

Abstract—This paper presents a new search algorithm
for searching a list or array for two or more keys at the
same time. The new algorithm is named Bond
Sequential Search (BSS), and the objective in this
algorithm is to search for two keys in one array using
sequential search with some enhancements.

The classic sequential search is one of the easiest and
cheapest search techniques, but it is very slow and
requires comparing each element in the array until
finding the desired element. This process is time
consuming, and in the worst case when the element is at
the end of the array or when it does not exist in the
array, the number of comparisons required will be equal
to the array size. Thus, the complexity of the sequential
search will be equal to the length of the search array,
and if two keys are searched this complexity will double.

There are other faster search methods used like the
binary search and the parallel sequential search.
However, each of the two methods has its own
disadvantages; binary search requires sorting the data,
and parallel search requires the use of multiple
processors, and both methods will require additional
cost compared to sequential search.

Bond Sequential search (BSS) introduced in this
paper is based on sequential search. Simple logic gates
were added to the classic sequential search in order to
combine two or more searches on one cycle, which
enhanced the performance of classic sequential search
without any need for data sorting as in the binary search
or using multiple processors as in the parallel search.

 The BSS algorithm is discussed and explained in
details in this paper. The BSS is also compared to the
classic sequential search, and the results showed that our
algorithm is two times faster than the classic sequential
search.

Index Terms—Sequential search, Bond Sequential search,
Binary Search, Parallel Search.

Manuscript received July 27, 2012, revised August 16, 2012.

Omer H. Abu El Haija is with the Jordan University of Science and
Technology, Irbid, Jordan (Tel:+(962)799145454
email:omer.haijaa@gmail.com)

Azmi Alazzam is with the State University of New York at Binghamton,
Binghamton, NY 13902, USA (Tel:(832) 206-351
email:aalazza1@binghamton.edu)

I. INTRODUCTION

HE huge amount of modern era data require choosing
fast searching mechanisms. Different search
mechanisms have been proposed and used to facilitate

the process of searching for small list items or in unsoted
large databases. The best search algorithm that can be used
in any search scenario is the one that save time and power
without high cost calculations or hardware modifications.
Determination of that best fit mechanism depends on many
factors; those factors are related to list properties, searching
environment and hardware specifications. The factors that
are used to determine the best search algorithm are related
to previse knowledge of: list order (order list vs. disorder
list), searching paradigm (external vs. internal searching),
size of data (small vs., large list size), and list updating
(static vs. dynamic updating lists).
Sequential search is a good technique in both cases when
the search list size is small and when the list is unsorted.
However sequential search doesn’t have the ability to search
for more than one key at the same time, unless costly
parallel techniques are used, also binary search cannot be
used unless costly sorting techniques were pre applied.

Many researchers have discussed the use of different
searching algorithms, also discussed different techniques
and modifications to enhance the searching process. Donald
Knuth wrote “Searching is the most time –consuming part
of many programs, and the substitution of a good search
method for a bad one often leads to a substitution increase
in speed” [1]. It is known that the best running time in non-
parallel searching environment is when the list is in order
because binary search has a complexity of Θ(log n) time
which is better time than sequential that has a complexity
of Θ(n) [2] .

It was also suggested that sorting process is not
desirable especially when the list or array to be sorted is
large in size, since sorting time will be long which will lead
to slowing the searching time, increasing the search
complexity and degrading the performance of the search
mechanism [3] and [4]. A searching mechanism using
floating point was also proposed [5]. The idea of this
algorithm was based on mantissa separation inside bins,
where logic instruction and masked formations can maintain
significant bit. A random algorithm for multiselection was
recently introduced; the searching is used to find the i-th
position key, and also multi selection and quick selection
were used for the same reason [6]. Although binary search
is preferred than sequential search since it has less
complexity but it also has its own drawbacks. It was found
that Binary search is not suitable for searching in m
dimension list where m >1 [7].

Multithreading could be used to enhance sequential
search and can beat binary search because binary search
doesn’t support frequent updates and requires time
consuming sorting [8]. In [9] external search without sorting

Bond-Sequential Search (BSS)
Omer H. Abu El Haija, and Azmi Alazzam

T

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

was discussed and two scenarios were elaborated; whether
in practice one can perform external selection faster than
sorting, and if there is a deterministic algorithm that has the
same performance of randomized algorithm.

In [10] a hint of using integers sign bit for the Boolean
values was proposed. In [11] the authors suggested forming
data structure to speed up the searching processes. In [5] a
searching technique inside compressed data is proposed, the
technique compressed the key the same way the file was
compressed, then bit by bit is used to search without the
need of decompression. It was also found using bit
manipulation can reduce sequential search time significantly
[12]. Basic and intermediate ways to use logic gates
introduced [13]. A recursive sequential search was also used
to improve the search speed of patterns [5].

While sequential search takes one key at once, our
proposed sequential based algorithm facilitate logic gates
and mask formation to combine two or more keys
performing better searching, by eliminating the excluded list
items and taking equality candidates. Finally the algorithm
shift to normal equality comparison for candidates process,
and knows if the candidate item matches one of the two
keys.

Our algorithm has the ability to combine two or more
key to one composite key. The composite key is used to
look for two or more keys on the same time. BSS takes half
cycles compared to sequential search and have better
performance if two or more keys are used; making BSS
superior over sequential search in most cases.

In section II BSS is discussed in more details. In section
III the numerical results are shown and BSS simulation
results are compared to sequential search. We find that BSS
has better performance and is 100% faster than classic
sequential search when we aim to search two or more keys.
In section IV the conclusion is discussed, also a comparison
of time complexity between sequential and the proposed
BSS is shown.

II. MATERIALS AND METHODS

A. Logic formation and nondeterministic comparison for
one key

Comparison for identifiers equality has classic syntax:
Left identifier == right identifier

For nondeterministic equality used by BSS both and
gate, or gate, and classic equality are used.

The nondeterministic equality for single non composite
key has two phases
Phase 1: The choice of candidate is done by applying and
gate, between key and test item, let’s have key k and item b
to compare, our comparison equation is:
 K and b
Phase 2: next is testing equality between phase 1 result and
candidate so when the comparison of (phase1 results == b)
returns true then b are candidate and it has a solution where
A = {b==k, b==0} and b ϵ A
b==k solution take place when the candidate is equal to the
key
b==0 solution happen when the candidate fail, and this
solution appears in rare cases .

B. Logic formation and nondeterministic comparison with
composite key

The steps for comparing more than one key on the same

process are:
1. We use or gate to combine source keys ka, kb

to one composite key kc, where kc = ka or kb
2. We test element b to find candidate q,

If b and kc = b, then we have candidate q,
where q = kc and b with solution set
A={q==ka, q==ka, q==kb, q==0} and q ϵ A.

3. We test candidate q for classic equality within
solution set {q=ka, q=kb}, if q matches one of
the deserved keys, else if no one of the
deserved keys are identical then we exclude
this candidate.

C. BSS algorithm assumption

To understand the algorithm in details let us have some
assumptions:

 ka,kb two different keys that we want to look for
D is a list of items that we want to look in
n is the index of last item of D
i is the index of i th item

For classical sequential search ka must be compared with all
D items figure 1, then the same procedure is done for the kb
is done figure 2 consuming 2n cycles.
For BSS we combine both keys in a composite key
kc = ka or kb
Then we test for candidate for all D items using
If (kc and D[i]) ==D[i]
For every candidate we find we try to test if it is identical
with one of the compound keys, if it is identical then we
reach our goal to find first item, else if it is not identical we
exclude this candidate.

Fig. 1. Sequential search key ka comparison with all list items.

Fig. 2. Sequential search key kb comparison with all list items.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

D. BSS algorithm pseudo code

seqsearch(D, first, last, key)
while key=D[first] and first< last
 first <- first + 1
if key=D[first]
 return first
Bss(D, first, last, keya, keyb, keyapos, keybpos)
Keyc <- keya or keyb
Done <- 1
i <- first
while done>0 and first < last
 if keyc and D[first] = D[first]

if keya = D[first]
 done <- done -1

keyapos <- first
keybpos <- seqsearch(D, first,

last, keyb)
else
 if keya = D[first]
 done <- done -1

keybpos <- first
keyapos <- seqsearch(D,

first, last, keya)

 first <- first +1

The flow chart for the proposed BSS algorithm is shown in
figure 3.

Fig. 3. BSS flow chart diagram.

E. Complexity analysis

Table 1 shows a comparison between three known
searching algorithms: sequential search, BSS, and Binary
search. For non sorted, dynamically changed arrays BSS
beats binary search because binary search needs costly
sorting, on the other hand BSS beats sequential search in
most cases because it needs half of sequential search in most
cases(see table 1.)

Table 1: running time comparison complexity for an array
of size n with two keys searching

 sequential BSS Binary search

Comparison 2N N 2 log n

Sorting - - n log n .. n2

searching in the worst case 2n N 2 log n

total running time 2n N

2log n + n log n
..
 2log n + n^2

Skipping non candidates and the ability to combine

more than one key is what gives BSS the speed over classic
sequential search.

III. RESULTS

To study the effectiveness of BSS with respect to
sequential search algorithm, we chose to build a simulator
using educational version of Microsoft C sharp, under
Microsoft windows 7 multi-threading environment.

Many other authors tried to compare their results due to
time, but it looks more applicable for multi core and multi-
threading environment to compare due count of
comparisons, so we counted comparisons for both BSS and
sequential search, those comparisons are done to many
different data sizes and for both cases; when key exist and
when key does not exist.

Microsoft C sharp has integrated development
environment under win32, it looks similar to C++ language.
We ran our simulator on Intel T2300 running at 1.66 GHZ
with 2GB RAM. Our simulation results showed that the
performance of BSS is twice the performance of sequential
search for the term of comparisons count as illustrated in
table 2, table 3, table 4, table 5, figure 4, figure 5, and figure
6.

Bss is superior compared to sequential search, and it looks
clear in figure 4, and figure 5.

Figure 4 is visual representation for comparison between
sequential search and BSS on many data sizes and key sizes,
when the key exists. The data that is shown here is same
when key found on tables 2,3,4,5

Figure 5 is a visual representation for comparison between
sequential search and BSS on many data sizes and key sizes,
when the key doesn’t exists. The data that is shown here is
similar to that when the key is not found presented on tables
2,3,4,5.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Table 2: BSS and sequential search small data size results

2^ data size 4 5 6 7

data size 16 32 64 128

2^ keys 1 2 3 4

Keys 2 4 8 16

seq found/compares 6 33 196 1,119

bss found/compares 5 33 136 777

seq ! found/compares 30 124 504 2,032

bss ! found/compares 16 64 255 1,020

FOUND TIME 0.83 1.00 0.69 0.69

!FOUND TIME 0.53 0.52 0.51 0.50

found performance 1.2 1.0 1.4 1.4

!found performance 1.9 1.9 2.0 2.0

Table 3: BSS and sequential search medium data size results

2^ data size 8 9 10 11

data size 256 512 1024 2048

2^ keys 5 6 7 8

Keys 32 64 128 256

seq found/compares 4,358 18,157 66,735 267,166

bss found/compares 2,762 10,695 37,339 143,265

seq !
found/compares 8,160 32,704 130,944 524,032

bss !
found/compares 4,083 16,359 65,484 262,027

FOUND TIME 0.63 0.59 0.56 0.54

!FOUND TIME 0.50 0.50 0.50 0.50

found performance 1.6 1.7 1.8 1.9

!found performance 2.0 2.0 2.0 2.0

Table 4: BSS and sequential search above medium data size
results

2^ data size 12 13 14

data size 4096 8192 16384

2^ keys 9 10 11

keys 512 1024 2048

seq found/compares 1,032,530 4,261,386 17,252,084

bss found/compares 565,598 2,262,795 8,775,585

seq ! found/compares 2,096,640 8,387,584 33,552,384

bss ! found/compares 1,048,328 4,193,799 16,776,200

FOUND TIME 0.55 0.53 0.51

!FOUND TIME 0.50 0.50 0.50

found performance 1.8 1.9 2.0

!found performance 2.0 2.0 2.0

Table 5: BSS and sequential search large data size results

2^ data size 15 16 17

data size 32768 65536 131072

2^ keys 12 13 14

Keys 4096 8192 16384

seq
found/compares

67,368,857 267,854,212

1,067,384,476

bss
found/compares

34,189,460 135,939,450

538,662,587

seq !
found/compares

134,213,632 536,862,720

2,147,467,264

bss !
found/compares

67,106,824 268,431,363

1,073,733,633

FOUND TIME 0.51 0.51 0.50

!FOUND TIME 0.50 0.50 0.50

found performance 2.0 2.0 2.0

!found performance 2.0 2.0 2.0

Fig. 4. Comparisons count for both BSS and sequential search when key
exist.

Fig 5. Comparisons count for both BSS and sequential search when key
doesn’t exist.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

The performance in both cases, when key exists and
when it doesn’t exist is shown in figure 6.

Also in figure 6 BSS shows that the proposed technique

is twice the speed of sequential search in most cases.

Fig. 6. Speed performance of BSS over sequential search in both cases
when key exist and when key doesn’t exist.

IV. CONCLUSION

In this study we proposed a novel searching algorithm

that is based on logic instructions, masked formation, and
sequential search. Comparison for equality of two identifiers
has classic syntax:
Key Identifier1 == test identifier
Key Identifier2 == test identifier

For mask formation and logic gates we combine two
keys:
Combined identifier = identifier 1 or identifier 2
And then one comparison is done between combined
identifier and searching identfier3.
Masked formation and logic gates comparison way is not
used mostly, because of its nondeterministic equality, but it
is a good way to skip the non-candidates which is the reason
of using it in this research.

Although BSS does two comparisons after finding
candidates in some cases while sequential search has no
candidates comparisons and find equality directly with
classic comparison, but BSS is faster, because it can ignore
all cases that doesn’t belong to candidate set, by one
comparison for finding candidate of two keys at the same
time, while classic sequential search do two comparisons.
BSS is more applicable than sequential search and if we
only compare running time for two keys; BSS is ∑sipi
where sequential search is 2∑sipi, where si is the size of
data and pi is the size of keys we want to find. In the future
work we will try to discuss multi-key version of BSS, also a
paralleled version will be a good idea to see and compare
the performance of BSS on parallel.

ACKNOWLEDGMENT

Thanks to my dad’s soul for the knowledge he gave to
me, my mom for giving me much care, my family for love,
and all references for their valuable works that helped me to
do this paper.

REFERENCES

[1] D. E. Knuth. The Art of Computer Programming: Sorting and

Searching, volume 3. Addison-Wesley,Reading, Mass., 3rd edition,
1998.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. McGraw-Hill, 2nd edition,
2001.

[3] Andrew C. Yao. Should tables be sorted? J. Assoc. Comput. Mach.,
31:245–281, 1984.13

[4] Lila Kaghazian, Dennis McLeod, Reza Sadri, Scalable complex
patern search in sequential data,Acm, 2008

[5] Edleno Silva de Moura , Gonzalo Navarro , Nivio Ziviani , Ricardo
Baeza-Yates, Fast and flexible word searching on compressed text,
ACM Transactions on Information Systems (TOIS), v.18 n.2, p.113-
139, April 2000

[6] M. H. Alsuwaiyel. A random algorithm for multiselection. Discrete
Mathematics and Applications,16(2):175–180, 2006.

[7] G. Franceschini and R. Grossi. No sorting? better searching! In
Proceedings of the IEEE Symposium on Foundations of Computer
Science, 2004.

[8] Haboush, A. and S. Qawasmeh, 2011. Parallel sequential searching
algorithm for unsorted array. Res. J. Applied Sci., 6: 70-75. 2011

[9] J. F. Sibeyn. External selection. Journal of Algorithms, 58:104–117,
2006.

[10] Udi Manber and Gene Myers. Suffix arrays: A new method for on-
line string searches. SIAM, Journal on Computing, 22(5):935–948,
October 1993.

[11] J. Ian Munro and Hendra Suwanda. Implicit data structures for fast
search and update. Journal of Computer and System Sciences,
21(2):236–250, 1980.

[12] John H. Reynolds, Using bit manipulation to reduce sequential search
times, Journal of Computing Sciences in Colleges, v.17 n.2, p.263-
270, December 2001

[13] M.Morris Mano , computer system architecture (3rd ed.) , Prentice –
Hall , Inc . ,Upper Saddle River , NJ , 2002 .

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

