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Abstract— Voting plays an important role in many decision 

making problems. Various conventional preferential voting 

methods where the voters rank candidates in order of 

preference are reviewed for syntactic patterns and categorized. 

Several other new voting methods are devised from the 

conventional procedural patterns and metrics as well. Explicit 

formulae for over fifty different voting methods are presented 

and the hierarchical clustering technique is adopted to reveal 

semantic similarities among them. A nomenclature for voting 

methods is suggested to reveal their syntactic patterns. All 

preferential voting methods perform significantly different 

from the simplest plurality method. 

 
Index Terms—decision, hierarchical clustering, preference, 

voting, nomenclature 

I. INTRODUCTION 

ONSENSUS of a group plays an important role in decision 

making such as elections [1-3] and combining multiple 

classifiers [4]. It is essential in most democratic societies 

and has received great attention in artificial intelligence and 

computer science communities as well [5].  

Consider an ordered set of four candidates, C = {„A‟, „B‟, 

„C‟, „D‟} and they received the corresponding votes, V = {11, 

6, 7, 6}. The notations in Table I shall be used throughout the 

rest of this article. The most widely used and simplest voting 

method is called the „plurality‟, i.e. the winner is one who has 

the most votes as defined in (1).  The majority voting method 

in (2) is the same as the plurality but rejects if the winner does 

not receive more than half votes. 
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TABLE I 

Basic Notations 

notation meaning and/or example 

C an ordered set, e.g., {„A‟, „B‟, „C‟, „D‟} and C2 = „B‟. 

V the corresponding votes, e.g., {11, 6, 7, 6} and V3 = 7. 

c the number of candidates, c = |C| = 4 in the example. 

m the total number of voters, e.g., 30 in the example. 

n the number of unique preference order ballots. 5 in Table II. 

p(i, j) the candidate in the ith ballot and jth choice, p(2, 1) = „A‟ 

r(i, x) the choice rank for the candidate x in the ith ballot, r(4,„A‟) = 3 
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TABLE II 

Sample Preference Ballot Table 

Choice\
votes 7 11 1 6 5 

1 C A D B D 

2 D D B C C 

3 B C C A A 

4 A B A D B 

 

  
(a) stacked pies (b) multiple bars 

Fig. 1. Distribution of preference votes. 

 

Due to flaws in the simple top choice voting system, the 

preferential voting system in which the voter ranks candidates 

in order of preference has been proposed [1-3,5-7]. 

Voters are asked to rank the candidates where omissions 

and ties are not allowed and quantities are not important but 

only the strict order matters as exemplified in Table II. Fig 1 

shows the distribution of preference voting in stacked pies 

and multiple bars.  The outer most shell is the first choice and 

the inner shells are the next choices and so on.  

The winner of Table I case differs depending on voting 

methods used and there is a zoo of diverse methods. Various 

voting methods are used in diverse social groups and different 

regions. There are so many variation and alternatives and thus 

a comprehensive study is necessary because even names for 

certain voting methods are fluid and promulgated differently. 

Also, a nomenclature for voting methods is necessary as even 

today another new voting method is invented. 

The rest of the paper is organized as follows. In section 2, 

various conventional preference voting methods are given to 

reveal their syntactic similarities. In section 3, conventional 

methods are generalized and other new methods are devised 

from the existing methods‟ patterns. In order to provide a 

better perspective on similarity among different methods, 

section 3 presents the hierarchical cluster tree of over fifty 

different preference voting methods. Finally, section 4 

concludes this work. 

II. CONVENTIONAL VOTING METHODS 

In this section, different syntactic patterns of conventional 

voting methods are examined and expressed in as generic 

forms as possible. Perhaps, the most common paradigm for 

many methods is finding the argmax of certain measurable 

score values for each candidate as given in (3).  
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The plurality method can be referred to as (3-4), i.e., it 

follows the general form in (3) with (4) as its score function: 

fs(p, x) = pl(p, x).  
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Note that the summation notation with the subscript only shall 

be used frequently in this article and is defined as the 

summation of only f(i,x) from i = 1 to n such that the subscript 

condition is met as exemplified in (4). 

The rank method is very similar to the paradigm in (3) but 

uses the score function with certain weights.  
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If the weights are (1,0,0,0), it is the plurality method. If the 

weight is (c1,…1,0) as in (6), e.g., (3,2,1,0) in our 

example, then it is called borda method [1-4] attributing 

Jean-Charles de Borda [6]. (5) with (6) is called the borda 

score. 

),(),( xircw xir   (6) 

Similar to the paradigm in (3), finding the argmin of 

certain measurable penalty values for each candidate as 

given in (7).  
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As opposed to the simplest score function in the plurality 

method which considers only the pluralities of the top 

choice, a simplest penalty function would be the plurality of 

the last choice as in (8).  
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The candidate who is disliked by most voters would have the 

highest penalty value. Hence, we rank the candidates in 

order of ascending penalty values. 

Suppose we would like to compare two candidates, „B‟ 

and „D‟. Either score or penalty function can be used in (9) 

to find the winner between them, the more popular and 

specific pairwise comparison function is given in (10).  
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For example of Table II, pc(„B‟) = 6 which is the fourth 

ballot and pc(„D‟) = 7 + 11 + 1 + 5 = 24 where „D‟ precedes 

„B‟. Hence pairwin(p, „B‟, „D‟) is „D‟. Let‟s denote this 

pairwise c  c victory score matrix based on (10) Mv as 

given in Table III. 

If there exists a candidate which wins all other candidates 

in pairwise comparison as defined in (11), this winner is 

called the Condorcet winner [1-3] attributed to Marquis de  
 

TABLE III 

pairwise victory score matrix, Mv. 

x\
y A B C D Wt 

A 0 16 11 17 44 

B 14 0 7 6 27 

C 19 23 0 13 55 

D 13 24 17 0 54 

Lt 46 63 35 36  

 

Condorcet [7]. This concept dates back at least to Ramon 

Llull in the thirteenth century though [3].  














                              otherwisevoid

&, ere        wh

)),,(( if

         

)(

yxCyx

xyxppairwinyx
x

pcondorcet

 (11) 

In the example of Table I and most of cases, there is no 

Condorcet winner as shown in Table III. The Condorcet 

concept is often used as a property of other methods, i.e., 

whether or not a certain method x always selects the 

Condorcet winner if there exists one.    

The borda method does not have the Condorcet property. 

Duncan Black suggested to select the Condorcet winner if 

one exists and use the borda method if not [8] and this 

method is referred to as the black method in [1]. Hence, the 

Condorcet concept can be used generically as an ensemble 

with other methods which do not have the Condorcet 

property as in (12).  
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The minimum number of pairwise swaps before they 

become a Condorcet winner is called the dodgson method 

which is an NP-hard problem [9]. In [1], however, a 

simplified version is attributed to the dodgson method which 

uses (8) in (12). We shall refer it as the dodgson-s method.  

Another popular and widely used voting concept uses the 

two round system. First, it selects the top two candidates by 

a certain way and then uses the pairwise comparison 

between those as given in (13).  

)(),(    where          
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Albeit any ranking function such as the borda score can be 

used to select the top two, the simple plurality (4) is used in 

(13) and this particular method is known as the run-off 

method. 

Similar to the usage of the Condorcet method in (12), the 

majority method in (2) can be used as an ensemble with 

other methods as well. 
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When (13) is used in (14), this ensemble method is called 

the contingent method or runoff method interchangeably in 

[1,2]. Note that the runoff in (13) is the same as (14) with 

(13) when the plurality (4) and pairwin (9-10) are used to 

find and compare the top two candidates, respectively. We 

make distinction here because the results may differ when 

other score functions and/or pairwise comparison methods 

are used in the later section 3. 
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Suppose pairwise matches are scheduled with a fixed 

sequential agenda as depicted in Fig 2. 
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(a) <A,B,C,D> (b) <D,C,B,A> (b) <C,B,A,D> 

Fig. 2.  Sequential pairwise match agendas. 

This method is called the sequential pairwise match method 

[3]. The winner depends on the order in the agenda, a. In Fig 

2 (a), the winner of „A‟ vs. „B‟ match will be against „C‟. 

And then the winner of that round will be in the final round 

with „D‟. This method is defined recursively in (15).  

Suppose that the candidate „B‟ withdraw from the 

election. Then the preference ballot table in Table II is 

updated to the one in Table IV due to the elimination 

process of p = p – {„B‟}. Numerous methods utilize this 

process. 
TABLE IV 

p „B‟} preference ballot table 

I 1 2 3 4 5 

Choice\
votes 7 11 1 6 5 

1 C A D C D 

2 D D C A C 

3 A C A D A 

 

In 1861, Thomas Hare proposed the instant runoff voting 

method or simply IRV which eliminates the candidate with 

the lowest plurality recursively until there exists a majority 

winner [3]. The IRV is also called hare [1], Cincinnati rule 

[2], or single transferable [2,3] method.    

The eqn (16) is a recursive generic form of the IRV where 

many possible elimination functions like (17) can be used. 

The elimination function outputs a set of candidates to be 

removed. Even if a specific method like the alternative or 

IRV method requires eliminating a single candidate per step, 

multiple candidates could be removed as a bulk if there are 

ties.  
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Instead of eliminating the candidate(s) with the fewest 

first place votes, Clyde Coombs proposed to eliminate those 

with the most last place votes (18) [10]. 

  












 

 xcip

i
CxCx

vxppfE = 
),(

maxarg),(maxarg  (18) 

In [1-3], the generic form (19) with (18) as the 

elimination function is referred to as the Coombs method. 

While the Hare method may terminate the elimination when 

there exists a candidate with majority, the Coombs method 

keeps eliminating candidates until only one remains.  
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In 1882, Edward J. Nanson proposed a hybrid method of 

the generic form (19) with the borda score where all 

candidates whose borda scores are below the average are 

eliminated per recursive step as in (20) [11].    
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Joseph M. Baldwin referred (19-20) as the Nanson method 

and proposed to eliminate only candidate(s) with the lowest 

borda score as in (21) [12].  
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The following conventional methods require a c  c 

matrix produced by a pairwise comparison function, e.g., Mv 

in Table III produced by (10). The minimax method, also 

known as Simpson-Kramer or successive reversal method 

uses the generic form in (7) with a certain penalty function 

involving the Mv matrix [2]. The most popular penalty 

functions include the pairwise opposition (22), winning 

votes (23), and margins (24). 
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A H. Copeland suggested a pairwise aggregation method 

[13] which is simply called the Copeland method in [3]. It 

involves the pairwise winner matrix produced by (25) in 

Table V.  
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TABLE V 

pairwise winner matrix. 

x\
y A B C D tot_W 

A 0 1 0 1 2 

B 0 0 0 0 0 

C 1 1 0 0 2 

D 0 1 1 0 2 

tot_L 1 3 1 1  

 

Copeland method follows the standard form (3) with the 

score function given in (28), i.e., the number of pairwise 

victories (26) minus the number of pairwise defeats (27).  
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III. COMPOSITION OF VOTING METHODS 

This section attempts to generalize the patterns of 

conventional voting methods and provides a scheme to 

generate new composed voting methods. The conventional 

and composed voting methods are named as strings using the 

symbols in Table VI and enumerated in Table VII.  

First, the conventional methods can be categorized into 

whether it requires any pairwise comparison and two or 

more rounds as shown in Fig 3. If it does not, the single 

symbol „b‟ is used and if so, the pair symbol „p‟ or „q‟ shall 

be used. The generic form in (3) can be named sb(fs) which 

uses a certain score function to select the single winner. 

Instead of the linear weight in the borda score (6), the 

quadratic triangular number weights in (29), e.g., (6, 3, 1, 0), 

can be used in which the closer to the top choice, the higher 

weights it gets.   
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The concepts of Condorcet and Majority are often used as 

mixture of other methods such as black and dodgson-s. The 

symbol „c‟ and „m‟ shall be used as a prefix for (14) and 

(16), respectively. The black method can be stated as csb(6). 

The prefix, „c‟ can be redundant for those methods which 

have the Condorcet property, e.g., sequential pairwise 

method, Copeland, etc. The prefix, „m‟ can be also 

redundant, e.g., plurality = sb(4) = msb(4).  

The generic form (7) which requires a certain penalty 

function, fn is represented as nb(fn).  The dodgson-s method 

is cnb(8).  If the reverse borda penalty, (4, 3, 2, 1) gives the 

penalty function in (30) and applied to (7), i.e., nb(30). 
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The symbol „q‟ is for the sequential pairwise voting 

methods where the order agenda and a pairwise comparison 

function are required. For example, q(-,10) has the agenda 

<„A‟, „B‟, „C‟, „D‟> and uses (10) as the pairwise 

comparison. The ascending or descending order from any 

score or penalty function can serve as the agenda. The first 

argument indicates the score or penalty function, e.g., 

sq(4,10) and nq(8,10).  

The second argument is the pairwin function like (10)  

 
TABLE VI 

Symbols in Nomenclature in preferential voting methods. 

 meaning arguments / usages. 

b single argmax/ argmin/ leave one, etc. 

s score function fs (4), (5-6), (5-27) 

n penalty function fn (8), (30) 

c Condorcet prefix 

m majority postfix for recursion or prefix for others 

p pairwise comparison fp (9-10), (31), (32), (33) 

q sequential pairwise fp 

r recursive elimination fe (17), (18), (20), (21) 

x matrix fp, fsx (26), (28), (35)/ 

fnx (22), (23), (24), (27) 

TABLE VII 

Conventional and composed preferential voting methods. 

generic conventional composed 

sb(fs) (3) plurality = sb(4),  

borda = sb(6) 

rank_triang = sb(29) 

msb(fs) (3,14)  msb(6), msb(29) 

csb(fs) (3,12) black = csb(6) csb(3), csb(29) 

nb(fn) (7)  nb(8), nb(30) 

mnb(fn) (7,14)  mnb(8), mnb(30) 

cnb(fn) (7,12) dodgson-s = cnb(8) cnb(30) 

q(-,fp) (15) seq_pair = q(-,10) q(-,31), q(-,32), q(-,33) 

sq(fs,fp) (15)  sq(4,10), sq(4,31), sq(29,32) 

nq(fn,fp) (15)  nq(8,10),nq(8,31),nq(30,32) 

sp(fs,fp) (13) runoff = sp(4,10) sp(4,31), sp(4,32), sp(6,32) 

msp(fs,fp) (13) conting- = msp(4,10) msp(4,31), msp(6,33) 

np(fn,fp) (34)  np(8,10), np(30,32) 

mnp(fn,fp) (34)  mnp(8,31), mnp(30,33) 

rb(fe)   (19) coombs = rb(18), 

nanson = rb(20), 

baldwin = rb(21) 

rb(17), rb(35) 

rmb(fe)  (16) hare = rmb(17) rmb(18), rmb(21), rmb(35) 

rp(fe,fp)  (36)  rp(17,10), rp(21,33) 

rmp(fe,fp) (37)  rmp(17,10), rmp(18,31) 

sbx(fp,fsx) (37) copeland = 

sbx(28,10b) 

sbx(26,10b), sbx(28,31b), 

sbx(28,31), sbx(26,33) 

nbx(x,y) minimax=nbx(22,10), 

nbx(23,10),nbx(24,10 

nbx(27,10), nbx(27,10b), 

nbx(23,31), nbx(27,33b) 

rbx(fe)  rbx(39,10), rbx(40,10) 

rmbx(fe)  rmbx(39,10), rmbx(40,10) 
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Fig. 3.  Categorization tree of preference voting methods 

 

which is winning pluralities as scores. One possible pairwise 

comparison function fp takes the winning position into 

account as scores as in (31) just like the borda concept. 
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Another possible pairwise comparison function takes the 

difference between winning and losing positions into 

account as scores as in (32).  
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Another possible pairwise comparison function takes the 

difference between winning and losing triangular number 

positions in (29) into account as scores as in (33).  
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These new pairwin functions in (31-33) can be applied to 

not only sequential pairwise voting, but also contingent and 

IRV instead of the conventional function (10).  

The conventional two round system in (13) can be 
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expressed sp(4,10) or msp(4,10) for the contingent method. 

The two arguments are the score function and the pairwise 

comparison function and thus sp(4,31), sp(6,10), msp(4,32), 

msp(6,33) can be composed as new methods.   

Similarly penalty functions such as (8) or (30) can be used 

to find the lowest two candidates and then any pairwise 

comparison functions can be applied as in (34).  
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Next, the symbol „r‟ stands for the recursive elimination 

where the IRV family methods can be represented. rb(fe) 

means keeping eliminating recursively until one single 

winner remains as in (19), e.g., Coombs = rb(18), Nanson = 

rb(20), and Baldwin = rb(21).  Instead of the argmin and 

average of borda scores in Baldwin and Nanson methods, 

one can use the argmin (17) and average of the plurality (35) 

as the elimination function.  

 cplxplCxxE =  ,*)1(),1(&
 

(35) 

Any score or penalty functions can be used to find argmin or 

argmax and average to compose another new elimination 

function.  

The „m‟ symbol is used after „r‟ for the hare method (16). 

Note that rmb(fe) ≠ mrb(fe). In mrb(fe), the majority is 

checked only once at the beginning as in (14) and then (19) 

is executed.   

The concept of the runoff (13) can be used with the 

recursive elimination. Candidates can be eliminated until 

two candidates remain as in (36) or (37) instead of a single 

candidate (19). The symbol „p‟ is used instead of „b‟. 
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Finally, the symbol „x‟ stands for the c  c matrix such as 

the pairwise victory score matrix and its binary matrix in 

Tables III and V. The minimax and copeland methods can 

be stated as nbx(22, 10) and sbx(28, 10b), respectively. The 

first argument is either score or penalty functions and the 

second argument is the pairwise comparison function which 

makes the matrix. The matrix (10b) is the binary version 

(25) of the pairwise comparison function (10).  

The score function with a matrix, fsx includes (26) and 

(28) and the penalty function with a matrix, fnx includes (22), 

(23), (24) and (27). As opposed to the minimax, one can 

compose the maxmin method with the following score 

function (38).  

})){,(min(),( xCxMxpf sx   (38) 

 Several webpages such as [14] describe some voting 

methods without any reference and where definitions vary 

from other sources. While some are the same as the original 

source, others are different but promulgated the same or 

produce the same results but more complex algorithm 

involving matrices. 

In [14]. The Borta method is defined as the score function 

in (28) with the matrix (10) and let‟s denote it as bs2. For the 

Baldwin method, bs2 is used instead of bs in rb(21) to make 

rbx(39, 10). The nanson method is defined differently where 

(40) is used instead of (20). 

 (*))min(arg& 2bsxCxxE =   (39) 

 0)(& 2  xbsCxxE =  (40) 

IV. HIERARCHICAL CLUSTERING OF VOTING METHODS 

Hitherward, the focus is moved from the syntactic patterns 

to the semantic similarity between voting methods. So as to 

assess how similar voting methods are, the following 

experiments were conducted using the cluster analysis. For 

m = 100 voters and c = 4 candidates, (nt = 100) number of  

preference ballot test cases are randomly generated. The 

distance between two voting methods is the number of the 

mismatches in (41).  


 






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nt

i yx

yx

yx ivmivm

ivmivm
vmvmd

1 )()( if1

)()( if0
),(  (41) 

If two methods are identical, the distance is zero and if 

they do not agree on many cases, the distance is high. The 

hierarchical cluster tree in Fig 4 reveals the similarities 

among various voting methods.   

Prior to rigorous mathematical proof, the dendrogram 

provides the intuitive identity, similarity, correctness, etc. 

The simple plurality method and the dodgson-s method are 

quite different from most preference voting methods.  

In this experiment, the borda sb(6), nbx(27,10), q(-,32), 

sq(4,32), sbx(28,32b), and sbx(28,10) turned out to be 

identical. The Baldwin rb(21) and rbx(39,10) are also 

identical to each other. Another identical group has sb(29), 

q(-,33), sq(4,33), nq(8,33), sbx(28,33b). Also, rmb(21) is the 

same as rmbx(39,10).  

V. CONCLUSION 

While most voting method survey works in literature 

focus on mathematical properties and flaws of voting 

methods, this article attempts to reveal their syntactic and 

semantic relationships. Albeit it needs community based 

consensus and further refinement, an initial naming 

convention is suggested. 

This article reviewed several popular conventional 

methods but there are numerous other voting methods are in 

use. Further comprehensive survey is necessary as a future 

work.  

REFERENCES 

[1] M. Samuel III, Making Multicandidate Elections More Democratic. 

Princeton University Press, Princeton, NJ, 1988.  

[2] J. Levin and B. Nalebuff, “An Introduction to Vote-Counting 

Schemes,” Journal of Economic Perspectives, vol. 9, no. I, Winter. 

1995, pp. 3–26 

[3] A. D. Taylor and A. M. Pacelli, Mathematics and Politics: Strategy, 

Voting, Power and Proof, Springer-Verlag, 1995. 

[4] T.K. Ho, J.J. Hull, and S.N. Srihari, “Decision Combination in 

Multiple Classifier Systems,” IEEE Trans. J. PAMI, vol. 16, no. I, 

Jan. 1984, pp. 66–75 

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012



 

[5] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe, 

“Llull and Copeland Voting Computationally Resist Bribery and 

Constructive Control,” Journal of Artificial Intelligence Research. 

vol. 35, 2009, pp. 275–341 

[6] J.-C. de Borda, Mémoire sur les Élections au Scrutin. Paris: histoire 

del l‟Académie Royale des Sciences, 1781. 

[7] M. de Condorcet, Essay on the Application of Mathematics to the 

Theory of Decision-Making. Paris, 1785. 

[8] D. Black, The Theory of Committees and Elections. Cambridge 

University Press, London, 1953. 

[9] J. Bartholdi III, C. A. Tovey, and M. A. Trick, “Voting schemes for 

which it can be difficult to tell who won the election,” Social Choice 

and Welfare, Vol. 6, No. 2, 1989, pp. 157–165. 

[10] C. Coombs, A Theory of Data. Wiley, New York, 1964. 

[11] E. J. Nanson, “Methods of election,” Transactions and Proceedings of 

the Royal Society of Victoria 19, 1882, pp. 197–240. 

[12] J. M. Baldwin, “The technique of the Nanson preferential majority 

system of election,” in Proc. 4th the Royal Society of Victoria, n.s. 

39: 1926, pp. 42–52. 

[13] A. H. Copeland, “A 'reasonable' social welfare function,” presented at 

the Seminar on Mathematics in Social Sciences, University of 

Michigan, 1951. 

[14] R. LeGrand, “Descriptions of ranked-ballot voting methods,”  

http://www.cs.wustl.edu/~legrand/rbvote/desc.html as of June 2012. 

 

0 0.1 0.2 0.3 0.4

Coombs rb(18)
rp(18,10)
rmb(18)
np(8,10)

rmp(18,31)
Seq q(-,10)

nq(8,10)
sq(4,10)
rmb(20)
rmb(21)

rmbx(39,10)
rmbx(40,10)

Nanson rb(20)
Baldwin rb(21)

rbx(39,10)
rbx(40,10)

MiniMax snx(22,10)
MiniMax snx(23,10)
MiniMax snx(24,10)

Copeland sbx(28,10b)
Borda sb(6)
sbx(28,32b)
sbx(28,10)

q(-,32)
sq(4,32)

nbx(27,10)
Conti msp(4,10)
Runoff sp(4,10)

rb(35)
rmb(35)

Hare rmb(17)
rb(17)

rp(17,10)
sb(29)
q(-,33)

sq(4,33)
nq(8,33)

sbx(28,33b)
sp(6,33)
sp(4,33)

sbx(26,33)
rp(17,33)
sp(4,32)
sp(4,31)

rmp(17,31)
q(-,31)

sq(4,31)
sbx(28,31b)

Plural (1)
Plural sb(4)

dodgson cnb(8)

 
Fig. 4. Hierarchical Clustering of 51 conventional and devised voting methods. 
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