 300, sensor − radius = 30 and ϵ = 3. We
can see that IAD* has heap operations increased faster than
AD* when percent is increased. When percent is increased,
in order to find an alternative, more recalculations are needed

1.0^5
3.0^5

8.0^5

1.2^6

1.8^6

1 1.5 3 5 10

H
ea

p
P

er
co

la
tio

ns

Sub-Optimality (Epsilon)

Anytime D*
IAD*

Fig. 11. size = 500, percent = 20, sensor − radius =
50(Parking − lot)

5.0^3

2.5^4

5.0^4

7.5^4

1.0^5

10 15 20 30

H
ea

p
P

er
co

la
tio

ns

Radius

Anytime D*
IAD*

Fig. 12. size = 300, percent = 10, ϵ = 3(Parking − lot)

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

in IAD*, which affects its performance. Hence, in parking-lot
kind of environments, if the changing of terrain is relatively
light, IAD* can have a better performance than in heavily
changing environments. From the figure, we can also see
that, even with percent = 30, IAD* can still get about two
times speeding up than AD*.

5.0^3
2.0^4

5.0^4

8.0^4

1.2^5

10 15 20 30

H
ea

p
P

er
co

la
tio

ns

Percent

Anytime D*
IAD*

Fig. 13. size = 300, sensor − radius = 30, ϵ = 3(Parking − lot)

At last in Figure 14, results are compared with different
size given percent = 10, sensor− radius = 30 and ϵ = 3.
The results show that IAD* is very scalable in parking-lot
benchmarks.

1.0^3
2.0^4

5.0^4

1.0^5

2.0^5

100 200 300 500

H
ea

p
P

er
co

la
tio

ns

Percent

Anytime D*
IAD*

Fig. 14. percent = 10, sensor−radius = 30, ϵ = 3(Parking−lot)

From the results above, we can see IAD* returns the
first qualified sub-optimal path in a shorter time than AD*.
Also when other conditions unchanged and in rock-and-
garden benchmarks ϵ from 1 to 1.5 IAD* can save about 25
percent of calculations; but in parking-lot benchmarks, the
calculations of IAD* varies a little. So IAD* has the ability
of returning a high sub-optimal path especially in parking-
lot style of environments, and when something emergency
happens, for example a lot of changes observed, the first
sub-optimal path can be returned fast; after that, IAD* can
continue to improve current path until time runs out. I.e., a
desired sub-optimal path can be guaranteed to be found in
a short time with a high possibility, which also means more
time can be used to improve the firstly returned path. Hence,
we can conclude that IAD* can return the first sub-optimal
path faster than AD* in various random benchmarks, from
which IAD* gains a better potentiality to return high sub-
optimal path within limited time.

IV. CONCLUSION AND NEXT STEP OF WORK

In this paper, we propose a new dynamic anytime al-
gorithm IAD*. IAD* improves AD* following the similar
strategy as that ID* Lite improves D* Lite. That is, IAD*
will try to find an alternative of original path instead of

recalculating immediately as in AD*. Moreover, if an alter-
native is not available, in order to avoid a full recalculation
IAD* will try to propagate changes part by part with the
help of a threshold until a new sub-optimal path found.
Experimental results show that IAD* can achieve up to one
order of speeding up in various random benchmarks. There
is still much work can be done in the next step. For example,
We will consider when there is an upper bound of heap
operations allowed if there are limited resource and how to
make the algorithm to achieve a better sub-optimality; As
discussed in this paper IAD* has a better potential to support
high sub-optimal path, so we can compare this aspect of AD*
and IAD* by experiment; Anytime Weighted A*(AWA*) [8]
is demonstrated performing better in some benchmarks to
achieve a higher sub-optimality than other algorithms, so
combining IAD* with AWA* to get a new faster algorithm
is also an interesting work we will do.
Acknowledgement: The work of this paper was supported
by the Strategic Priority Research Program of Chinese
Academy of Sciences under Grant XDA06010702, the State
Key Laboratory of Information Security, Chinese Academy
of Sciences, the National Natural Science Foundation of
China (Grants 61070172 and 10990011).

REFERENCES

[1] S. Koenig and M. Likhachev, “D*lite,” in Eighteenth national confer-
ence on Artificial intelligence 2002, pp. 476–483.

[2] ——, “Improved fast replanning for robot navigation in unknown
terrain,” 2002, pp. 968–975.

[3] A. Stentz, “The focussed d* algorithm for real-time replanning,”
in Proceedings of the International Joint Conference on Artificial
Intelligence 1995, pp. 1652–1659.

[4] ——, “Optimal and efficient path planning for partially-known en-
vironments,” The Kluwer International Series in Engineering and
Computer Science, vol. 388, pp. 203–220, 1997.

[5] W. Yue and J. Franco, “Avoiding unnecessary calculations in robot
navigation,” in Proceedings of World Congress on Engineering and
Computer Science 2009, pp. 718–723.

[6] ——, “A new way to reduce computing in navigation algorithm,”
Journal of Engineering Letters, vol. 18(4), 2010.

[7] W. Yue, J. Franco, W. Cao, and H. Yue, “Id* lite: improved d* lite
algorithm,” in Proceedings of 26th Symposium On Applied Computing
2011, pp. 1364–1369.

[8] E. A. Hansen and R. Zhou, “The heuristic search under conditions of
error,” Journal of Artificial Intelligence Research, vol. 28, pp. 267–
297, 2007.

[9] L. Harris, “The heuristic search under conditions of error,” Artificial
Intelligence, vol. 5(3), pp. 217–234, 1974.

[10] R. Zhou and E. Hansen, “Multiple sequence alignment using anytime
a*,” in Proceedings of Conference on Articial Intelligence 2002, pp.
975–976.

[11] R. Korf, “Linear-space best-first search,” Artificial Intelligence, vol.
62(1), pp. 41–78, 1993.

[12] I. Pohl, “Heuristic search viewed as path finding in a graph,” Artificial
Intelligence, vol. 1(3), pp. 193–204, 1970.

[13] H. Davis, A. Bramanti-Gregor, and J. Wang, “The advantages of using
depth and breadth components in heuristic search,” Methodologies for
Intelligent Systems, vol. 3, pp. 19–28, 1988.

[14] M. Likhachev, G. Gordon, and S. Thrun, “Ara*: anytime a* with
provable bounds on sub-optimality,” Advances in Neural Information
Processing Systems, 2003.

[15] S. Koenig and M. Likhachev, “Incremental a*,” Advances in Neural
Information Processing Systems, pp. 1539–1546, 2002.

[16] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning a*,”
Artificial Intelligence Journal, vol. 155(1-2), pp. 93–146, 2004.

[17] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic a*: An anytime, replanning algorithm,” in Pro-
ceedings of the International Conference on Automated Planning and
Scheduling 2005.

[18] J. T. Thayer and W. Ruml, “Faster than weighted a*: An optimal
approach to bounded suboptimal search,” in Proceedings of the Inter-
national Conference on Automated Planning and Scheduling 2008.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

