

Abstract—User centric interaction is an essential requirement in
many types of web related applications. Always a basic
expectation from the user is that the web interaction must be
self-organizing and evolving in an organized pattern as the user
interest progresses. This paper addresses such an expectation
with an ontology pattern based Knowledge Advantage Machine
[KAM]. It illustrates how this KAM system leads to the
determination of a reliable context as the knowledge discovery
is taking place.

Index Terms—Knowledge Advantage Machine, user profile,
ontology, patterns, context awareness, user context centric.

I. INTRODUCTION

uality of Service (QoS) is directly related to addressing
the user preference [1]. In the midst of voluminous user data
accumulation and sophisticated user models, finding a stable
QoS providing system is a challenging issue. Aiming at that,
ideas were proposed for automating the capture of user
preferences, which will provide flexibility on related services
[2], [3]. Most of these services needed intermediate
communication protocols to configure a solid user base,
which is the core service for all upper layers. Because of this,
ontology engineering becomes a crucial element in all core
services at the user level. The basic premise of ontology
operation is to have a sharable taxonomy, which follows
certain logic reasoning. In this context, we have introduced
the Knowledge Advantage Machine (KAM) model for
addressing the knowledge sharing problems [4]. The basic
knowledge unit in KAM, dubbed as JAN, can be extracted
from various sources such as documents, web pages or
emails. After the extraction, it becomes a logical unit,
referring and linking other JANs to it. While acting as the
basic reusable unit in the resource-oriented architecture
(ROA), the JAN plays a strong role in representing
knowledge. JAN may be viewed as a revision of the learning
object metadata (LOM) standard [11]. According to the
definition of LOM, it needs to contain necessary components,
such as annotations, references, and categories. These
components are essential in the KAM model while dealing
with knowledge processing and discovery. From a user’s
perspective, the knowledge units, JANs are unique, reflecting
user interest and preferences. Annotations and references
labeled on a JAN emphasize its category and relationships in
user's ontology. Thus, JAN not only serves as a knowledge

This work was supported in part by an endowment from the Verizon

Foundation.
1Luyi Wang, Ramana Reddy and Sumitra Reddy are with KaMlab, Lane

Department of Computer Science & Electrical Engineering West Virginia
University, Morgantown, WV 26506, USA

2 Asesh Das is with School of Business & Computer Technologies
Pennsylvania College of Technology (Penn State) Williamsport, PA 17701,
USA

unit, but also contains meta-information describing its
conceptual meaning and the user’s view on a certain area of
interest. We can also state that a JAN is only meaningful
when combined with the user perspective. In reality a
standard user usually crosses over multiple domains. For
instance, people always have family domains along with
work domains. In the KAM definition, one KAM resides on
only one domain in which a user’s ontology manages
resource classifications and their relationship. Typical user
ontology mainly contains two parts: taxonomies consisting of
JANs, and taxonomies reflecting relationships between
JANs.

II. USER PROFILE BASED ONTOLOGY

A user profile usually contains two necessary parts. One is
the basic user information, and the other is the user
preference. The former is unique for every user. But the latter
part is shared among people who share a common interest. It
also plays an important role in our knowledge engineering
model. In KAM, the user preference is represented by the
user ontology. We define the user preference as a class of
basic taxonomies. Along with these two aforesaid user
profile parts, we also define user behavior. A typical user
behavior describes the user’s action on a knowledge unit. For
example, a user browses a particular web page or reads a
specific document. All these user actions are recorded as user
logs. By analyzing the user’s actions and the knowledge
units related to them, the KAM organizing agent (OA)
generates user behavior rules. Based on these rules, the
KAM helps a user to find JANs that are potentially
interesting and relevant. The KAM organizing process
focuses two aspects: (i) A new JAN classification - when a
new information object JAN comes in, the OA tries to find a
suitable taxonomy where this JAN can reside in. This aspect
is accomplished by executing queries on user ontology. The
query results contain taxonomies with high possibility of
occurrences. (ii) Find related JANs - the contents of the most
browsed JANs are extracted and a query containing this
content is submitted to the KAM discovery agent (DA). The
query will return the JANs with the highest content
similarities. Traditional information retrieval methods rely
on keywords to describe the content of an information unit.
In KAM, the information unit, JAN is organized into a
taxonomic structure. This method allows us to transform the
query into two parts: one part is the traditional search on the
knowledge units and the other is a concept search that returns
taxonomies in which the knowledge unit resides. To
implement these, we applied several statistical probability
models to map phrases into concepts. For each JAN, its
original resource content was extracted using the Vijjana key
phrase extraction algorithm (VKE) [12][13], and a similarity
test was performed on all user taxonomies to determine its
underlying concepts. If no similar concept was found, a

User Context Centric Models in A Knowledge
Advantage Machine

Luyi Wang1, Ramana Reddy1
, Sumitra Reddy1 & Asesh Das2

 Q

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

universal similarity test was performed on a global ontology -
explained in the next section. According to Hele mai Haav et
al [5], approximately 3,000 terms will cover all general
concepts for a specific domain. For a typical user, it is
possible to use a finite taxonomy to cover all the domains
he/she crosses over.

III. GLOBAL ONTOLOGY

 To construct a user profile with ontology information, we
needed a large reference data repository. Open Directory
Project (ODP) came to be the final choice after we reviewed
several data sources [5], [6]. The ODP is regarded as one of
the largest taxonomy stores for web directories. The
taxonomy is organized in a hierarchical structure. It has
become customary to use ODP as a main reference source
and the top three levels of taxonomy are used as references
promoting the ontology hit accuracy. In KAM framework,
we also used taxonomies in the first three levels as our global
concept set. Our purpose was to construct a universal
ontology. We first analyzed the structure of the ODP data.
The ODP data contains two parts. One is its hierarchy
structure and the other is a large RDF file containing all links
and descriptions of their hierarchy structure. To convert it to
our global ontology, we reorganized all into one unit. In
KAM, the ontology is defined as a set of taxonomies with two
features: (i) It has siblings on the same level. (ii) For every
node in the hierarchy, we can find corresponding items in the
resource description (RDF) file. The RDF item is usually a
bookmark link with its self-description. We could map the
ODP hierarchy node as our universal ontology taxonomy,
and the RDF item as the knowledge unit JAN in the universal
ontology. Thus, the universal ontology defined in KAM
contains relationships between its parents and siblings, which
were also taxonomies. Figure 1 is a partial view of the
universal ontology. The first level contains 14 taxonomies.
The second level contains 517 taxonomies. And the third
level contains 6056 taxonomies.

Fig. 1. Global Ontology

IV. CONSTRUCTING USER ONTOLOGY

In the KAM, user ontology is used to manage the user
knowledge network containing all user knowledge units.
Here we extract JANs from three knowledge unit sources:
User Email, User File System and the User bookmarks.

A. JAN Abstraction

 As we discussed earlier, a JAN is abstracted from various
sources. Here, JAN “reference” denotes the source file.
When a new JAN is brought into view, its reference needs to
go through three operations:

 Extraction of content.
 Preprocessing - removing stop words and stemming.
 Full Text and VKE processing

 The first step is to extract the content. For the KAM user
file system, the current implementation supports three basic
types of textual documents: text, pdf and MS Word. For the
KAM user bookmarks, we parsed the bookmarked webpage
and distilled its content. For the KAM Email, we
concatenated its subject and body to form the content.
 In the stop-word removal process, we maintained a large
stop-word corpus. The extracted content was parsed with this
corpus and the leftover part did not contain any word in this
corpus. The remaining part after this step was passed to a
stemming process that removed token suffixes and recovered
the base, or stem, of the word. Step three had two options:
FULL TEXT and VKE processing. The FULL TEXT
processing uses all results from step two for key phrase
indexing. The VKE processing only builds an index upon the
key phrases generated by the VKE algorithm. The phrases
used in an index were considered to be annotations of the
JAN. After these three steps were performed, a JAN was
created.

B. User File System

To build user ontology from the user’s file system, there is
a need to traverse through all user folders and files contained
therein. Since the folders have hierarchical structures, we
mapped them to taxonomies in the user’s ontology.
Correspondingly, files were regarded as knowledge units
under the taxonomy.
 We implemented two interfaces: the “KAM File System”
and the “File Descriptor”. The “KAM FileSystem” (KFS)
managed the folder structure. To create a KFS, the users
must specify the KFS root path. The KFS has the capacity to
navigate through its subfolders. It can recursively go deeper
to the lowest level, and report the whole structure. During
this process, it can call a “File Descriptor” process, which is
responsible for generating file meta information and
extracting the file content. The file content and the file
information were used by the JAN creation process.
 The FULL TEXT processing in KFS has two streams: the
Apache Lucene or our own method (which is explained in the
forthcoming sections). A generated user ontology upon file
system is shown in the Figure 2.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Fig.2 User ontology.

C. User Bookmark System

The user bookmark system is a web interface that allows
users to save their own bookmarks. In Devalapalli et al [7]
we illustrated old Firefox plug-ins to help the user through
the JAN creation progress. The process has been simplified
in our new web interface. In addition to that, from the web
interface a user can create a user space to store all the
bookmarks. Also, this user space can be shared with the
KAM File System. From the web interface, a user can
browse the ontology generated from KFS. The JAN creation
process is initialized when a new link is added to user space.
The discovery agent running as a part of web service
automatically extracts contents from a linked source. The
content will go through the same process as in the JAN
abstraction. However from the web service, FULL TEXT is
only supported in our own version at this moment. Ontology
of the web interface is shown in the Figure 3.

Fig3. User Ontology on Web interface

V. CONTEXT AWARENESS

Another important part of the user profile is user
behavioral model. Our assumption in KAM is that we can
use a finite number of taxonomies to represent a user’s
knowledge domain. Based on this assumption, all user
behaviors are converted into activities crossing over the
taxonomies. To determine the user preferences, we can
generalize a finite number of rules by monitoring the
transitions happening in between taxonomies. For instance,
when off of work, a user who has a strong interest in sports
may spend more time reading sports news than reading
financial news. For this particular use, when the transition
from work to news occurs, KAM shall promote the sports
news ahead of financial news. In KAM, the taxonomy
priority is evaluated by the taxonomy interest score. The
interest score is affected by two factors: total hit number and
taxonomy size. The first one is the number of times the user
browsed the taxonomy and the second one denotes how many
JANs are related to this taxonomy. We kept updating the
taxonomy interest score when the user browses the taxonomy
or adds new JANs into it. The interest score is calculated as:

I(ti) = total_hit_number / taxonomy_size
 I(ti) stands for the user interest in taxonomy i,
taxonomy_size is the number of JANs in this taxonomy. As
has been stated already, a user behavior model forms our
basis for context awareness. To detect in which context a
user resides, KAM uses methods that fall into two categories:
the timeline and the knowledge hit statistics. Before
proceeding to explain our context awareness model, we need
first to define what a context is. From its semantic meaning,
a context is where the user is. In our daily life, a context can
be a restaurant where people are having dinner. When a
person reads a book, the context is the paragraph that is
engaging the reader. In a knowledge network, for example,
in the ODP project, the context is the branch where people
click links. In the KAM model, we defined the context as the
current ontology on which the user is working. Recall that in
the user behavior model, a transition is like a taxonomy
switch. Here we can simply define the current context as the
current state, which is a taxonomy. Therefore, one of the
other taxonomies would possibly become the next state.
Context={Current, {Next}}.

A. Timeline Context Awareness

 In the KAM web interface, every operation on a taxonomy
and JAN is recorded as a user history entry. When a new
taxonomy or JAN is created, its creation time is logged. In
addition to that also a record is kept when the user browses
the taxonomy or JAN. The track data is used in the
calculation of the interest score. If a particular user, in a
certain time period everyday, always browses certain
taxonomy or related JANs, the KAM would mark this time
period with this taxonomy information, and set it as the user
context for this time slot.
 Using this method, we first sectioned the day off as being
part of one of two classifications: either active or inactive.
The basic time unit of timeline mode was one hour. The
inactive periods were time units without any user activity.
For a certain time phase of enough length, such as a week or
a month, the user’s activity could be categorized by these two
periods. For the user’s active period, we could detect the

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

taxonomy boundary if we already knew the taxonomies the
user owns. Based on the user’s activities for taxonomies, we
could calculate the probability for each taxonomy on time
phase, P(ti| time j), and then choose the highest one as the
user's context.

B. Interest Driven Context

 Each taxonomy has an interest score calculated as
explained in the user behavior model. For all taxonomies,
each concept has a factorial value between zero and one to
describe its importance.
 PI(Ti) = I(Ti)/ ∑ I(Ti)
 By this weight value, we also can predict the most probable
next state. This memory-less sequence forms a stationary
Markov chain. The transition probability for a user moving
from one taxonomy to another one, P(t{next}|t{prior}) =
P(t{next})*P(t{prior}), can be derived from a transition matrix. It
is more likely that a user would move from current state to
taxonomy with the largest probability. According to the
transition matrix, we can form a priority queue that stores a
certain number of taxonomies with the highest probability.
The next state of context is selected from this queue. Every
transition of context switch would update the interest score
and consequently update PI(Ti). Generally, for a small user
knowledge network with a low average hit number, the
update operation would not be costly.

VI. CLASSIFICATION OF JANS

 Up to this point, the KAM has enough information to
provide the user a suggestion on how to organize his/her
knowledge units. The KAM shares a universal ontology built
from the ODP data. Additionally, the KAM owns its own
user ontology, and user behavior history. All these are used
when JANs are classified.

 As we mentioned already, in the JAN abstraction
process, the JAN annotations are also created and would be
used as index phrases. Therefore, a JAN can be represented
by a word vector j={w0,w1,…,wn}. The corresponding
taxonomy can be represented as a class containing all these
JANs. For all KAMs, they all share a common global
ontology in which the taxonomies and the knowledge units
are all the same. For a specific user’s KAM, taxonomies are
created by that user. Even though JAN annotations are either
FULL TEXT or generated by KAM, they can be edited by the
user. When a new JAN is added into a user’s ontology, the
methodology of selecting a suitable taxonomy used for both
global and personal ontology becomes different. However,
there is a cohesion existing in the training data processing of
the global and the personal ontology.

A. Generating the training data

 The term frequency–inverse document frequency
(TF*IDF) [10] is a popular technology used in text
classification. From our point of view it is essentially:
 wij = tfij * idfi, where

tfij = term weight, &
idfi=log((JAN training set size)/number of JAN
 containing ti)

Here the term weight of a JAN annotation is calculated using
the augmented normalized term frequency. The augmented
normalized term frequency is described as:

JAN (tfw) = 0.5 + 0.5* tfw/tfmax

where, tfw is the occurrence frequency and tfmax is the
maximum term frequency in JAN annotations. Here the
normalization process, tfw/tfmax, removes the dependency of
classification results on annotations length [8]. Also it
ensures the correctness of using the VKE algorithm result for
JAN annotations.
 To calculate the weight of each annotation using the
TF*IDF method, we needed to specify the training set. In the
global ontology, we used the top three taxonomy levels as a
training set. In user space, we employed all user created
taxonomy data as the training set. A taxonomy word vector
consisted of the sum of all its contained knowledge units the
JANs’ word vectors have. We used Vt to denote a taxonomy
word vector, and Jt for JAN word vector. And we have,
VT={Vj| all j in }.
 Once we had the training set ready, for any given JAN, we
could calculate its TFIDF weight. The TFIDF weight of a
JAN is described as:

TFIDF(jan)={∑wi|where wi = tfi*idf}
 Consequently, the taxonomy weight is described as:
TFIDF{Taxonomy} = ∑ JAN, where JAN belongs to same

taxonomy.
 To remove the classification error caused by mismatched
vector lengths, we also applied a normalization process on
taxonomies. There are many normalization methods. Cosine
normalization is the most commonly accepted one. The
cosine normalization is described as:

 CN(V) = (w*1,w*2,…,w*n) where,
w*i = wi / SQRT(∑ (wi* wi))

B. The Similarity between JAN and taxonomy

 In order to determine a suitable taxonomy for an incoming
JAN, we used cosine similarity to get the user suggestions. A
new JAN is represented by a vector J= {w0, w1,…, wn},
where wi is the term that appeared in the JAN annotation.
The taxonomy vector is comparatively larger than a user
taxonomy vector. Let T= {w0, w1,…, wm}, represent the
taxonomy and wj stands for the term that appeared in it. For
these two vectors, we formed their weight vectors using the
term’s TFIDF value. To calculate their cosine similarity, the
two vectors’ lengths must be equal. Then we needed to
construct two equal length vectors. We first merged the two
word vectors together to form a new vector, and then we used
this method to construct the weight vector. And for every
word that was missing in the original word vector, we filled
its weight with 0. After this, we could calculate the cosine
similarity. The cosine similarity of these two vectors can be
expressed as:

cosine(ti,JAN(j)) = ∑ wik* wjk,
where, wik indicates the TFIDF weight of term k appearing in
the taxonomy i.
 The final cosine similarity value is between -1 and 1. The
closer is the absolute value to 1, the more similar the two
vectors are. Consequently, we could determine whether a
particular JAN is similar to the taxonomy. In addition to this
value, we also considered the interest hit value. In the final
suggestion rank, the weight consisted of two parts: the cosine
similarity result and PI(ti)

R(T) = Cosine(T,j)*PI(ti)
Based on this rank value, we provided suggestions to the user
for the right taxonomy of this JAN.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

C. The Relationship between local taxonomy and global
taxonomy

 In the KAM, one important part is the communication
capacity between different users. All users should know who
shares interests with them. This part is bridged with the help
of the global taxonomy. While a new JAN is added into user
taxonomy, the KAM also performs the similarity test upon
global taxonomies. The relationship between different users
is established for a JAN sharing the same annotation with a
global ontology.

VII. KNOWLEDGE DISCOVERY PROCESS

One user, at a given point in time, should only reside in
only one context. As we have defined already, the context
provides the current taxonomy and the next series of possible
taxonomies. For each user, his/her ontology shares part of
the universal ontology. With this feature, we can regard
users who share the same ontology as a community. For
instance, professors doing research in computer science
should share the ontology concerning computer science. All
communities share the universal ontology. The Figure 4
illustrates this idea.

Fig. 4. Discovery Process

This also leads to the knowledge discovery process, which
is a three-step procedure. We named this procedure as “Call
it Once”. The discovery first happens locally, in the user
context. Then it expands to communities, where the user
resides in the same ontology, and then explores the universal
ontology. Knowledge discovery can be initiated by a user in
a certain context or by an agent during context switching. No
matter in which way this occurs, it is performed by queries
upon taxonomy. A typical query constitutes a set of phrases.

A. The local Knowledge discovery process

 The local search is confined within the user taxonomies.
For a given query, the cosine similarity described earlier can
still be used. If the search is confined to a particular
taxonomy range, for every JAN, we could perform a
similarity test and the JAN with the largest value was
returned as the query’s result. However, if the search is not
confined to any taxonomy, the similarity test needs to be
performed between the query and all taxonomies. The
method is already illustrated in the cosine similarity part. We
would construct a bigger vector and fill the missing term
weights with 0’s and perform cosine similarity again. The
process acting on the returned taxonomies was similar to
what has been done for an individual taxonomy.

Fig. 5. The Local Search

 The Figure 5 describes a local search belonging to a
professor. When the professor is preparing the course CS
481, she finds a part of her ontology on MATH courses that
was saved before.

B. The Community Knowledge discovery process

 Since people in the same community share the same
ontology, we could use the collaborative filtering (CF)
technique [9] to recommend JANs to a user. There are two
types of collaborative filterings: user based CF and item
based CF. Recall in KAM model, in order to eliminate the
problem of organizing and consistency checks, we applied
ROA architecture which required that all items be uniquely
identified. For an original resource, it is abstracted into a
JAN and added into user's knowledge network. After this
step, it became unique in the whole knowledge network. We
could not directly apply the CF technology upon the JANs.
There are two methods to solve this problem. The first one is
the rudimentary one that uses the JAN's reference, the
original resource, as our item. The other one uses a keyword
to replace the JAN as the comparison item. For the first
method, we can construct the user-item matrix, in which
item's value was the hit number of the JAN.
Then,

 Once we had this matrix, we could use the adjusted cosine
similarity to compare the two JANs. The JANs with highest
similarity should catch the user's eye. The performance
difference between the item-based and the user-based
methods depends on the sparsity of the matrix that was built.
If the matrix is sparse, the user-based performance should be
poorer than the item-based one.
 For the second method, we used a keyword to replace the
JAN, so the user-item matrix was formed in the following
manner. Here are the keywords as a set of JANs :

hitnumberi if item i also appears in
User j’s knowledge network

0 Otherwise

UIij=

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

 We calculated the similarity between the two keywords and
recommended JANs, sorted with the highest similarity
keyword for the user.

C. The Universal Knowledge discovery process

 The final step in “Call it Once” process is to search the
global ontology. Here the query is without any user
preference. For taxonomies in global ontology, we can
perform a local search on user’s related taxonomies, and
regard the returned JANs as a compensation of the result
from the global search and the community search. So the
overall discovery process can be viewed as in the Figure 6.

Fig. 6. The Global Search Process

VIII. CONCLUSION & FUTURE WORK

 In this paper, we illustrated our approach in building up a
user profile from ontology. The focus was on building user
ontology from global ontology, personal file system and the
bookmark system.

Based on the ontology we have built, two context
awareness models were presented in discovering user
preferences. In the KAM, we used these two models to
predict the next user states and provided the state related
knowledge. The knowledge discovery process is what we
called “call it once” in the KAM.

It divided the search into three phases. The first one is the

searching on local. It mainly focuses on finding the
accurately matched local files or taxonomies. The second
one is the searching on community, which is based on the CF
algorithm to provide recommendations. The third one is a
global search without any preferences. We are still fine
tuning the context model. Also, it would be necessary to
increase accuracy of the CF algorithm to ensure scalability
to real-world problems.

REFERENCES
[1] Altmann, J, and P Varaiya. “INDEX project: user support for buying

QoS with regard to userʼs preferences.” 1998 Sixth International
Workshop on Quality of Service IWQoS98 Cat No98EX136 (2005) :
101-104

[2] Lisa Gottlieb and Juris Dilevko. 2001. User preferences in the
classification of electronic bookmarks: implications for a shared
system. J. Am. Soc. Inf. Sci. Technol. 52, 7 (May 2001),

[3] User-preference-based service selection using fuzzy logic,Zhengping
Wu Mu Yuan , Network and Service Management (CNSM), 2010
International Conference

[4] Luyi Wang, Ramana Reddy, Sumitra Reddy, and Asesh Das, A
Context Centric Model for building a Knowledge advantage Machine
Based on Personal Ontology Patterns, in WorldComp
2011(SWWWS’11), pp 99-105

[5] Hele mai Haav and Tanel lauriLubi. A survey of concept-based
information retrieval tools on the web. In In 5th East-European
Conference, ADBIS 2001, pages 29-41, 2001.

[6] Joana Trajkova and Susan Gauch. Improving Ontology-Based User
Profiles, 2004.

[7] S. Devalapalli, R. Reddy, L.Wang, and S. Reddy. Markup and
Validation Agents in Vijjana- Pragmatic Model for Collaborative,
Self-organizing, Domain Centric Knowledge Networks. In WEBIST,
pages 263-269, 2009.

[8] Verayuth Lertnattee and Thanaruk Theeramunkong. Effect of term
distributions on centroid based text categorization. Inf. Sci. Inf.
Comput. Sci., 158:89-115, January 2004.

[9] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl.
2001. Item-based collaborative filtering recommendation algorithms.
In Proceedings of the 10th international conference on World Wide
Web (WWW '01). ACM, New York, NY, USA, 285-295.

[10] Gerard Salton, Christopher Buckley, Term-weighting approaches in
automatic text retrieval, Information Processing; Management,
Volume 24, Issue 5, 1988, Pages 513-523, ISSN 0306-4573,
10.1016/0306-4573(88)90021-0.

[11] 2002 Learning Object Metadata (LOM) Standard
Maintenance/Revision, IEEE 2002

[12] Luyi Wang, Ramana Reddy, Sumitra Reddy and Asesh Das,
Keyphrase extraction algorithm in Knowledge Advantages Machine,
Draft version,

[13] Luyi Wang, Ph.D. dissertation 2012, West Virginia University-Library
Archives

1 if item i also appears in User j’s
knowledge network

0 Otherwise

UIij=

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

