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Abstract—Recently, malware has become a major security
threat to computers. Responding to threats from malware re-
quires malware analysis and understanding malware behavior.
However, malware analyst cannot spend the time required to
analyze each instance of malware because unique variants of
malware emerge by the thousands every day. Dynamic analysis
is effective for understanding malware behavior within a short
time. The method of analysis to execute the malware and
observe its behavior using debugging and monitoring tools.
We are developing Alkanet, a malware analyzer that uses a
virtual machine monitor based on BitVisor. Alkanet can analyze
malware even if the malware applies anti-debugging techniques
to thwart analysis by dynamic analysis tools. In addition,
analysis overhead is reduced. Alkanet executes malware on
Windows XP, and traces system calls invoked by threads.
Therefore, the system can analyze malware that infects other
running processes, Also, the system call trace logs are obtained
in real time via a IEEE 1394 interface. Other programs can
readily examine the log and process the analysis results to
understand intentions of malware behavior. In this paper, we
describe the design and implementation of Alkanet. We confirm
that Alkanet analyzes malware behaviors, such as copying itself,
deleting itself, and creating new processes, We also confirm
that Alkanet accurately traces threads injected by malware into
other processes.

Index Terms—malware analysis, dynamic analysis, virtual
machine monitor, system call tracing.

I. INTRODUCTION

ECENTLY, malware has become a major security

threat on computers. According to a report released
by Symantec Corporation, more than 403 million unique
variants of malware were detected in 2011 [1]. This number
was an increase of 41% over the previous year. Responding
to this threat requires analysis and understanding of malware
behavior. However, malware analysis cannot spend a lot of
time on each malware because new variants emerge by the
thousands every day.

The first step of malware analysis is a dynamic analysis
to gain a understanding of the malware’s general behavior.
In this step, analysts execute the malware and observe its
behavior using debuggers and monitoring tools. The next step
targets only complicated or notable malware. In such cases,
analysts do a detailed dynamic analysis or static analysis
using disassemblers and debuggers to read the malware code.
Malware analysts need to form a summary of malware in
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a short time because new malware is constantly emerging.
Therefore, we focus attention on the first dynamic analysis.

Dynamic analysis differs from static analysis in that it is
not thwarted by techniques to interfere with program analysis
such as packing and obfuscation. So dynamic analysis can
provide summary reports of malware in a short time. How-
ever, recent malware has applied anti-debugging techniques
[2], [3]. When malware detect that it has been analyzed by
dynamic analysis tools, it may attempt to evade analysis or
tamper with the analysis tools. Traditional dynamic analysis
tools run using services provided by Windows to assist in
debugging. However, these tools and services do not run
stealthily, hidden from the program being debugged, because
their purpose is to debug legitimate software. Therefore,
malware can detect them easily. To analyze malware that
applies anti-debugging techniques, these techniques need to
be disabled one by one using a debugger or kernel-mode
driver. Alternatively, analysts should use other analysis tools
and not depend on general debugging assistant services.
However, it is very difficult to evade all anti-debugging
techniques. In addition, side effects to the environment in
which the malware is executed are increased by falsifications
needed to evade anti-debugging techniques, which cause
increased overhead and inaccurate analysis.

Analysts and researchers need to use dvnamic analysis to
reduce side effects to environments for executing malware.
Observing from outside the execution environment is an
effective method of reducing the side effects. Some dynamic
analysis system implementations have been based on virtual
machine monitors (a.k.a. VMM) or emulators. VMMs and
emulators run under a higher privilege level than the operat-
ing systems in virtual machines, which can observe all user-
mode processes and the operating system in a virtual machine
transparently. However, emulating the whole environment by
software alone incurs a huge processing overhead. In addi-
tion, malware can detect general VMM easily. The reason
is that general VMM emulates specific hardware and has
communication interfaces with the guest operating system.

Consideration of the targets of analysis reveals another
problem. Recently, more and more malware has the capabil-
ity of spreading outside the range of a single process. The
purposes of such spreading behavior is to conceal activities
and to make analysis difficult. Sophisticated malware injects
malicious codes and threads into other processes. Existing
dynamic analysis systems cannot trace malicious threads
injected into legitimate processes because these systems
distinguish the current executing task by process level.

It is also necessary to give consideration to granularity of
analysis. Instruction level analysis can analyze particularly.
However, it causes too much overhead and it is hard to
interpret the intentions of malware behavior. An API trace
that records Windows API functions called by malware gives
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abstract and useful information, and can be obtained in a
short time. There is the possibility that the malware alters
user-mode memory space to evade tracing. However, mal-
ware needs to invoke system calls to affect to the environment
when it is running on user-mode. Therefore, system call
tracing is an effective method for malware analysis.

We are developing the system a dynamic analysis system
to meet the following requirements, based on the above-
mentioned reasons.

1) The system can analyze malware that applies anti-
debugging techniques.

2) The system can analyze malware that infects other
running processes.

3) The system traces system calls invoked by malware.

4) The analysis method is one that mitigate analysis
overhead.

To meet these requirements, we are developing Alkanet,
a malware analyzer using a VMM. The remainder of this
paper is organized as follows. Section II gives an overview
of Alkanet. Section 11T details our system call tracing method.
Section IV presents malware analysis results and other con-
siderations of using Alkanet. Section V describes our future
works. Section VI summarizes the related works. Finally,
Section VII gives the conclusions of this paper.

II. OVERVIEW OF ALKANET
A. Outline

Alkanet is a dynamic analysis system for malware analysis
using VMM. Malware analyzers implemented in VMM can
analyze with a higher privilege level than malware. So many
anti-debugging technigues would be ineffective for Alkanet.
Alkanet can observe running malware without the malware
interfering.

From two viewpoints, API level tracing is better suited for
analyzing malware within a short time than instruction level
analysis. One viewpoint is the ease of understanding inten-
tion of a behavior. The other is analysis overhead. In addition,
malware running in user mode needs to invoke system calls
to affect the environment. Therefore, Alkanet traces system
calls invoked by malware and analyzes malware behaviors.

Achievement of system call tracing requires hooking every
system call invoked by malware and getting the arguments
and return value. In addition, the tracing requires analysis of
the meaning of the arguments and return value to get detailed
information of system calls invoked. However, a VMM
cammot get abstract information on the operating system
level. A VMM cannot call the API provided by operating
system. The reason is that the VMM runs outside of the
guest operating system. Many existing dynamic analysis
systems using a VMM or emulator resolve this problem by
receiving internal information from their agent processes or
drivers running in Windows. However, this solution carries
the risk that malware detects or tampers with the agent
and the communication interfaces. A VMM or emulator
can conceal or protect the agent and the communication
interfaces from malware. These efforts cause an increase
in analysis overhead. Our approach to the problem is that
Alkanet itself refers to a memory region of Windows and
obtains detailed information of Windows. VMM can access
all memory regions of the virtval machine containing the
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Fig. 1. Construction of Alkanet

operating system because VMM runs at a higher privilege
level than the guest operating system.

Malware behaviors can be analyzed from the system call
trace logs. However, the system call tracer in Alkanet records
a high volume of logs in cases where the target of analysis is
large-scale or sophisticated malware. For these reasons, our
system extracts a summary of malware behavior from further
analysis of the system call trace logs.

B. Construction

Figure 1 presents the construction of Alkanet. Alkanet is
implemented based on BitVisor [4]. BitVisor runs directly on
the hardware and does not require a host operating system,
and instead runs on processors with Intel Virtualization
Technology (ak.a. Intel VT). Intel VT assists virtualization
by VMM. Therefore, BitVisor runs faster than emulators
and VMMs implemented in software only. BitVisor can run
Windows without requirement of modifications. In addition,
BitVisor adopts the parapass-through architecture and does
not emulate specific hardware. BitVisor provides the physical
hardware for a guest operating system. Therefore, malware
cannot detect BitVisor by characteristics of hardware, unlike
emulators and VMMs that emulate specific hardware. Fur-
thermore, Alkanet adopts Windows XP 32bit edition as its
guest operating system. Alkanet executes malware in this
environment. Alkanet hooks invoked system calls in this
environment and records the number of system calls, their
arguments, return values, and so on.

Anocther machine obtains the system call trace logs via
IEEE 1394 interface. IEEE 1394 has direct read and write
access to the physical memory of connected devices. This
direct access allows the tracing logs to be obtained without
the malware detecting or interfering. Other programs can
readily examine the log and process the analysis results to
understand intentions of malware behavior.

C. Observed System Calls and Getting Information

Table I gives an example of behaviors and system calls
that Alkanet observes. Typical malware functions consist of
these system calls. The specific operations observed are as
follows.

« File operations: open, create, delete, read, and write

» Registry operations: open key, create key, query value,

and set value

» Network operations: send and receive
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TABLE 1
SYSTEM CALLS OBSERVED BY ALKANET

Behaviors

Examples of System Calls

File operations

Registry operations

Network operations

Process creations and terminations
Driver loads and unloads

Code injection to other processes

NtCreateFile, NtReadFile, NtWriteFile
NtCreateKey, NtQueryValueKey, NtSetValueKey
NtDeviceloControlFile, NtReadFile, NtWriteFile
NtCreateProcessEx, NtTerminateProcass
NtLoadDriver, NtUnloadDriver

NtCreateThread, NtWriteVirtualMemory

&
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o
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Fig. 2. Flow of System Call Hooking

« Process creations and terminations
« Driver loads and unloads
s Code injection to other processes

We have to distinguish a system call invoker by means
of thread level because the execution unit in Windows is a
thread. In addition, there are malicious threads in legitimate
processes by code injection. Therefore, to distinguish a sys-
tem call invoker, Alkanet obtaing the Cid {pair that includes
process id and thread id) and image name. In addition, it
obtains system call arguments and return value in order to
analyze malware behaviors. However, raw arguments and
return value lack enough information for analysis because
they consist of pointers and Windows-specific data structures.
Therefore, the necessary information for analysis is obtained
by interpreting these data structures. In the process described
above, Alkanet obtains the following information.

» System call invoker’s Cid and image name

+ System call number

s System call arguments and return value

s Complementary information for Windows specific data
structures

IIT. SYSTEM CALL TRACING
A, System Call Hooking

A system call in Windows XP 32bit edition usually uses
the sysenter and sysexit instructions. Sysenter enters from
user mode to kernel mode. Sysexit returns from kernel mode
to user mode. To get inputs given to system calls and their
results, Alkanet hooks both sysenter and sysexit.
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Figure 2 presents the flow of system call hooking by
Alkanet. The following steps detail the flow.

1) Malware invokes a system call.

2) At the entry point of kernel-mode, transition from
Windows to Alkanet occurs by a breakpoint.

3) Alkanet gets the necessary information.

4) Alkanet returns control to Windows.

5) Windows executes kernel functions.

6) At the exit point of kernel-mode, transition from Win-
dows to Alkanet occurs by breakpoint again.

7) Alkanet gets the necessary information containing sys-
tem call results.

8) Alkanet returns control to Windows.

9) Windows returns control to malware.

Alkanet uses hardware breakpoints to hook system calls.
Alkanet sets breakpoints on entry point of KiFastCallEn-
try and exit point of KiSystemCallExit2. KiFastCallEntry
is sysenter destination. KiSystemCallExit? contains sysexit.
These symbols are public by Microsoft [5]. We can get
address of these symbols. Some anti-debugging techniques
applied by malware detect hardware breakpoints. Counter-
ing such techniques requires concealment of the hardware
breakpoints used by Alkanet. A VMM running on Intel VT
can catch events tine which a guest operating system has
modified debug registers. So Alkanet can conceal hardware
breakpoints with a low overhead.

A system call consists a pair of sysenter and sysexit calls.
We need to associate these logs. However, this does not mean
that these logs are always consecutive. Therefore, Alkanet
hooks each point individually. In log analysis phase, our
system associates these logs using information of the system
call number and invoker.

B. Identifving Invoked Sysiem Call

When a system call is invoked, Windows sets the sys-
tem call number in the EAX register. Alkanet can get the
system call number from the EAX register when hooking
sysenter. On the other hand, the value of the EAX register
has already been changed when hooking sysexit. System
calls are invoked via stubs implemented in ntdll.dll. These
stubs each have the same name symbol as their library
function. For example, NtCreateFile system call is invoked
via NtCreateFile function of ntdll.dll. Therefore, Alkanet can
identify invoked system call by the return address pushed on
the stack.

C. ldeniifying Invoker Process and Thread

When Alkanet hooks a system call invoked on Windows,
Alkanet gets information of the process that invoked the
system call. Windows has data structures of each processor

WCECS 2012



NTSTATUS MNtCreateFile|

_out PHANDLE FileHandle,
_in LCCESS_MRSK Desiredbccess,
_in POBJECT ATTRIBUTES CbhjectAttributes,
__out PIO_STATUS_BLOCK IoStatusBlock,
__in_opt PLARGE_INTEGER AllocationSize,
_in ULONG FileAttributes,
__In ULONG Sharelccess,
_in ULONG CreateDisposition,
_in ULCONG CreateOptions,
_in PVOID EaBuffer,
_in ULCMNG Ealength
)i
Fig. 3. Declaration of NtCreateFile [6]

state, called Processor Control Region (ak.a. PCR) and
Processor Control Block (a.k.a. PRCB). These data structures
map on to the FS segment of each processor. The Windows
kernel and hardware abstraction layer use these data struc-
tures. PCR and PRCB have the address of the thread object
running currently. Therefore, Alkanet can get information of
invoking process from the thread object referred by these
data structures.

A thread object on Windows has pair of process id and
thread id, called Cid. Each thread object has also pointer to
the process object the thread belongs to. The process object
has the image name of the process. Therefore, Alkanet can
get the Cid and image name of the process from the thread
object and the process object.

D. Gering Rerurn Value and Arguments

Windows APIs store return value to the EAX register and
store arguments to the stack. Alkanet gets the return value
from the EAX register and gets arguments from the stack.
System calls in Windows save the value of the ESP register
at the time to the EDX register to give the top of the stack
in user mode to the Windows kernel. The sysexit instruction
loads the value of the HCX register into the ESP register.
Alkanet gets the top of the stack in user-mode from the EDX
register when hooking sysenter and gets it from the ECX
register when hooking sysexit.

Raw arguments and return values lack information to an-
alyze because they consist of pointers and Windows specific
data structures. Alkanet supplies the required information to
analysis by referring to the memory region of Windows and
interpreting these data structures. For example, NtCreateFile
is a system call to create or open a file. Figure 3 shows the
NtCreateFile declaration. We need to understand which files
malware opened or created. Thus, it is necessary to get the
file path that is passed to NtCreateFile. The third argument
of NtCreateFile is a pointer to an OBJECT ATTRIBUTES
structure. The OBJIECT ATTRIBUTES structure is used to
set attributes of a Windows internal object. The structure con-
tains the UNICODE_STRING type field, called ObjectName.
In the case of NtCreateFile, the field is a unicode string for
the file path. The third argument is read only, indicated by
the argument annotation ___in [7]. Therefore, Alkanet gets
the arguments in both hooks.

Obtaining more detailed information about the the file
requires referring to the corresponding file object. Windows
manages resources (files, registries, processes, etc.) as ob-
jects. Each user-mode process has a handle table to manage
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objects opened by the process. A user-mode process interacts
with resources using the handle corresponding to the object.
In the case of NtCreateFile, the first argument is a pointer to
a variable to receive a handle corresponding to the created or
opened file object. The file object contains information about
the file. For example, the object has a UNICODE STRING
type field that has the file path, called FileName. Alkanet
refers to the memory region of Windows and gets detailed
information of objects when the need arises. However, in
the NitCreateFile case, the first argument is annotated with
__out.  out arguments are written into by Windows
kernel functions. Therefore, Alkanet gets these only when
sysexit hooking.

IV. EVALUATION
A. Analysis Targer Samples and Evaluation Methods

To confirm that Alkanet is effective for real malware anal-
ysis, we analyzed real malware samples using Alkanet. The
samples are actual instances of malware recorded in CCC
DATAset 2011 [8]. Here, we call the samples SdBot.exe,
Palevo.exe and Polipos.exe based on the names assigned by
some anti-virus software.

We executed these malware samples, traced invoked sys-
tem calls, and analyzed the logs. We checked the validity
of our analysis results by comparison with reports on the
malware by anti-virus vendors. In this regard, however, there
are large number of variants for the each of the malware and
the variants differ from each other in the details. The two
malware samples are not necessarily the same instance even
if they have been detected as the same name by anti-virus
software. It is hard to fully match the malware behaviors
actually observed to reports by anti-virus vendors. Therefore,
we evaluated whether our system could observe malware
behavior characteristics in common with reports from several
anti-virus vendors. In addition, we also confirmed whether
there are variants of the malware that exhibit minor behaviors
observed by Alkanet.

In this evaluation, we did not connect our system to
networks. The reason is that Alkanet does not filter any
network activity in its current implementation. We must
prevent the malware being analyzed from performing actual
attacks against real computers and servers.

B. SdBot

Figure 4-7 presents a portion of the trace logs for Sd-
Bot.exe. The meaning of each item in the log entry is as
follows.

No. Consecutive number for this entry in the trace log

Time CPU time when this entry have been recorded

Cid Cid of system call invoker

Name Image name of system call invoker

Type Whether sysenter or sysexit entry

Ret  Return value {(only sysexit entry)

SNo. Number and name of invoked system call

Note Additional information such as about arguments

SdBot.exe ran as a process with process id 158. The
SdBot.exe process read file of itself (No. 1356, 1357), created
a file named ssms.exe in C: \WINDCWS\System32 folder
{(No. 4796, 4800) and wrote the file (No. 4806, 4807). This
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Mo, @ 1354 Time: 1697432035 Mios 3 8654 Time: 17004514656
cid : 158.544 Name : SdBot ,exe cid : 65c,2c0 Name : 55mMs , exe
Tvpe: sysanter Type: sysenter
SNo. : k7 (NtReadFile) SMNo. £7 (Nt SetValueKey)
Mote: oL AMy Documentsh SdBot. axe Mote: MREGISTRY Y . .  AWINDOWSHYCURRENTVERST ONYRUN
Mo, @ 1LEET Time: 1697432108 Mo. 8an7 Time: I70BAR2278
E1d 158.544 Name : SdBot ,exe cid : 65¢,2c0 Name : 55mMs ., exe
Type: sysexit Type: sysexit
Ret : 0 (STATUS_SUCCESS) Ret : 0 (STATUS_SUCCESS)
SNo. : k7 (NtReadFile) SNo., : £7 (Nt 3etValueKey)
Mote: LMy Documentsh SdBot . exe Mote: MREGISTRYY . . AWINDOWSHYCURRENTYVERS T OMNYRUN
Me 4 4794 Time: 1697697485 . . .
cid - 158,544 Naias SHEGE. exe Fig. 6. SdBot.exe: setting to start automatically when system is rebooted
Tvpe: sysanter
SNo, : 25 (NtCreateFile) No. 5350 Time: 1700652559
Note: N2 NCAWINDOWS \system32Y sams . exe cid : 65c.678 Name : SRR
Type: sysenter
No. : 4800 Time: 1697998049 SNo. : 25 (NtCreateFile)
cid : 158.544 Name: SdBot.exe Note: N2TASICE
Type: sysexit
Ret 0 (STATUS SUCCESS) No. : 9351 Time: 1700652627
SNo. @ 25 (NtCreateFile) ead 3 65c.678 Name: S5ms . exe
Note: WHINDOWS\system32\ ssms. exe Type: sysexit
Ret c0000034 (STATUS_OBJECT NAME NOT FOUND)
No. @ 4806 Time: 1697969212 SNo. : 25 (NtlreateFile)
Ciel 3 158.544 Name: SdBot .exe Note: N2TASICE
Tvpe: sysaenter
Mo, : 112 (NtWriteFile) No. 5414 Time: 1700746353
Note: \WINDOWS\aystem32h ssms. exe cid : 65c.678 Name : S5ms . eXe
Type: sysenter
No. : 4807 Time: 1697999802 SNo. : 25 (NtCreateFile)
cid 158.544 Name : gdBot . exe Note: L2 PAREGMON
Type: sysexit
Ret 0 (STATUS_SUCCESS) No. 9415 Time: 1700746367
SNo. : 112 (NtWriteFile) cid : 650 .678 Name: gams.exe
Note: WHINDOWS\ system32\ sems.exe Type: sysexit
Ret c0000034 (STATUS_OBJECT_MAME_NOT_FOUND)
SNo. : 25 (NtCreateFile)
Fig. 4. SdBot.exe: copying file of itself to system32 folder Note: Y 2 2 \REGMON
Ho. 8652 Time: 1700450001 Wo. 9414 Time: 1700761977
[l 65¢. 2c0 Name : s8ms . exe g = 55c.678 Name : ssms.exe
Type: sysenter Type: sysenter
SMo. 2 el (NtSetInformationFile) SHo. 2 25 (NtCreateFile)
Note: DELETE: \...\My Documents\SdBot.exe Note: Y2 ?AFILEMON
Mo, 8653 Time: 1700450168 Mo, 9417 Time: 1700762003
cid : 65¢c,2c0 Name: 55ms , exe cidl 3 65c.678 Name: 55mMs , exe
Type: sysexit Type: sysexit
Ret : 0 (STATUS_SUCCESS) Ret c0000034 (STATUS_OBJECT NAME NOT FOUND)
SNo. : a0 (NtSetInformationFile) SNo. : 25 (NtCreateFile)
Note: DELETE: \...\My Documents\SdBot.exe Note: 4?2 ?A\FILEMON
Fig. 5. SdBot.exe: deleting file of itself Fig. 7. SdBot.exe: scanning device files used by dynamic analysis tools

behavior is presented by Figure 4. After the behavior, the
SdBot.exe process executed ssms.exe. The ssms.exe process
deleted the original file of SdBot.exe (Figure 5).

We confirmed that the ssms.exe process sets specific
registry keys. Figure 6 shows that the ssms.exe process sets
the Run key. Applications registered with the Run key start
automatically when user logs onto the system. We confirmed
that ssms.exe was registered with that key.

The ssms.exe process scanned device files regularly used
by dynamic analysis tools. This behavior is one of general
anti-debugging techniques. Figure 7 presents some of the
recorded behaviors. Some dynamic analysis tools create
specific device files. Therefore, malware can detect the tools
by confirming the existence of specific device files. This
kind of anti-debugging technique is ineffective for Alkanet
because Alkanet does not create specific device files.

In addition, Alkanet confirmed the following malware
behaviors.

+ BExecuting cmd.exe and regedit.exe
» Creating and deleting temporary files
» Modifying settings of services and networks

Malware detected as SdBot by anti-virus software are
backdoor Trojans [9], [10]. They await commands by at-
tackers in internet relay chat (ak.a. IRC). Additionally, there
are many variants of SdBot. The infection method of SdBot
is that the malware copies a file of itself to the Windows
system folder. Each file copied then has a similar name to a
regular Windows execution file. SdBot sets the copied file in
Run key so that it will start automatically when the system
has restarted.

In this analysis, we conclude that our system successfully
analyzed the infection process of SdBot. It is because, as pre-
viously mentioned, our system could observe the behaviors
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Mo, @ 3945 Time: 161921464
cid : 534,538 Name : Palevo,exe
Tvpe: sysaenter

SNo. : 30 (NtCreateProcessEx)

Mote: Mo AMy DocumentahPalevo.exe

Mo, @ 3944 Time: 161922097
E1d 534,538 Name: Palevo,exe
Type: sysexit

Ret : 0 (BTATUS_SUCCESS)

SNo. : 30 (NtCreateProcessEx)

Note: PID: 53¢, ProcessName: Palevo.exa
Me 4 3971 Tk 161926922
Edd. 3 534,538 Name: Palevo,exe
Tvpe: sysanter

SNo., : 101 (NLTerminateProcess)

Note: PID: 534, ProcessName: Palevo.exa
Mo, @ 3972 Time: 161926935
cad. 534,538 Name: Palevo,exe
Type: sysexit

Ret : 0 (STATUS_SUCCESS)

SMNoO. 3 101 (NtTerminateProcess)

Note: PID: 534, ProcessName: Palevo.axe
Fig. 8. Palevo.exe: restarting itself

such as Sdbot.exe dropping ssms.exe in the system32 folder
and setting it in the Run key. It coincides with characteristics
of SdBot that name of the ssms.exe is similar name of a
Windows regular process, called smss.exe (Session Manager
Subsystem). In addition, we confirmed that SdBot.exe mod-
ified network settings. However, we could not analyze the
behaviors using IRC in detail because our analysis system
was not connected to the network.

C. Palevo

Figure 8-10 presents part of the trace logs for Palevo.exe.
Palevo.exe ran as a process with process id 534. Figure 8
presents a behavior in which the malware restarted itself
promptly. This behavior is an anti-debugging technique to
evade attaching debugger to. General debugger cammot be
attached to more than one process. Therefore, the malware
tried restarting itself and leaving behind debugger. The
technique is ineffective for Alkanet because Alkanet hooks
all invoked system calls and traces processes spawned by
malware.

Figure 9 presents a part of the behaviors by new Palevo.exe
process with process id 533c. The new process read file itself
{No. 3988, 3989) and wrote psyjo3.exe in recycle bin of non-
existent user (No. 4128, 4129). The behavior is copying file
of malware itself. The psyjo3.exe was registered to restart
when system would be restarted.

In addition, we confirmed that Palevo.exe infected to other
process. Figure 10 presents the behavior. Palevo.exe wrote to
memory space of explorer.exe (No. 4158, 4159) and created
a thread in the process (No. 4164, 4165). The purpose of the
behavior is to conceal its malicious thread in explorerexe
and conceal its main threats. Palevo.exe process itsell exited
shortly after the behavior. We confirmed suspicious behaviors
by the malicious thread in explorerexe. For example, the
malicious thread accessed network devices and set some
registry values managing applications associated with file
extensions.

Malware detected as Palevo by anti-virus software are bots
forming Mariposa botnet [11]. The behavior characteristics
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No. 3988 Time: 1614934677
cid : 53c.540 Name : Palevo.exe
Type: sysenter

SMNo. L7 (NtReadFile)

Mote: o.My DocumentshPalevo.exs
No. 3989 Time: 161434724
cid : 53c.540 Name : Palevo.exe
Type: sysexit

Ret 0 (STATUS_ SUCCESS)

SNo., : k7 (NtReadFile)

Mote: YL AMy DocumentshPalevo.exe
No. 4128 Time: 161459968
cid : 53c.540 Name: Palevo.exe
Typa: sysenter

BN 112 (NtWriteFile)

Mote: WEECYOTLER a1 =501 -00030 v vmayiod sone
No. 4129 Time: 161460277
gid 53c.540 Name : Palevo.exe
Type: sysexit

Ret : 0 (STATUS_ SUCCESS)

SHo. 112 (NtWriteFile)

Mote: SRECYCTERY 81 -0~ -02453 2\ payjodanis

Fig. 9. Palevo.exe: copy file of itself to recycle bin of non-existent user
Ho. 4158 Time: 161976728

i # 53c.540 Name : Palevo.exe
Type: sysenter

SHo. 2 115 (NtWriteVirtualMemory)

Note: PID: £8, ProcesslName: explorer.exse
Wo. 4159 Time: RiECRE S s

gl # 53c.540 Name : Palevo.exe
Type: sysexit

Ret : 0 (STATUS_SUCCESS)

SHo. @ 115 (NtWriteVirtualMemory)

Note: PID: £8, ProcessWlName: explorer.exe
Wo. 4164 Time: 1gTer e

g = 53c.540 Name : Palevo.exe
Type: sysenter

SHo. 2 35 (NtCreateThread)

Note: PID: £8, ProcessWName: explorer.exe
Mo, 4165 Time: 161977634

cidl 3 53c.540 Name: Palevo.exe
Type: sysexit

Ret : 0 (STATUS_SUCCESS)

SNo. : 35 (NtCreateThread)

Note: Cid: £8.544, Procesgslame: explorer.exe
Fig. 10. Palevo.exe: thread injection to explorer.exe

of Palevo contain dropping copies to user folders or system
folders. Some of variants drop copies to recycle bins [12],
[13]. The behavior characteristics also contain connecting
to remote servers by its malicious thread concealed in
explorerexe [12], [14]. In addition, there are also variants
containing the behaviors setting some registry values man-
aging applications associated with file extensions [14]. These
behaviors were observed in this our evaluation. Infection
methods of Palevo are way to use peer-to-peer networks or
removable medias. However, we could not confirmed the
behaviors in detail. It is because our system did not be
conrected to networks and removable medias in this our
evaluation.

D. Polipos

Figure 11, 12, 13 present a part of trace logs for Poli-
pos.exe. Figure 14, 15 present a part of results of log analysis.
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No. : 5786 Time: 677232506
cid : S5d4c, 6cc Name : Polipos.exe
Tvpe: sysaenter

SNo. : 30 (NtCreateProcessEx)

Mote: ML AMy DocumentahPolipos.oxe
No. 5787 Time: 677233114
E1d 54¢.6cc Name: Polipos.exe
Type: sysexit

Ret : 0 (STATUS SUCCESS)

SNo. : 30 (NtCreateProcessEx)

Note: PID: be, ProcessName: Polipos.exe
Fig. 11. Polipos: swanning process

No. 6339 Time: 685820849

[l bc.304 Name : Polipos.exe
Type: sysenter

SMo. 2 35 (NtCreateThread)

Note: PID: k0O, ProcessWName: explorer,exe
No. 6340 Time: 688820959

cid : bc.304 Name : Polipos.exe
Type: sysexit

Ret : 0 (STATUS_SUCCESS)

SNo. : 35 (NtCreateThread)

Note: Cid: k0.1e8, ProcessName: explorer.exe

Fig. 12, Polipos: thread injection to explorer.exe

Polipos.exe process ran as a process with process id 54c.
Figure 11 presents that the Polipos.exe process has spawned
new Polipos.exe process using NtCreateProcessEx. The new
Polipos.exe process ran as a process with process id be.

Figure 12 presents that Polipos.exe process with process
id be injected a thread to explorer.exe process using NiCre-
ateThread. The behavior is a kind of code injections. The
malicious thread in explorer.exe injected then ran with thread
id 1e8. The thread copied file of Polipos.exe, and tried to
conriect networks,

Figure 13 present that Polipos.exe process tried to inject a
thread to System process using NiCreateThread. However,
this NtCreateThread was failed because return value was
STATUS_INVALID _HANDLE.

Polipos.exe created threads info some other processes
such as svchostexe, service.exe, winlogon.exe, alg.exe,
rundll32.exe, sglservrexe and lIsass.exe. Figure 14 shows
thread tree. It generated by analyzing system call logs and
also by tracing threads that derived from other injected
threads. On the figure, the Polipos’s thread (Cid: 54c.1c8)
created new thread (Cid: 480.2¢4) into svchost.exe (process
id: 480). This thread (Cid: 480.2c4) created a new thread
(Cid: 480.22c¢). This thread (Cid: 480.22¢) created many
new threads whose Cids are 480.38c, 480.360, 480.720, and
480.24c.

According to the thread (Cid:480.720), code injection to
rundl32.exe was found. It has created new thread (Cid:
220.7f8). Alkanet could trace other derived threads from the
thread (Cid: 220.7{8). Similarly, we found that the malicious
thread on svchost.exe (Cid: 480.22¢) also injected threads
into other processes, such as explorer.exe and alg.exe. In this
way, Alkanet can trace threads injected to other processes and
derived from it also.

We focused attention on a Cid 480.41c thread. Figure
15 presents that the thread tried to open files such as
drwebase.vdb, avg.avi, vs.vsn, anti-vir.dat. We recognized
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MNo. : 6383 Time: 591816271
cid : bc. 304 Name : Polipos.exe
Type: sysenter

Fet : - (=)

SHo. 2 35 (NtCreateThread)

Note: PID: 4, ProcessName: System

Mo, 63384 Time: 6581816285
caldl bao. 304 Name : Polipos.exe
Type: sysexit

Ret : c0000008 (STATUS INVALID HANDLE)
SHo. 2 35 [NtCreateThread)

Note: PID: 4, ProcesgsName: System

Fig. 13. Polipos: thread injection to System

from return values that there were not these files. In addition,
other malicious threads tried to open these files. These files
are used by some anti-virus software. Therefore, the behavior
is a part of behavior deleting these files to prevent the
malware itself being detected by anti-virus software.
Malware detected as Polipos or Polip by anti-virus soft-
ware infect running processes [15], [16]. The malware infect
most of running processes and conceal existence of them.
In addition, the malware also have a behavior deleting
specific files of anti-virus software. We could confirmed
these behaviors from analysis results by Alkanet as previ-
ously mentioned. Infection methods of Polipos are way to
use Gnutella peer-to-peer networks. However, we could not
confirmed the behaviors in detail. It is because our system
did not be cornected to networks in this our evaluation.

V. FUTURE WORKS

The current implementation of Alkanet can trace malicious
threads injected into legitimate processes. However, there are
a multitude of ways beyond thread injection to infect other
running processes. For example, there are DLL injection and
using hook APIs provided by Windows, such as SetWindow-
sHookEx. Analyzing such behaviors requires more system
calls than those invoked by the malicious behaviors observed
by Alkanet. Tracing such behavior may require the analysis
of logs to extract system call sequences.

In addition, the current implementation of Alkanet cannot
satisfactorily analyze behaviors using network communica-
tions. In our tests, we must prevent the active malware being
analyzed from performing real attacks against computers and
servers actually in use. However, we would rather not filter
all packets. The reason is that the purpose of network com-
munications by malware is not only attacks. For example,
malware downloads new versions of itself or other malware.
One idea for a solution to this problem is to control the
malware or its packets to communicate with fake servers
or honeypots prepared by us, without interaction with real
servers.

There are methods for anomaly detection and malware
clustering using tracing logs of system calls. For example,
there is a malware clustering method that uses reports output
by the automated malware analysis service Anubis [17]. We
will evaluate the possibility that tracing logs of Alkanet are
practical for use with the existing methods.

VI. RELATED WORKS

Traditional dynamic analysis tools run in the same en-
vironment as malware. In addition, the tools use services
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No. [5212, 5213]: Polipos.exe (Cid: 54c¢.18¢) —-> svchost.exe (Cid: 480.2¢4) (Code Injection)
No. [5288, 5289]; svchost.exe (Cid; 480.2c4) —> svchost.exe (Cid:; 480.22¢)
Mo. [595%, 5960]: swvchost.exe (Cid: 480.22¢) —» svchost.exe (Cid: 480.38¢)
No. [6392, ©393]: svchost.exe (Cid:; 480.22¢) —» svchost.exe (Cid: 480,360)
Mo. [11340, 11341]: svchost.exe (Cid: 480.22¢) —-» svcehost.exe (Cid: 480.720)
No. [14368, 14369]: svchost.exe (Cid: 480.720) -> rundll3Z.exe (Cid: 22Z0,7£8) (Code Injectiocn)
MNo. [14546, 14547]: rundll32.exe (Cid: 220.7f8) —>» rundll32.exe (Cid: 220.488)
No. [11844, 11845]: svchost.exe (Cid: 480.22¢) —» svcehost.exe (Cid: 480.24¢)
Neo., [15080, 15081]: svchost.exe (Cid: 480.24c¢c) —-» alg.exe (Cid: 34c.le8) (Code Injection)
No. [15240, 15241]: alg.exe (Cid: 34c.le8) -> alg.exe (Cid: 34c.bac)
No. [13214, 13215]: svchost.exe (Cid: 480.22¢c) —-» svchost.exe (Cid: 480.7=0)
No. [16586, 16587]: svchost.exe (Cid: 480.7e0) —-> explorer.exe (Cid: 538.510) (Cocde Injectiocn)
No. [le744, 16745]: explorer.exe (Cid: 538.510) -» explorer.exe (Cid: 538.6ac)
Mo, [13802, 13803]: svchost.exe (Cid: 480.22¢c) —-» svchost.exe (Cid: 480,308)
No. [14422, 14423]: svchost.exe (Cid: 480.22¢) —» svechost.exe (Cid: 480.2d4d0)
No. [14424, 14425]: svchost.exe (Cid: 480.22¢c) —-» svchost.exe (Cid: 480.a0)
Mo. [15144, 15148]: svchost.exe (Cid: 480.22¢) —» svcehost.exe (Cid: 480.41¢ay

Fig. 14, Polipos: thread tree generated by tracing a injected thread and derived threads from it

sgvchost.exe (Cid: 480.41¢)
[NOT FOUND] No. [15246, 15247]: NtOpenFile “\??\c:\program files\netmeetingi\drwebase.vdb
[NOT FOUND] MNo. [15248, 15240]: NtopenFile W??hc:program files\netmestingiavg.avi
[NOT FOUND] No. [15250, 15251]: NtOpenFile \??\c:\program files\netmeeting\vs.vsn
[NOT FOUND] No. [15252, 1525E3]: NtopenFile “??2hc:program filesnetmestinghanti-vir.dat
[NOT FOUND] No. [15270, 15271]: NtopenFile W??2hc:wprogram fileshnetmestinghavggt .dat
[NOT FOUND] No. [15272, 15273]: NtOpenFile \??\c:\program files\netmeeting\lguard.vps
Fig. 15. Polipos: scanning files used by anti-virus software

provided by Windows to assist in debugging. However, these
tools and services do not run stealthily from the processes
being debugged because their purpose is to debug legiti-
mate software. Therefore, malware can detect them easily.
To analyze malware that applies anti-debugging techniques,
these techniques need to be disabled one by one. Alter-
natively, analysts may conceal dynamic analysis tools and
all detectable vestiges of them. Concealment would include
hiding the debugging flags of debuggee, filtering results of
the process enumeration API, controlling malware itself and
so on. Olly Advanced [18] and PhantOm [19] are plug-ins
for OllyDbg debugger [20]. These plug-ins disable many
anti-debugging techniques by using ability of debugger or
kernel-mode driver. However, it is very difficult to evade all
anti-debugging techniques as long as the tools run in the
same environment as malware and use debugging assistant
services. It is also hard for a general debugger to analyze
malware that infects other running processes because general
debuggers are only attached to one process.

Therefore, analysts should use other analysis tools and not
depend on general debugging assistant services. VAMPiRE
[21] implements stealth breakpoints not to be detected by
malware. VAMPIRE brings about page faults on arbitrary
points purposely and catches and handles the faults. The
method of VAMPIiRE makes it possible to use breakpoints
without using debugging assistant services. VAMPIRE can
also execute malware on single step mode using trap flag in
EFLAGS register.

Side effects to whole environments executing malware
are increased by falsifications to evade anti-debugging tech-
niques. These processes increase overhead and may lead to
inaccurate analysis. Analysts and researchers need to use
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dynamic analysis to reduce side effects to the environment
executing malware. Observing from outside of the envi-
ronment i one effective method. Hence, researchers have
implemented dynamic analysis systems based on VMMs or
emulators. VMMs and emulators run under a higher privilege
level than the operating system in a virtual machine. Such
systems can observe all processes and the operating system
in virtual machine transparently.

TTAnalyze [22] is automated dynamic analysis system
based on QEMU [23]. TTAnalyze executes Windows on
an emulated virtual machine and traces system calls and
Windows APIs invoked by malware. TTAnalyze outputs
report of summarized malware behaviors. Anubis [24], [25]
is the successor project of TTAnalyze. However, malware
can detect QEMU easily because QEMU emulates specific
hardware. Additionally, it is a common approach to imple-
ment malware analysis systems based on QEMU. Malware
cannot detect Alkanet by similar methods because Alkanet
does not emulate specific hardware. In addition, TTAnalyze
distinguishes malware by means of process level using values
from the CR3 register. Therefore, TTAnalyze cannot trace
threads injected to legitimate processes by malware. Alkanet
can trace the malicious threads because Alkanet distinguishes
malware by means of thread level. Furthermore, the QEMU
emulation is inefficient because of the overhead required to
emulate the whole environment in software only. Alkanet
runs faster because Alkanet is assisted by hardware.

Virt-ICE [26] is a stealth debugger that extends and fixes
QEMU for malware analysis. This debugger can analyze
not only user-mode malware but also kernel-mode malware.
It implements hook functions on the instruction level and
the memory access level. Virt-ICE can evade most of anti-
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debugging techniques. Virt-ICE is effective interactive de-
bugger. Ether [27] is a framework for malware analysis based
on Xen [28] virtual machine monitor. The framework can
analyze malware transparently using VMM. Ether provides
hook functions on instruction level, memory access level
and system call level. The vestige of Ether is concealed
by itself to not detect by malware. Analysts can implement
instruction level trace, system call trace, or arbitrary malware
analysis components using the hook functions. In other
words, analysts need to implement malware analysis com-
ponents using the framework to analyze malware actually.
In evaluation of Ether, EtherUnpack and EtherTrace had
been implemented. EtherUnpack extracts original codes from
packed malware. EtherTrace traces system calls invoked by
malware. The implementations have been confirmed that they
can extract original codes actually, and analyze malware with
QEMU detection techniques. In addition, they have been
evaluated their performance. However, it has not been shown
whether the implementations are possible observing malware
behaviors actually. The goal of Alkanet is to analyze malware
and summarize malware behaviors automatically.

VII. CONCLUSION

In this paper, we describe “Alkanet”, a malware analyzer
using a virtual machine monitor based on BitVisor. Our sys-
tem can analyze malware within a short time even when the
malware applies anti-debugging techniques to evade analysis
by dynamic analysis tools. In addition, the analysis overhead
is reduced. Alkanet executes malware on Windows XP, and
traces system calls invoked by threads. The system call trace
logs are obtained in real time via IEEE 1394. Therefore,
the system can successfully analyze malware that infects
other running processes. In addition, other programs can
readily examine the log and process the analysis results to
understand the intentions of malware behavior. We confirmed
that Alkanet correctly analyzes malware behaviors (e.g.
copying itself, deleting itself, creating new processes). We
also confirmed that Alkanet precisely traces threads injected
to other processes by malware.

In future work, we will make it possible to analyze a
multitude of other methods to infect running other processes
besides thread injection. We will also implement functions
to make detailed observations of malware behaviors using
networks. In addition, we will evaluate the possibility that
the trace logs of Alkanet are practical for existing anomaly
detection or malware clustering methods using system call
trace logs.
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