
 

 
Abstract—User centric interaction is an essential requirement in 
many types of web related applications.  Always a basic 
expectation from the user is that the web interaction must be 
self-organizing and evolving in an organized pattern as the user 
interest progresses.  This paper addresses such an expectation 
with an ontology pattern based Knowledge Advantage Machine 
[KAM]. It illustrates how this KAM system leads to the 
determination of a reliable context as the knowledge discovery 
is taking place. 
 

Index Terms—Knowledge Advantage Machine, user profile, 
ontology, patterns, context awareness, user context centric. 
 

I. INTRODUCTION 

uality of Service (QoS) is directly related to addressing 
the user preference [1].  In the midst of voluminous user data 
accumulation and sophisticated user models, finding a stable 
QoS providing system is a challenging issue.  Aiming at that, 
ideas were proposed for automating the capture of user 
preferences, which will provide flexibility on related services 
[2], [3].  Most of these services needed intermediate 
communication protocols to configure a solid user base, 
which is the core service for all upper layers.  Because of this, 
ontology engineering becomes a crucial element in all core 
services at the user level.  The basic premise of ontology 
operation is to have a sharable taxonomy, which follows 
certain logic reasoning.  In this context, we have introduced 
the Knowledge Advantage Machine (KAM) model for 
addressing the knowledge sharing problems [4].  The basic 
knowledge unit in KAM, dubbed as JAN, can be extracted 
from various sources such as documents, web pages or 
emails. After the extraction, it becomes a logical unit, 
referring and linking other JANs to it.  While acting as the 
basic reusable unit in the resource-oriented architecture 
(ROA), the JAN plays a strong role in representing 
knowledge.  JAN may be viewed as a revision of the learning 
object metadata (LOM) standard [11].  According to the 
definition of LOM, it needs to contain necessary components, 
such as annotations, references, and categories.  These 
components are essential in the KAM model while dealing 
with knowledge processing and discovery.  From a user’s 
perspective, the knowledge units, JANs are unique, reflecting 
user interest and preferences.  Annotations and references 
labeled on a JAN emphasize its category and relationships in 
user's ontology.  Thus, JAN not only serves as a knowledge 
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unit, but also contains meta-information describing its 
conceptual meaning and the user’s view on a certain area of 
interest.  We can also state that a JAN is only meaningful 
when combined with the user perspective.  In reality a 
standard user usually crosses over multiple domains.  For 
instance, people always have family domains along with 
work domains.  In the KAM definition, one KAM resides on 
only one domain in which a user’s ontology manages 
resource classifications and their relationship.  Typical user 
ontology mainly contains two parts: taxonomies consisting of 
JANs, and taxonomies reflecting relationships between 
JANs.  

II. USER PROFILE BASED ONTOLOGY  

A user profile usually contains two necessary parts.  One is 
the basic user information, and the other is the user 
preference. The former is unique for every user.  But the latter 
part is shared among people who share a common interest.  It 
also plays an important role in our knowledge engineering 
model.  In KAM, the user preference is represented by the 
user ontology.  We define the user preference as a class of 
basic taxonomies.  Along with these two aforesaid user 
profile parts, we also define user behavior.  A typical user 
behavior describes the user’s action on a knowledge unit.  For 
example, a user browses a particular web page or reads a 
specific document.  All these user actions are recorded as user 
logs.  By analyzing the user’s actions and the knowledge 
units related to them, the KAM organizing agent (OA) 
generates user behavior rules.  Based on these rules, the 
KAM helps a user to find JANs that are potentially 
interesting and relevant.  The KAM organizing process 
focuses two aspects: (i) A new JAN classification - when a 
new information object JAN comes in, the OA tries to find a 
suitable taxonomy where this JAN can reside in.  This aspect 
is accomplished by executing queries on user ontology.  The 
query results contain taxonomies with high possibility of 
occurrences.  (ii) Find related JANs - the contents of the most 
browsed JANs are extracted and a query containing this 
content is submitted to the KAM discovery agent (DA).  The 
query will return the JANs with the highest content 
similarities.  Traditional information retrieval methods rely 
on keywords to describe the content of an information unit.  
In KAM, the information unit, JAN is organized into a 
taxonomic structure.  This method allows us to transform the 
query into two parts: one part is the traditional search on the 
knowledge units and the other is a concept search that returns 
taxonomies in which the knowledge unit resides.  To 
implement these, we applied several statistical probability 
models to map phrases into concepts.  For each JAN, its 
original resource content was extracted using the Vijjana key 
phrase extraction algorithm (VKE) [12][13], and a similarity 
test was performed on all user taxonomies to determine its 
underlying concepts.  If no similar concept was found, a 
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universal similarity test was performed on a global ontology - 
explained in the next section.   According to Hele mai Haav et 
al [5], approximately 3,000 terms will cover all general 
concepts for a specific domain.  For a typical user, it is 
possible to use a finite taxonomy to cover all the domains 
he/she crosses over. 

III. GLOBAL ONTOLOGY 

   To construct a user profile with ontology information, we 
needed a large reference data repository.  Open Directory 
Project (ODP) came to be the final choice after we reviewed 
several data sources [5], [6].  The ODP is regarded as one of 
the largest taxonomy stores for web directories.  The 
taxonomy is organized in a hierarchical structure.  It has 
become customary to use ODP as a main reference source 
and the top three levels of taxonomy are used as references 
promoting the ontology hit accuracy.   In KAM framework, 
we also used taxonomies in the first three levels as our global 
concept set.  Our purpose was to construct a universal 
ontology.  We first analyzed the structure of the ODP data.  
The ODP data contains two parts.  One is its hierarchy 
structure and the other is a large RDF file containing all links 
and descriptions of their hierarchy structure.  To convert it to 
our global ontology, we reorganized all into one unit.  In 
KAM, the ontology is defined as a set of taxonomies with two 
features: (i) It has siblings on the same level. (ii) For every 
node in the hierarchy, we can find corresponding items in the 
resource description (RDF) file.  The RDF item is usually a 
bookmark link with its self-description.  We could map the 
ODP hierarchy node as our universal ontology taxonomy, 
and the RDF item as the knowledge unit JAN in the universal 
ontology.   Thus, the universal ontology defined in KAM 
contains relationships between its parents and siblings, which 
were also taxonomies.  Figure 1 is a partial view of the 
universal ontology.  The first level contains 14 taxonomies.  
The second level contains 517 taxonomies.  And the third 
level contains 6056 taxonomies.  

 
 
Fig. 1. Global Ontology 

IV. CONSTRUCTING USER ONTOLOGY 

In the KAM, user ontology is used to manage the user 
knowledge network containing all user knowledge units.  
Here we extract JANs from three knowledge unit sources:  
User Email, User File System and the User bookmarks. 

A. JAN Abstraction 

   As we discussed earlier, a JAN is abstracted from various 
sources.  Here, JAN “reference” denotes the source file.  
When a new JAN is brought into view, its reference needs to 
go through three operations: 
 

 Extraction of content. 
 Preprocessing - removing stop words and stemming. 
 Full Text and VKE processing 
 

   The first step is to extract the content.  For the KAM user 
file system, the current implementation supports three basic 
types of textual documents: text, pdf and MS Word.  For the 
KAM user bookmarks, we parsed the bookmarked webpage 
and distilled its content.  For the KAM Email, we 
concatenated its subject and body to form the content. 
   In the stop-word removal process, we maintained a large 
stop-word corpus.  The extracted content was parsed with this 
corpus and the leftover part did not contain any word in this 
corpus.  The remaining part after this step was passed to a 
stemming process that removed token suffixes and recovered 
the base, or stem, of the word.   Step three had two options: 
FULL TEXT and VKE processing.  The FULL TEXT 
processing uses all results from step two for key phrase 
indexing.  The VKE processing only builds an index upon the 
key phrases generated by the VKE algorithm.  The phrases 
used in an index were considered to be annotations of the 
JAN.  After these three steps were performed, a JAN was 
created. 

B. User File System 

To build user ontology from the user’s file system, there is 
a need to traverse through all user folders and files contained 
therein.  Since the folders have hierarchical structures, we 
mapped them to taxonomies in the user’s ontology.  
Correspondingly, files were regarded as knowledge units 
under the taxonomy.     
   We implemented two interfaces: the “KAM File System” 
and the “File Descriptor”.  The “KAM FileSystem” (KFS) 
managed the folder structure.  To create a KFS, the users 
must specify the KFS root path.  The KFS has the capacity to 
navigate through its subfolders.  It can recursively go deeper 
to the lowest level, and report the whole structure.  During 
this process, it can call a “File Descriptor” process, which is 
responsible for generating file meta information and 
extracting the file content.  The file content and the file 
information were used by the JAN creation process.   
   The FULL TEXT processing in KFS has two streams: the 
Apache Lucene or our own method (which is explained in the 
forthcoming sections).  A generated user ontology upon file 
system is shown in the Figure 2.  
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Fig.2  User ontology.  
 

C. User Bookmark System 

The user bookmark system is a web interface that allows 
users to save their own bookmarks.  In Devalapalli et al [7] 
we illustrated old Firefox plug-ins to help the user through 
the JAN creation progress.  The process has been simplified 
in our new web interface.  In addition to that, from the web 
interface a user can create a user space to store all the 
bookmarks.  Also, this user space can be shared with the 
KAM File System.  From the web interface, a user can 
browse the ontology generated from KFS.  The JAN creation 
process is initialized when a new link is added to user space.  
The discovery agent running as a part of web service 
automatically extracts contents from a linked source.   The 
content will go through the same process as in the JAN 
abstraction.  However from the web service, FULL TEXT is 
only supported in our own version at this moment.  Ontology 
of the web interface is shown in the Figure 3. 

 
Fig3. User Ontology on Web interface 

V. CONTEXT AWARENESS 

Another important part of the user profile is user 
behavioral model.  Our assumption in KAM is that we can 
use a finite number of taxonomies to represent a user’s 
knowledge domain.  Based on this assumption, all user 
behaviors are converted into activities crossing over the 
taxonomies.  To determine the user preferences, we can 
generalize a finite number of rules by monitoring the 
transitions happening in between taxonomies.  For instance, 
when off of work, a user who has a strong interest in sports 
may spend more time reading sports news than reading 
financial news.  For this particular use, when the transition 
from work to news occurs, KAM shall promote the sports 
news ahead of financial news.  In KAM, the taxonomy 
priority is evaluated by the taxonomy interest score.  The 
interest score is affected by two factors: total hit number and 
taxonomy size.  The first one is the number of times the user 
browsed the taxonomy and the second one denotes how many 
JANs are related to this taxonomy.  We kept updating the 
taxonomy interest score when the user browses the taxonomy 
or adds new JANs into it.  The interest score is calculated as:  

I(ti) = total_hit_number / taxonomy_size 
   I(ti) stands for the user interest in taxonomy i, 
taxonomy_size is the number of JANs in this taxonomy.  As 
has been stated already, a user behavior model forms our 
basis for context awareness.  To detect in which context a 
user resides, KAM uses methods that fall into two categories: 
the timeline and the knowledge hit statistics.  Before 
proceeding to explain our context awareness model, we need 
first to define what a context is.   From its semantic meaning, 
a context is where the user is.   In our daily life, a context can 
be a restaurant where people are having dinner.  When a 
person reads a book, the context is the paragraph that is 
engaging the reader.  In a knowledge network, for example, 
in the ODP project, the context is the branch where people 
click links.  In the KAM model, we defined the context as the 
current ontology on which the user is working.  Recall that in 
the user behavior model, a transition is like a taxonomy 
switch.  Here we can simply define the current context as the 
current state, which is a taxonomy.  Therefore, one of the 
other taxonomies would possibly become the next state. 
Context={Current, {Next}}. 

A.   Timeline Context Awareness 

   In the KAM web interface, every operation on a taxonomy 
and JAN is recorded as a user history entry.  When a new 
taxonomy or JAN is created, its creation time is logged.  In 
addition to that also a record is kept when the user browses 
the taxonomy or JAN.  The track data is used in the 
calculation of the interest score.  If a particular user, in a 
certain time period everyday, always browses certain 
taxonomy or related JANs, the KAM would mark this time 
period with this taxonomy information, and set it as the user 
context for this time slot.   
   Using this method, we first sectioned the day off as being 
part of one of two classifications: either active or inactive.  
The basic time unit of timeline mode was one hour.  The 
inactive periods were time units without any user activity.    
For a certain time phase of enough length, such as a   week or 
a month, the user’s activity could be categorized by these two 
periods.   For the user’s active period, we could detect the 
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taxonomy boundary if we already knew the taxonomies the 
user owns.   Based on the user’s activities for taxonomies, we 
could calculate the probability for each taxonomy on time 
phase, P(ti| time j), and then choose the highest one as the 
user's context. 

B. Interest Driven Context 

   Each taxonomy has an interest score calculated as 
explained in the user behavior model.  For all taxonomies, 
each concept has a factorial value between zero and one to 
describe its importance. 
                                   PI(Ti ) =  I(Ti)/ ∑ I(Ti) 
   By this weight value, we also can predict the most probable 
next state.  This memory-less sequence forms a stationary 
Markov chain.  The transition probability for a user moving 
from one taxonomy to another one, P(t{next}|t{prior}) = 
P(t{next})*P(t{prior}), can be derived  from a transition matrix.  It 
is more likely that a user would move from current state to 
taxonomy with the largest probability.  According to the 
transition matrix, we can form a priority queue that stores a 
certain number of taxonomies with the highest probability. 
The next state of context is selected from this queue.  Every 
transition of context switch would update the interest score 
and consequently update PI(Ti ).  Generally, for a small user 
knowledge network with a low average hit number, the 
update operation would not be costly. 

VI. CLASSIFICATION OF JANS 

   Up to this point, the KAM has enough information to 
provide the user a suggestion on how to organize his/her 
knowledge units.  The KAM shares a universal ontology built 
from the ODP data.  Additionally, the KAM owns its own 
user ontology, and user behavior history.  All these are used 
when JANs are classified.                

   As we mentioned already, in the JAN abstraction 
process, the JAN annotations are also created and would be 
used as index phrases.  Therefore, a JAN can be represented 
by a word vector j={w0,w1,…,wn}.   The corresponding 
taxonomy can be represented as a class containing all these 
JANs.  For all KAMs, they all share a common global 
ontology in which the taxonomies and the knowledge units 
are all the same.  For a specific user’s KAM, taxonomies are 
created by that user.  Even though JAN annotations are either 
FULL TEXT or generated by KAM, they can be edited by the 
user.  When a new JAN is added into a user’s ontology, the 
methodology of selecting a suitable taxonomy used for both 
global and personal ontology becomes different.  However, 
there is a cohesion existing in the training data processing of 
the global and the personal ontology. 

A. Generating the training data 

   The term frequency–inverse document frequency 
(TF*IDF) [10] is a popular technology used in text 
classification.  From our point of view it is essentially: 
              wij = tfij * idfi,  where 

tfij = term weight, & 
idfi=log((JAN training set size)/number of JAN 
 containing ti) 

Here the term weight of a JAN annotation is calculated using 
the augmented normalized term frequency.  The augmented 
normalized term frequency is described as: 

JAN (tfw) = 0.5 + 0.5* tfw/tfmax 

 

where, tfw is the occurrence frequency and tfmax is the 
maximum term frequency in JAN annotations.  Here the 
normalization process, tfw/tfmax, removes the dependency of 
classification results on annotations length [8].  Also it 
ensures the correctness of using the VKE algorithm result for 
JAN annotations. 
   To calculate the weight of each annotation using the 
TF*IDF method, we needed to specify the training set.  In the 
global ontology, we used the top three taxonomy levels as a 
training set.  In user space, we employed all user created 
taxonomy data as the training set.  A taxonomy word vector 
consisted of the sum of all its contained knowledge units the 
JANs’ word vectors have.  We used Vt to denote a taxonomy 
word vector, and Jt for JAN word vector. And we have, 
VT={Vj| all j in }. 
   Once we had the training set ready, for any given JAN, we 
could calculate its TFIDF weight. The TFIDF weight of a 
JAN is described as: 

TFIDF(jan)={∑wi|where wi = tfi*idf} 
   Consequently, the taxonomy weight is described as: 
TFIDF{Taxonomy} = ∑ JAN, where JAN belongs to same 

taxonomy. 
   To remove the classification error caused by mismatched 
vector lengths, we also applied a normalization process on 
taxonomies.  There are many normalization methods.  Cosine 
normalization is the most commonly accepted one. The 
cosine normalization is described as: 

 CN(V) = (w*1,w*2,…,w*n)  where, 
w*i = wi  / SQRT(∑ (wi* wi ) ) 

B. The Similarity between JAN and taxonomy 

   In order to determine a suitable taxonomy for an incoming 
JAN, we used cosine similarity to get the user suggestions.  A 
new JAN is represented by a vector J= {w0, w1,…, wn}, 
where wi is the term that appeared in the JAN annotation.  
The taxonomy vector is comparatively larger than a user 
taxonomy vector.  Let T= {w0, w1,…, wm}, represent the 
taxonomy and wj stands for the term that appeared in it.  For 
these two vectors, we formed their weight vectors using the 
term’s TFIDF value.  To calculate their cosine similarity, the 
two vectors’ lengths must be equal.  Then we needed to 
construct two equal length vectors.  We first merged the two 
word vectors together to form a new vector, and then we used 
this method to construct the weight vector.  And for every 
word that was missing in the original word vector, we filled 
its weight with 0.  After this, we could calculate the cosine 
similarity.  The cosine similarity of these two vectors can be 
expressed as: 

cosine(ti,JAN(j)) = ∑ wik* wjk,  
where, wik indicates the TFIDF weight of term k appearing in 
the taxonomy i. 
   The final cosine similarity value is between -1 and 1.  The 
closer is the absolute value to 1, the more similar the two 
vectors are.  Consequently, we could determine whether a 
particular JAN is similar to the taxonomy. In addition to this 
value, we also considered the interest hit value.  In the final 
suggestion rank, the weight consisted of two parts: the cosine 
similarity result and PI(ti) 

R(T) = Cosine(T,j)*PI(ti) 
Based on this rank value, we provided suggestions to the user 
for the right taxonomy of this JAN. 
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C. The Relationship between local taxonomy and global 
taxonomy 

   In the KAM, one important part is the communication 
capacity between different users.  All users should know who 
shares interests with them.  This part is bridged with the help 
of the global taxonomy.  While a new JAN is added into user 
taxonomy, the KAM also performs the similarity test upon 
global taxonomies.  The relationship between different users 
is established for a JAN sharing the same annotation with a 
global ontology. 

VII. KNOWLEDGE DISCOVERY PROCESS 

One user, at a given point in time, should only reside in 
only one context.  As we have defined already, the context 
provides the current taxonomy and the next series of possible 
taxonomies.  For each user, his/her ontology shares part of 
the universal ontology.   With this feature, we can regard 
users who share the same ontology as a community.  For 
instance, professors doing research in computer science 
should share the ontology concerning computer science.  All 
communities share the universal ontology.    The Figure 4 
illustrates this idea. 

 
Fig. 4. Discovery Process 
 

This also leads to the knowledge discovery process, which 
is a three-step procedure.  We named this procedure as “Call 
it Once”.  The discovery first happens locally, in the user 
context.  Then it expands to communities, where the user 
resides in the same ontology, and then explores the universal 
ontology.  Knowledge discovery can be initiated by a user in 
a certain context or by an agent during context switching. No 
matter in which way this occurs, it is performed by queries 
upon taxonomy.  A typical query constitutes a set of phrases. 

A. The local Knowledge discovery process  

   The local search is confined within the user taxonomies.  
For a given query, the cosine similarity described earlier can 
still be used.  If the search is confined to a particular 
taxonomy range, for every JAN, we could perform a 
similarity test and the JAN with the largest value was 
returned as the query’s result.  However, if the search is not 
confined to any taxonomy, the similarity test needs to be 
performed between the query and all taxonomies.  The 
method is already illustrated in the cosine similarity part.  We 
would construct a bigger vector and fill the missing term 
weights with 0’s and perform cosine similarity again.  The 
process acting on the returned taxonomies was similar to 
what has been done for an individual taxonomy. 
 

 
 
Fig. 5. The Local Search 

 
    The Figure 5 describes a local search belonging to a 
professor. When the professor is preparing the course CS 
481, she finds a part of her ontology on MATH courses that 
was saved before. 

B. The Community Knowledge discovery process  

   Since people in the same community share the same 
ontology, we could use the collaborative filtering (CF) 
technique [9] to recommend JANs to a user.  There are two 
types of collaborative filterings: user based CF and item 
based CF.  Recall in KAM model, in order to eliminate the 
problem of organizing and consistency checks, we applied 
ROA architecture which required that all items be uniquely 
identified.  For an original resource, it is abstracted into a 
JAN and added into user's knowledge network.  After this 
step, it became unique in the whole knowledge network.  We 
could not directly apply the CF technology upon the JANs.  
There are two methods to solve this problem.  The first one is 
the rudimentary one that uses the JAN's reference, the 
original resource, as our item.  The other one uses a keyword 
to replace the JAN as the comparison item.  For the first 
method, we can construct the user-item matrix, in which 
item's value was the hit number of the JAN. 
Then, 

 
   Once we had this matrix, we could use the adjusted cosine 
similarity to compare the two JANs.  The JANs with highest 
similarity should catch the user's eye.  The performance 
difference between the item-based and the user-based 
methods depends on the sparsity of the matrix that was built.  
If the matrix is sparse, the user-based performance should be 
poorer than the item-based one. 
   For the second method, we used a keyword to replace the 
JAN, so the user-item matrix was formed in the following 
manner.   Here are the keywords as a set of JANs : 
 

hitnumberi if item i also appears  in 
User j’s knowledge network 

0                         Otherwise 

UIij= 
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   We calculated the similarity between the two keywords and 
recommended JANs, sorted with the highest similarity 
keyword for the user. 

C. The Universal Knowledge discovery process  

   The final step in “Call it Once” process is to search the 
global ontology.  Here the query is without any user 
preference.  For taxonomies in global ontology, we can 
perform a local search on user’s related taxonomies, and 
regard the returned JANs as a compensation of the result 
from the global search and the community search.  So the 
overall discovery process can be viewed as in the Figure 6. 
 

 
 
Fig. 6. The Global Search Process 

VIII. CONCLUSION & FUTURE WORK 

   In this paper, we illustrated our approach in building up a 
user profile from ontology.  The focus was on building user 
ontology from global ontology, personal file system and the 
bookmark system.   

Based on the ontology we have built, two context 
awareness models were presented in discovering user 
preferences.  In the KAM, we used these two models to 
predict the next user states and provided the state related 
knowledge.  The knowledge discovery process is what we 
called “call it once” in the KAM.   

 
 
 
 
 
 
 
 
 
 
 
 

 
It divided the search into three phases.  The first one is the 

searching on local.  It mainly focuses on finding the 
accurately matched local files or taxonomies.  The second 
one is the searching on community, which is based on the CF 
algorithm to provide recommendations. The third one is a 
global search without any preferences.  We are still fine 
tuning the context model.  Also, it would be necessary to 
increase   accuracy of the CF algorithm to ensure scalability 
to real-world problems.  

REFERENCES 
[1] Altmann, J, and P Varaiya. “INDEX project: user support for buying 

QoS with regard to userʼs preferences.” 1998 Sixth International 
Workshop on Quality of Service IWQoS98 Cat No98EX136 (2005) : 
101-104 

[2] Lisa Gottlieb and Juris Dilevko. 2001. User preferences in the 
classification of electronic bookmarks: implications for a shared 
system. J. Am. Soc. Inf. Sci. Technol. 52, 7 (May 2001),  

[3] User-preference-based service selection using fuzzy logic,Zhengping 
Wu  Mu Yuan , Network and Service Management (CNSM), 2010 
International  Conference 

[4] Luyi Wang, Ramana Reddy, Sumitra Reddy, and Asesh Das, A 
Context Centric Model for building a Knowledge advantage Machine 
Based on Personal Ontology Patterns, in WorldComp 
2011(SWWWS’11), pp 99-105  

[5] Hele mai Haav and Tanel lauriLubi. A survey of concept-based 
information retrieval tools on the web. In In 5th East-European 
Conference, ADBIS 2001, pages 29-41, 2001. 

[6] Joana Trajkova and Susan Gauch. Improving Ontology-Based User 
Profiles, 2004.  

[7] S. Devalapalli, R. Reddy, L.Wang, and S. Reddy. Markup and 
Validation Agents in Vijjana- Pragmatic Model for Collaborative, 
Self-organizing, Domain Centric Knowledge Networks. In WEBIST, 
pages 263-269, 2009. 

[8] Verayuth Lertnattee and Thanaruk Theeramunkong. Effect of term 
distributions on centroid based text categorization. Inf. Sci. Inf. 
Comput. Sci., 158:89-115, January 2004. 

[9] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 
2001. Item-based collaborative filtering recommendation algorithms. 
In Proceedings of the 10th international conference on World Wide 
Web (WWW '01). ACM, New York, NY, USA, 285-295.  

[10] Gerard Salton, Christopher Buckley, Term-weighting approaches in 
automatic text retrieval, Information Processing; Management, 
Volume 24, Issue 5, 1988, Pages 513-523, ISSN 0306-4573, 
10.1016/0306-4573(88)90021-0. 

[11] 2002 Learning Object Metadata (LOM) Standard 
Maintenance/Revision, IEEE 2002 

[12] Luyi Wang, Ramana Reddy, Sumitra Reddy and Asesh Das, 
Keyphrase extraction algorithm in Knowledge Advantages Machine, 
Draft version, 

[13] Luyi Wang, Ph.D. dissertation 2012, West Virginia University-Library 
Archives 

 

1 if item i also appears  in User j’s 
knowledge network 

0                         Otherwise 

UIij= 

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012




