
Secure Information Sharing
in Mixed–Criticality Systems

Armin Wasicek, Thomas Mair

Abstract—In this paper we discuss the application of integrity
models in a mixed–criticality system to enable the secure shar-
ing of information. The sharing of resources and information
enables cost savings. It is the main driving factor in integrated
architectures which are used to implement mixed–criticality
real-time systems. The major challenge of these systems is
simple: low criticality applications must be prevented from
interfering with high criticality ones which execute in the
same system. An example for such an integrated architecture
is the the ACROSS MPSoC architecture which facilitates the
implementation of hard real–time systems. We present an
integrity model for the secure exchange of information between
different levels of criticality within ACROSS. Our approach is
based on Totel’s integrity model which proposes to upgrade
information from low to high by rigorously validating this
information. We use different anomaly detection algorithms
for these validation objects. Furthermore, we developed an
automotive case study for the hardware–in–the–loop simulation
of ABS and odometer subsystems in order to provide a proof–
of–concept implementation and to evaluate these algorithms
within an automotive case study. We were able to show that the
encapsulation mechanisms of the ACROSS architecture support
the implementation of the proposed integrity model. Moreover,
all of the selected anomaly detection algorithms validate the
information flow correctly with respect to the defined integrity
model. For some of these algorithms, we are able to propose
tuning parameters. Summarizing, we are able to show that
the secure sharing of information is feasible in a mixed–
criticality system. Integrating several subsystems in a single
Multi–Processor System–on–a–Chip (MPSoC) not only reduces
the number of required hardware units but also enables new
ways to implement services.

Index Terms—Mixed–criticality, security, MPSoC, Totel’s
integrity model

I. INTRODUCTION

Mixed–criticality systems integrate applications with dif-
ferent levels of safety and security in a single computer
system. The challenge in mixed–criticality systems is to
prevent faults and intrusions that propagate from applications
with lower criticality levels to applications having a higher
criticality level. Therefore, low criticality applications are
usually prohibited from communicating to ones having a
higher criticality. The rules defining these communication
flows are called integrity models and they guarantee a proper
way of communication in the safety and security domains.

One solution is to build all software at the highest critical-
ity level. This does not only increase complexity, but system
development also becomes very expensive. For example, a
high criticality application might want to read a sensor. Using
sensors with the same (high) criticality level will most likely
cause a higher cost than using sensors with a lower criticality
level. Methods have to be researched to facilitate the safe and

Manuscript received June 21, 2012; revised July 22, 2012.
The authors are with the Institute for Computer Engineering, Vienna

University of Technology, Austria (e-mail: armin.wasicek@tuwien.ac.at).

secure sharing of information between criticality levels and
to enable the simple and cost–efficient implementation of a
mixed–criticality system.

In real–time systems, upgrading data from lower level to
be usable in higher levels requires maintaining consistency
in time and space between different data sets.

The research on the theoretic background of integrity
models reaches back to the seventies. Models like Bell–
LaPadula and Biba are taught in undergraduate security
courses. These models define rules how information may be
exchanged between criticality levels. However, in many cases
these rules are too restrictive. A more recent model is Totel’s
model, which provides a formal foundation to enable a more
flexible information sharing.

Our approach encompasses the specification and the im-
plementation of a secure information sharing system based
on Totel’s model. We explicitly address real–time constraints
by building on the ACROSS architecture which implements
a time–triggered System–on–a–Chip (SoC) for application
in real–time systems. Our main contributions center around
the design of a Validation Middleware to check and upgrade
information:

• Implementation of a secure information sharing system
within the context of the ACROSS MPSoC architecture

• Analysis of different anomaly detection algorithms em-
ployed to recognize modifications and voting strategies
to upgrade information

• Evaluation of the system in a vehicular simulator
The remainder of the paper is organized as follows: The

next Section II introduces the basic concepts and summarizes
the related work. In Section III, we introduce the theoretical
background, and in Section IV we specify the validation
middleware for the secure upgrade of information. Next,
we describe our case study in Section V and the evaluation
in the vehicle simulator in Section VI. Finally, we draw a
conclusion in Section VII.

II. BASIC CONCEPTS AND RELATED WORK

A. Replica Determinism and Voting

In a deterministic computer system, it is possible to predict
a future state given its initial state and all timed future
inputs. We call a system replica deterministic, if it can be
guaranteed by design that all correctly operating replicated
components will visit the same states at about the same time,
i.e., they will take the same decisions at all major decision
points [1]. Two replica–deterministic components (i.e., repli-
cas) will produce the same service (i.e., intended behavior
[2]) within some defined temporal bounds. A difference in
the behavior of two replicas can be used an input for the
fault detection in an active redundancy scheme. Basically,

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

TimeTriggered NetworkonChip

TISS

Trusted
Resource
Manager

(TRM)
TISS TISS

IO
Component

TISS

Application
1

TISS

Application
2

TISS

Application
3

TISS

Application
4

.... Trusted Subsystem (TSS) Component Host Applications

Diagnostic
Service

Mass
Storage
Service

Fig. 1. Basic Layout of the ACROSS MPSoC

we distinguish between two classes of voting strategies for
error detection between replicas:

• Exact Voting performs a bit–wise comparison of the bit
patterns of its inputs

• Inexact Voting techniques introduce thresholds to deter-
mine approximate equivalence of results

B. The ACROSS MPSoC Architecture
The ACROSS architecture is the realization of a MPSoC

architecture for heterogeneous application cores that provides
a deterministic on–chip communication. It targets applica-
tions across different domains (e.g., avionics, automotive,
industrial). Its particular benefits for application designers
encompass fault isolation at the level of application cores,
system–wide global time base to coordinate activities in
the distributed system, and a temporal firewall interface to
decouple computation from communication.

1) Basic Architectural Elements: The basic architectural
elements of an ACROSS MPSoC [3] are depicted in Fig-
ure 1. Components are connected through a Time-triggered
Network–on–a–Chip (TTNoC). A component is considered
to be a self-contained computational element with its own
hardware (processor, memory, communication interface, and
interface to the physical environment) and software (applica-
tion programs, operating system), which interacts with other
components by exchanging messages. The TTNoC transmits
messages according to an a–priori defined time–triggered
schedule. The Trusted Interface Subsystems (TISSs) are the
interaction points between the TTNoC and a component.
The endpoints inside the TISS are called ports. Every TISS
can have multiple input and output ports, but can not send
or receive simultaneously. The Trusted Resource Manager
(TRM) is a dedicated system component that manages the
ports and routes on the TTNoC.

A job is a constituting element of a Distributed Application
Subsystem (DAS) and forms the basic unit of computation. It
interacts with other jobs through the exchange of messages.
A DAS is a nearly independent distributed subsystem of
a large distributed real-time system that provides a well–
specified application service (e.g., a power-train system or a
multimedia system) [4]. Jobs are allocated to components.

2) Security through Encapsulation: An encapsulated
communication channel is an unidirectional data channel
which transports messages at pre–defined points in time.
The encapsulation mechanisms prevent temporal and spatial
interference between different components. For instance,
delaying or overwriting a message is not possible.

In an ACROSS MPSoC, encapsulated communication
channels are established between TISSs through the time–
triggered message transfer of the TTNoC. TTNoC accesses
are arbitrated between different components through a Time–
Division Multiple Access (TDMA) scheme. Every compo-
nent implements its own local memory. Because no com-
ponent can neither directly interfere with communication
(e.g., by deliberately sending messages at certain instants),
nor change a channel’s configuration (these are exclusively
managed by the TRM), an ACROSS MPSoC implements
segregation in the temporal and spatial domain.

The encapsulation mechanism of the ACROSS MPSoC are
not only beneficial to enforce its dependability properties, but
also to efficiently implement security mechanisms. The paper
in [5] discusses the capabilities of the ACROSS architecture
to fulfill the basic requirements of a Multiple Indepen-
dent Levels of Security (MILS) system [6]. The Trusted
Subsystem (TSS) of the ACROSS architecture encompasses
TTNoC, TISS, TRM and implements a Separation Kernel
that isolates processes in separate partitions (components).

C. Totel’s Integrity Model
Integrity models have been used for a long time in

computer systems. Historically relevant integrity models are
the Bell–LaPadula model for confidentiality [7] and the Biba
model for integrity [8]. It is common to most integrity
models to vertically subdivide a system into integrity levels
I that are related with a partial order relation (≤). The sys-
tem designer assigns the tasks, applications, or subsystems
(i.e., objects O) to a particular integrity level. Formally, the
function il : O → I associates an integrity level to the
system’s components. The integrity model then defines how
the components (e.g., subjects and objects) may interact. For
instance, the Biba model defines that a subject should not be
allowed to read an object of a higher integrity level (no write
up), and to not read one of a lower level (no read down).

Totel’s model [9] is a more recent development related
to the Biba model. Contrary to Biba, where subjects access
objects, Totel’s model has only one kind of entities called
objects. These objects provide services that can be requested
by a client. Each object is classified within a particular
integrity level that indicates to what degree it can be trusted
and what its dependability requirements are. If an object
creates a message, this message inherits its creator’s integrity
level. On the reception of a message, rules are applied to
check if this message is valid or not.

The concept of a Validation Object (VO) is central to
Totel’s model. A VO takes low level inputs and runs fault
tolerance mechanisms to produce high integrity outputs [9].
It reflects the circumstance that information flows that would
be normally regarded as illegal, are needed for a flexible
application design. The solution that Totel’s integrity model
advocates is to increase the trustability of the information
contained in lower level objects to make the information use-
able at higher levels without corrupting higher level objects.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

The fault-tolerance mechanisms to implement this upgrading
are strongly application–dependent. In this paper, we present
a case study to highlight one promising application of VOs
in an automotive context.

The paper in [10] applies Totel’s model in an avionics
context. It serves as a model and a motivation for our work.
Our work differs from [10] in following points:

• We consider input of sensor values rather than human
input to a validation object

• The collected sensor data has real–time constraints
• Our communication system provides replica determin-

ism and hence simplifies voting
• This work’s context is automotive rather than avionics

systems

III. SECURE INFORMATION SHARING SUBSYSTEM

In this section we describe how to enable the secure
sharing of information between different levels of criticality
within an ACROSS MPSoC.

A. Definitions and Notations

We define our integrity model as a tuple 〈J,C,M, I, il〉 :
• a set J of jobs
• a set C of components of an MPSoC
• a set M of messages on the TTNoC
• an ordered set I of integrity levels, with a partial order

relation (≤) between its elements
• il : C → I , an association of a component to an

integrity level
In addition, we will use these two functions:

• val :M →M ∪ {ε}, a validation function
• cr : M → C, an association between messages and

their creating components

B. The ACROSS Integrity Model

The instantiation of an ACROSS MPSoC provides a basic
platform to implement a multi–level secure system with
different levels of criticality. The TSS of the ACROSS
MPSoC acts as Trusted Computing Base (TCB) to encapsu-
late communication flows and to segregate criticality levels
and components. The encapsulation within the architecture
is achieved by strictly assigning one job to one component.
Integrity levels are per definition assigned to components.

Rule 1: One job is assigned to exactly one component:
∃!j ∈ J,∃!c ∈ C, j → c

The Unidirectionality property of an encapsulated commu-
nication channel is essential to implement Biba’s rules:

Rule 2: Information flow is allowed only between com-
ponents on the same or to a lower criticality level:
∀(c1, c2) ∈ C × C, c1 send c2 ⇒ il(c1) ≥ il(c2)

Figure 2 depicts an example instantiation of the ACROSS
integrity model. Each component on the MPSoC is assigned
a desired integrity level. Next, each job is allocated to a
component (rule 1). The arrows represent the encapsulated
communication channels connecting the components (using
rule 2). They all pass through the TSS. If a communication

JOB 1a Level 1

Level 2

Level 3

Level 4Validation
Middleware

TRM

Encapsulated
Communication

Channels
Job 4 sends to job 3

Job 3
sends to
job 3

Job 2 sends to jobs 1a/b

VaM sends to job 4

Jobs 1 a/b send to VaM

Job 5 sends to job 4

JOB 2

JOB 3

JOB 4 JOB 5

… Component

TSS

JOB 1b

… Job … Encapsulated Com. Channel

Fig. 2. The Integrity Model for ACROSS

path is required from a lower level component to a com-
ponent at a higher level, a Validation Middleware (VaM)
has to be placed within the receiving component. The VaM
upgrades the information from several sources by applying
a validation function.

Rule 3: Information flows from lower to higher integrity
levels must pass through a VaM:
Clowsendchigh ⇒
(a) il(ci) < il(chigh), ci ∈ Clow ⊆ C
(b) Min = {mi ∈ em(Clow)}
(c) Ms ⊆ Min|mi,mj ∈ Ms, |z(mi) − z(mj)| < δ,mi 6=

mj

(d) val(Ms) =Mv,∀mi ∈Mv,mi 6= ε

Note: Criterion (a) states that all incoming messages are
received within a guaranteed upper bound, i.e., they are
ordered within a specified time interval. Criteria (b) and (c)
postulate that each message origins by a different, diverse or
redundant sending component. Finally, criterion (d) requires
that validation functions are only applied to transmissions
from a lower level to a higher one.

C. Differences to Totel’s Model

Basically, the definition of the ACROSS integrity model
relies on the concepts of Totel’s model. Because Totel’s
model is thought to be used in a single processor system, it
has to be adapted for the use within an MPSoC architecture
like ACROSS.

1) No integrity kernel required: The original model re-
quires upward communication to pass through an integrity
kernel. Why? In ACROSS, all communication is passing
through the TSS which is considered to be a TCB. Moreover,
because all information flows are clearly defined and rigor-
ously checked at runtime by the TRM, there is no possibility
that a covert channel can exist.

2) No Multi Level Objects (MLOs) defined: In the
ACROSS integrity model, the concept of an MLO does not
fit into the system design. The encapsulation of architecture
enforces a strict assignment of one object to one component
and one integrity level. The architecture by itself cannot guar-
antee that concurrent invocations of an MLO within a single
component do not influence each other, because a component

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Validation Middleware
val: M' M→ Secure Object

confident
value r

.

.

.

.

c
1

c
2

c
n

component

Fig. 3. Detailed block diagram of Validation Middleware

is considered as an atomic unit. Accesses to the TISS ports
from within a component are not arbitrated by architectural
means. However, if additional segregation mechanisms are
implemented within a component (e.g., through a partitioning
operating system), concurrent access to the TISS can be me-
diated and MLOs can be supported.Therefore, the distinction
from Single Level Object (SLO) and MLO is not necessary.

3) No integrity checks required: The invocation model
of Totel assumes that object invocations are implemented
through message–passing. A message is on the same level of
integrity as its creator and carries a label indicating its level.
In ACROSS these labels are not required, because messages
can only be transmitted via encapsulated communication
channels. The rules of the ACROSS require that channels
are only established between objects on the same level.
These rules have to be applied at design time and the strict
adherence to these rules is enforced by the TRM.

4) No read–write rule: Each port in the TISS can be used
either for reading or for writing, but it is not possible to
perform both actions at the same time. Therefore, the read–
write rule from Totel’s model can be dropped in ACROSS.

IV. VALIDATION MIDDLWARE

This section explains how the previously proposed in-
tegrity model is used in combination with the ACROSS
architecture.

Each component is assigned a level of criticality. Jobs are
allocated to components and they produce messages that are
then transmitted over encapsulated communication channels
via the TSS. In case an upgrade of information between
criticality levels is required (shown in Figure 2 between
job1a/b and job 4), a VaM is inserted. The VaM gathers and
processes information from redundant and diverse sources to
produce the upgraded information.

A. Design of the Validation Middleware

Figure 3 depicts a VaM’s basic information flow which
provides N different and potentially diverse inputs, and a
single output r. The primary purpose of a VaM is to evaluate
the validation function val. In order to produce a meaningful
output the input channels need to be completely independent
from each other. An approach to achieve this independence
is called N-Version Programming (NVP) [11], which relies
on diverse (i.e., functionally equivalent programs that are
independently generated from the same initial specifications)
implementations.

The most common and intuitive way of comparing the
multiple inputs of a VaM is a majority voting algorithm, but
this creates some difficulties [12]. In some situations, the
inputs need to be compared and determined to be correct,
even if the input data differs. This raises the need for an

TABLE I
VALIDATION MIDDLEWARE ALGORITHM OVERVIEW

Complexity Time Space Ref.
kth Near. Neighbour w. ∆–Value O(n2) O(n) [13]
Probabilistic Boxplot Method O(n log(n)) O(n) [14]
Histogram Method O(n) O(n)
Single-Linkage Clustering O(n2) O(n2) [15]

inexact voter. Hence, inexact voting algorithms represent a
solution for the implementation of a VaM. The requirements
for these algorithms follow below.

B. Proposed Anomaly Detection Algorithms

The algorithms used to implement a VaM should be able
to detect errors and prevent wrong values from propagating
into the secure area of the application. The most important
requirement of a VaM is that it has to be certified at the same
integrity level as the application in the component itself.
Therefore, it is desirable to keep this middleware simple
and reusable. All algorithms should run online, possibly
without knowing anything from the previous run. This kind
of memory–less algorithms alleviate verification because the
number of possible outcomes of a set of input data is always
the same. The sources of data (i.e., sensors) often induce
noise or even omit a value. For this purpose, they should
provide filter mechanisms by preprocessing the input data.
The prevalent resource constraints in embedded systems
call for a light–weight approach with a low memory and
computation footprint.

We propose a set of four anomaly detection algorithms
that comply with these requirements. Table I summarizes
their time and space complexity properties. We present an
analysis of these algorithms in an automative environment
in Section VI.

V. AUTOMOTIVE CASE STUDY

In this section we present an automotive case study as
a proof–of–concept of the presented integrity model and to
evaluate different algorithms implementing the case study.

A. Relevant Automotive Subsystems

We choose two related car functions with mixed–criticality
requirements for safety and security for our case study:

1) Odometer Subsystem: An odometer computes and
stores the current mileage counter of a vehicle. In order to log
the distance covered by the car, the current speed needs to be
sampled and multiplied with the time elapsed since the last
measurement. The accumulated results of this computation is
the total distance traveled. This subsystem has a high security
requirement, because a vehicle’s resale value depends largely
on this value. Odometer fraud is the illegal practice of rolling
back odometers to make it appear as if vehicles have lower
mileage than they actually have [16].

2) ABS Subsystem: The second subsystem is an Anti–
Blocking System (ABS). The ABS prevents wheel lock–
up during heavy braking [17]. This system is introduced to
increase safety and to prevent the abrasion of the wheels. In
practice, the ABS controller detects the wheel lock-up as a

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

OdometerTRM ABS
Controller

ABS
Wheel2

ABS
Wheel1

ABS
Wheel3

1

4

1

Validity Middleware

Engine
Control

ABS
Wheel4

1 1

1 1

M

n Integrity Level (n) Trusted Subsystem (TSS) …. Components

TimeTriggered NetworkonaChip

Fig. 4. Allocation of automotive subsystems to ACROSS MPSoCs

sharp increase in wheel deceleration. In our case study, a four
channel, four sensor system is used, which has a speed sensor
on each wheel and separate valves to apply a brake force to
each wheel. The ABS controller computes an appropriate
brake force for each wheel, if this value is below a fixed
ABS slip limit. This new brake force value replaces the value
sensed from the brake pedal. Security requirements are not
common in ABSs.

3) Integration of subsystems: The traditional setup of a
car is to deploy the ABS and odometer subsystems in a
federated approach by physically disjoint systems. The ad-
vantage of such an approach is that the segregation between
subsystems is high. However, this comes at a high cost of
many redundant units. Integrated architectures like ACROSS
aim to deliver similar segregation properties present in a
federated system and simultaneously reduce size, weight,
power consumption of the hardware while reducing com-
plexity and increasing re-usability of the software [18]. The
benefits of integrated architectures are leveraged through
resource sharing. In this case study, we implement the ABS
and the odometer subsystems in a single ACROSS MPSoC.
Figure 4 depicts the mapping of the automotive subsystems
onto the chip. We speak of the resulting system as a mixed-
criticality system, because both subsystems have different
safety and security requirements. Besides the benefit of using
the same hardware infrastructure, both subsystems can share
the measured speed values. We design our system such that
the odometer subsystem uses the speed values of the ABS
and engine speed sensors.

B. Simulation Environment
We developed a hardware–in–the–loop system based on

the The Open Racing Car Simulator (TORCS)1 to evaluate
our concepts (see Figure 5). TORCS provides a realistic
physics environment, car models, race tracks, and an inter-
face to program robots, which are programs that steer the
vehicle.

The simulation environment is divided into two parts:
The car and the environmental simulations run on a stan-
dard PC. The car simulation communicates with an Field–
Programmable Gate Array (FPGA) that implements an

1http://torcs.sourceforge.net/

Receiver

Torcs (car simulation)

Shared
Memory

Fault
Injector

Host PC

Odo

Wheel2 Wheel3

ABS

FPGA

Serial 0
Serial 4

Serial 3
Serial 2

Serial 1

Wheel1

blank

Trusted
Subsystem

(TSS)

Wheel4

Engine

Fig. 5. Block diagram of simulation environment

Manipulate
odometer

Manipulate
input data

Cut
cables

Manipulate
message bus

Overwrite
message

Flood
bus

Destroy
bus

Tamper
registers

Manipulate
ABSCores

Modify
sensors

Change
program code

..... logical OR node..... Subtasks

..... logical AND node

Fig. 6. Attack model for the odometer subsystem

ACROSS MPSoC and executes the car’s ABS and odometer
subsystems. To establish a relatively simple connection from
the host PC to the FPGA, these two parts are connected
through five autonomous serial interfaces. The data exchange
between both parts is facilitated via a shared memory. A
repeater program on the PC polls the serial devices, checks
the data integrity and stores the data into the shared memory.
We used a Linux–based Dell Optiplex 755 for a PC and a
Altera Stratix IIITM Development Kit for the FPGA.

The Wheel[1..4] jobs implement speed sensors and brake
actuators. The Engine job implements the speed sensor of
the engine controller. They receive their sample values from
the environmental simulation via the serial line and forward
it to the ABS controller job and the odometer job via the TSS
according to the time–triggered schedule. The ABS controller
computes the actual brake force value and forwards that value
to the Wheel[1..4] jobs which again apply this brake force
by transmitting a brake force value to the car simulator. The
odometer job computes and stores the current mileage.

The update frequency of the car simulation is 22 ms.
The periodicity of the messages on the TTNoC is set to
15 milliseconds. This provides enough accuracy for the car
simulation run smoothly.

C. Odometer Attack Model

We use the attack tree method [19] to assess potential
attacks on the odometer task (see Figure 6). There are three
main parts of the odometer subsystem that are viable attack
targets:

1) Manipulate jobs: This can be achieved either by over-
writing the registers that hold the speed values of the
sensors, or by manipulating the program running on the
ABS components of the wheels (e.g., downloading a
modified version). This branch of the attack tree can be
prevented by software security mechanisms which are
out of scope of this paper.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

54 CHAPTER 6. ANALYSIS OF THE ALGORITHMS

engine value can be weighted more than the wheel sensors by introducing an emphasis of the
values.

The deviation of the sensor values is the main testing criteria of the anomaly detection algo-
rithms used in the VaM. The algorithms need to find a majority of speed values with a small
variance and eliminate possibly wrong or inaccurate values. The optimal behaviour of an algo-
rithm in this exemplary application is that it always finds a manipulated speed value, which tries
to increase or decrease the current value of a sensor and therefore changes the current mileage.
Secondly it should neglect values from wheels which are currently locked up or spinning, be-
cause the speed values from these wheels are of course not the true speed of the entire car.

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

time (s)

Sp
ee

d
(m

/s
)

Wheel 1
Wheel 2
Wheel 3
Wheel 4
Engine

Figure 6.1: All five speed values during one lap of a race

All algorithms produce a set of boolean values as an output. These values illustrate, if the
corresponding speed data sample is in the majority and therefore is used in the calculation. For
all five speed values one corresponding valid value is created. The last boolean value shows, if
the result as a whole forms a majority and is valid to be used in the ongoing calculation.

In the following sections a closer look at the behaviour of the different algorithms is taken.
Therefore they are tested with different parameters and under different circumstances. The most
important criteria is, that the algorithms are as application-independent as possible, to make this
approach reusable in many different fields and that an injected fault is always detected.

Fig. 7. All five speed values during one lap of a race

2) Manipulate communication system: This can be carried
out through a flooding attack to block the communi-
cation or to periodically overwrite messages to induce
wrong speed information. These attacks are prevented
by the encapsulation mechanisms of the architecture.

3) Manipulate input data: Five redundant and diverse sen-
sors are used to provide the current speed of the vehicle.
The simplest manipulation is to cut the cables which
connect the sensors with the communication system
(i.e., create a stuck–at–value). Another way is to tamper
with the measurement of the installed sensor. If the
odometer depends on a single sensor (as it is the state–
of–the–art), it is attackable. If the odometer depends on
five redundant and diverse sensors like in our case study,
its manipulation is hindered. If in addition, these sensors
are used in conjunction with the safety–critical part of
the system, an attacker has might be refrained from
tampering the sensor devices of the ABS subsystem.

D. Software–based fault injection

The simulation environment supports software–based fault
injection by modifying the contents of the shared memory.
The following faults can be simulated:

• The wheel sensor can be disabled, which simply freezes
the value at the last measured value.

• The current speed of a sensor can be set to a fixed level.
• The ABS subsystem can be enabled or disabled.
• A fault injection schedule containing the name of the

faulty sensor, the start- and end times and the modified
speed value can be defined. This schedule is executed
during runtime.

VI. EVALUATION

We use the simulation environment presented in the pre-
vious section to evaluate the proposed secure information
sharing system. We assume the rightmost branch (’Modify
Sensors’) of the attack tree, hence, an attacker is tampering
with the physical interface of a sensor. Figure 7 depicts the
evolution of a vehicle’s speed during a sample race.

The deviation of the speed sensor values is the main
testing criteria for the anomaly detection algorithms used in
the VaM. The algorithms need to find a majority of speed
values with a small variance and eliminate possibly wrong
or inaccurate values. The optimal behavior of an algorithm
is that it always finds a manipulated speed value, which
would increase or decrease the current value of a sensor
and therefore change the current mileage. Secondly it should
neglect values from wheels which are currently locked up

TABLE II
PERCENTAGE OF RESULTS DETERMINED AS VALID

no faults injected faults injected

kth Nearest Neighbor 93.58 % 88.49 %
Boxplot 99.96 % 99.98 %
Histogram 96.04 % 89.19 %
Singe-Linkage Clustering 100.00 % 100.00 %

or spinning, because these values would also influence the
computed mileage.

We conducted several experiments (with and without fault
injection) to study the proposed algorithms. Table II gives a
brief summary of the outcome of the experiment runs with
and without fault injection.

Failure or manipulation of wheel sensors is tolerable as
long as a majority of sensors is still correct. If a majority
of values is incorrect and not equal, the behavior of each
algorithm is different. The kth nearest neighbor method, the
probabilistic boxplot method and the histogram method find
no valid result and therefore reuse the last valid value. The
single-linkage clustering algorithm merges the values until
a majority is found, even if other algorithms would have
marked some values as wrong. Because of this, the clustering
algorithm always produces an output. The optimal solution
for dealing with a missing majority is different and depends
on the application. The duration during which no majority
is found can be very long and therefore the last valid value
would have to be reused for a long period. This could cause
a huge deviation and it can produce a wrong result.

If an algorithm always finds a solution it maybe has to use
values where the deviation from the real speed value is so
big that it influences the final result. Because the average of
all values in the majority set is used and since there are some
correct values in, the deviation of the end result is reduced
by the correct values in the majority.

The worst case of the whole fault scenario occurs when
wrong values happen to be the same and they form a
majority. Then the valid values are a minority and the faulty
values alone determine the result.

Looking at the exemplary automotive application with the
five speed sensors, two faulty sensors can be detected. The
main problem in this application is the breaking scenario,
where a huge deviation between the different speed values
can arise. This can occur when the wheels are locked-up
or spinning during a braking maneuver. If there are two
faults injected concurrently, both with a low brake force
value, and if the wheels are blocking and produce a low
value at the same time, the speed of the car can get nearly
zero even if it is still driving with a high speed. This kind
of scenario points out a possible problem which exists for
all four analyzed algorithms. A solution would be to use
another class of anomaly detection algorithms. For instance,
algorithms which are able to learn the optimal behavior for
every situation. As most of these algorithms require working
memory, they are difficult to certify and are therefore difficult
to deploy in safety–critical environments.

VII. CONCLUSION

In a mixed–criticality system with multiple security levels
the induction of faults in a secure component is detected
and prevented through the deployment of a VaM. The VaM is

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

used to upgrade the integrity of this information flow. There-
fore, the VaM needs diverse and redundant inputs to upgrade
the information. We propose to use inexact voting based
on anomaly detection algorithms which do not aggregate
values between subsequent executions. This is a particular
requirement to facilitate certification. However, in extreme
driving scenarios (e.g., braking), when all sensors show
different readings, these algorithms do not work accurately.

Most important, to realize the proposed secure information
sharing system, is the availability of diverse and redun-
dant inputs that are then used to upgrade information. A
particular strong point of our design is that we are able
to separate the execution platform configuration (including
the configuration of the integrity model) and the computa-
tion: platform configuration can be certified independently
from jobs. Summarizing, our integrity model to securely
exchange information between different criticality levels can
be efficiently implemented in an integrated architecture like
ACROSS. Certifiable anomaly detection algorithms which
actually perform the upgrade require further research.

ACKNOWLEDGMENT

This document is based on the ACROSS project in the
framework of the ARTEMIS program. The work has been
funded in part by the ARTEMIS Joint Undertaking and
National Funding Agencies of Austria, Germany, Italy and
France under the funding ID ARTEMIS-2009-1-100208. The
responsibility for the content rests with the authors. The
authors would like to thank Jean Arlat and Youssef Laarouchi
for the insightful discussions.

REFERENCES

[1] H. Kopetz, “Why time-triggered architectures will succeed in large
hard real-time systems,” in FTDCS, 1995, pp. 2–9.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing,” IEEE
Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
11–33, January 2004.

[3] C. El-Salloum, M. Elshuber, O. Höftberger, H. Isakovic, and A. Wa-
sicek, “The ACROSS MPSoC – A New Generation of Multi-Core
Processors designed for Safety-Critical Embedded Systems,” in Pro-
ceedings of the 15th Euromicro Conference on Digital Systems Design
(DSD), 2012.

[4] R. Obermaisser and H. Kopetz, Eds., GENESYS: A Candidate for
an ARTEMIS Cross-Domain Reference Architecture for Embedded
Systems. Süd dwestdeutscher Verlag für Hochschulschriften (SVH),
2009.

[5] A. Wasicek and C. E. Salloum, “A system–on–a–chip platform for
mixed–criticality applications,” in Proceedings of 13th IEEE Inter-
national Symposium on Object/component/service-oriented Real-time
distributed computing (ISORC), May. 2010.

[6] C. Boettcher, R. DeLong, J. Rushby, and W. Sifre, “The MILS
Component Integration Approach to Secure Information Sharing,” in
Proceedings of the 27th Digital Avionics Systems Conference (DASC).
IEEE/AIAA, October 2008.

[7] D. E. Bell and L. J. LaPadula, “Computer Security Model: Unified
Exposition And Multics Interpretation,” MITRE Corp., Bedford, Tech.
Rep., June 1975.

[8] K. J. Biba, “Integrity Considerations For Secure Computer Systems,”
Mitre Corporation, Tech. Rep., April 1977.

[9] E. Totel, J.-P. Blanquart, Y. Deswarte, and D. Powell, “Supporting
Multiple Levels of Criticality,” ESPRIT project 20716: GUARDS,
2000.

[10] Y. Laarouchi, Y. Deswarte, D. Powell, and J. Arlat, “Connecting
Commercial Computers to Avionics Systems,” 28th Digital Avionics
Systems Conference, pp. 6.D.1–(1–9), Dec. 2009.

[11] A. A. Avizienis, “The Methodology of N-Version Programming,”
Software Fault Tolerance edited by M. Lyu, John Wiley & Sons, pp.
23–46, 1995.

[12] P. R. Lorczak, A. K. Caglayan, and D. E. Eckhardt, “A Theoretical
Investigation of Generalized Voters for Redundant Systems,” Digest of
Papers FTCS-19:The Nineteenth International Symposium on Fault-
Tolerant Computing, pp. 444–450, 1989.

[13] E. M. Knorr, R. T. Ng, and Tukakov, “Distance-based Outliers:
Algorithms and Applications,” The VLDB Journal 8, pp. 237–253,
2000.

[14] R. Mcgill, J. W. Tukey, and W. A. Larsen, “Variations of Box Plots,”
The American Statistician, vol. 32, pp. 12–16, 1978.

[15] M. Matteucci, “Hierarchical clustering algorithms,” 2000, avail-
able at: http://home.dei.polimi.it/matteucc/Clustering/tutorial html/
hierarchical.html.

[16] “Preliminary report: The incidence rate of odometer fraud,” National
Highway Traffic Safety Administration (NHTSA), Tech. Rep. DOT
HS 809 441, 2002.

[17] D. Burton, A. Delaney, S. Newstead, D. Logan, and B. Fields,
“Effectiveness of ABS and Vehicle Stability Control Systems,” Royal
Automobile Club of Victoria (RACV) Ltd, Tech. Rep., April 2004.

[18] R. Obermaisser, C. El Salloum, B. Huber, and H. Kopetz, “From a
federated to an integrated automotive architecture,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 7, pp. 956 –965, july 2009.

[19] T. R. Ingoldsby and C. McLellan, “Creating secure systems through
attack tree modeling,” Amenaza Technologies Limited, 550, 1000, 8th
Ave SW, Calgary, AB, Canada, Tech. Rep., June 2003.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

