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Abstract—We study the problem of analyzing and classifying
frontal view gait video data. In this study, we suppose that
frontal view gait data as a mixing of scale changing, human
movements and speed changing parameters. We estimate these
parameters using the statistical registration and modeling on a
video data. Our gait model is based on human gait structure
and temporal-spatial relations between camera and subject.
To demonstrate the effectiveness of our method, we conducted
two sets of experiments, assessing the proposed method in gait
analysis for young/elderly person and abnormal gait detection.
In abnormal gait detection experiment, we apply K-nearest-
neighbor classifier, using the estimated parameters, to perform
normal/abnormal gait detect, and present results from an
experiment involving 120 subjects (young person), and 60
subjects (elderly person). As a result, our method shows high
detection rate.

Index Terms—Gait Analysis, Human Gait Modeling, Statis-
tical Registration, Abnormal Gait Detection

I. INTRODUCTION

WE study the problem of analyzing and classifying
frontal view gait video data. A study on the human

gait analysis is very important in the field of the sports/health
managements. For instance, gait analysis is one of the
important method to detect the Alzheimer disease, infantile
paralysis, and any other diseases [1], [2], [3].

Gait analysis is mainly based on motion capture system
and video data. The motion capture system can give the
precise measurements of trajectories of moving objects, but it
requires the laboratory environments and we cannot be used
this system in the field study. On the other hand, the video
camera is handy to observe the gait motion in the field study.

Gage [4] had been proposed brain paralysis gait analysis
using gait video data. Kadaba et al. [5] had been discussed
importance of lower limb in the human gait using gait video
data too. Many gait analysis have recently analyzing using
video analysis software (e.g. Dartfish, Contemplas, Silicon
Coach). For example, Borel et al. [6] and Grunt et al. [7] had
been proposed infantile paralysis gait analysis using lateral
view gait video data.

On the other hand, from the standpoint of statistics, Olshen
et al. [8] proposed the bootstrap estimation for confidence
intervals of the functional data with application to the gait
cycle data observed by the motion capture system. Soriano et
al. [9] proposed the human recognition method based on the
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data matching techniques using the dynamic time warping
of human silhouettes.

However, most studies have not focused on frontal view
gait analysis, because such data has many restrictions on
analysis based on the filming conditions. The video data
filmed from the frontal view is difficult to analyze, because
the subject getting close in to the camera, and data includes
the scale-changing parameters [10], [11]. To cope with this,
Okusa et al. [12] and Okusa & Kamakura [13] proposed a
registration for scales of moving object using the method of
nonlinear least squares.

Okusa et al. [12] and Okusa & Kamakura [13] did not
focus on the human leg swing. In this study, we focus on
the gait analysis using arm and leg swing model estimated
parameters. We suppose that frontal view gait data as a
mixing of scale changing, human movements and speed
changing parameter. We estimate these parameters using the
statistical registration and modeling on a video data. Our gait
model is based on the human gait structure and temporal-
spatial relations between camera and human.

To demonstrate the effectiveness of our method, we con-
ducted two sets of experiments, assessing the proposed
method in gait analysis for young/elderly person and abnor-
mal gait detection.

In young/elderly gait analysis experiment, we analyze
young 120 subjects and elderly 60 subjects (normal gait:
46, abnormal gait: 14). We discuss the normal and abnormal
gait features using the estimated parameters from proposed
model. In abnormal gait detection experiment, we apply a
K-nearest-neighbor (K-NN) classifier, using the estimated
parameters, to perform abnormal gait detection, and present
results from an experiment involving 180 subjects from
young/elderly gait analysis. As a result, our method shows
high detection rate.

II. FRONTAL VIEW GAIT DATA

In this section, we describe an overview of frontal view
gait data. Many of gait analysis using lateral view gait data,
because lateral view gait is easy to detect the human gait
features. However, in a corridor like structure, the subject is
approaching a camera. Such case is difficult observe lateral
view gait.

In a lateral view gait, at least two cycles or four steps are
needed. For more robust estimation of the period of walking,
about 8m is recommended. To capture this movement, the
camera distance required is about 9m. Practically, having
such a wide space is difficult. On the other hand, frontal
view gait video is easy to observe 8m (or more) gait steps
[11].
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Fig. 1. Frontal view gait data

Fig. 2. Filming situation of frontal view gait data

Figure 1 is an example of frontal view gait data recorded
by Figure 2 situation. Figure 1 illustrates difficulty of frontal
view gait analysis. Even if subject do the same motion
with the same timing, frontal view gait data is included
scale changing components. Figure 3 shows subject width
time-series behavior of frontal view gait data. This figure
illustrates frontal view gait data contains many time-series
components.

Fig. 3. Time-series behavior of frontal view subject width

III. MODELING OF FRONTAL VIEW GAIT DATA

A. Preprocessing

The raw video data is difficult to observe subject width and
height time-series behavior because data contain background.
We separate subject from background using inter-frame sub-
traction method (Eq. 1).

∆(T ) = |I(T+1) − I(T )|, T = 1, ..., (n− 1),

∆(T )(p, q) =

{
1 (∆(T )(p, q) > 0)

0 (Otherwise).
(1)

Here, ∆(T ) is an inter-frame subtraction image, I(T ) is
grey scaled video data image at frame T , (p, q) is the pixel
coordinate.

a) Subject Width/Height Calculation: Inter-frame sub-
traction method can separate the subject and background.
However, it is difficult to measure the time-series behavior
of the subject width and height. In this section, we describe
the subject width and height calculation method using inter-
frame subtraction data.

Let us suppose that inter-frame subtraction image is binary
matrix. We can measure the subject height and width by
integration calculation of row and column at each frame. In
this study, we focus on the human gait arm and leg swing
of the frontal view gait. We assume that subject width and
height time-series behavior consist of the arm and leg swing
behavior.

B. Relationship between camera and subject

Figure 4 shows a relationship between camera and subject.
Width and height modeling has same structure. In this
section, we describe the subject width modeling. We can
assume simple camera structure. We consider the virtual
screen exists between observation point and subject, and
we define subject width on the virtual screen xi at i-th
frame(i = 1, ..., n).
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Fig. 4. Relationship between camera and subject

Here we define zi, zj as distance between observation
point and subject at i-th, j-th frame, zs as distance between
observation point and virtual screen, θxi1 , θxi2 as subject
angle of view from observation point at i-th frame, d as
distance between observation point and 1st frame, vi as
subject speed at i-th frame. Okusa et al. [12] defined the
subject length L was constant. We assume that L has the
time-series behavior and we define Li is the subject length
at i-th frame.
xi at i-th frame depends on θxi1 , θxi2 as shown in Figure

4.
xi = zs(tan θxi1 + tan θxi2). (2)

Similarly, the subject length at i-th frame is

Lxi = zi(tan θxi1 + tan θxi2). (3)

From Eq.(2), Eq.(3), ratio between xn and xi is

xn
xi

=
Lxnzi
Lxizn

(4)

Frame interval is equally-spaced (15 fps). Okusa et al. [12]
assumed the average speed is constant. We can assume that
average speed from i-th frame is (n − i) = (zi − zn)/v̄ ,
therefore zi is zi = zn− v̄(n− i). We substitute zi to Eq.(4)

xi =
Mxiγ

γ + (n− i)
xn + ϵi, (5)
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where γ is zn/v̄, Mxi is Lxi/Lxn , ϵi is noise. From Eq.(5),
predicted value x̂

(n)
i is registration from i-th frame’s scale

to n-th frame’s scale

x̂
(n)
i =

γ + (n− i)

Mxiγ
xi. (6)

Similarly, we can define subject height as

yi =
Myiγ

γ + (n− i)
yn + ϵi, (7)

where Myi is Lyi/Lyn .
Next, we discuss the scale changing, human movement,

and speed changing parameter estimation model.

C. Scale changing parameter estimation

From Eq.(5), scale parameter is γ. Solve Eq.(5) for γ
shows

γ =
xi(n− i)

xi −Mxixn
. (8)

Here γ is the ungaugeable parameter, and we estimate it
using nonlinear least squares method

S(γ,Mxi) =
n∑

i=1

{
xi −

Mxiγ

γ + (n− i)
xn

}2

. (9)

D. Human movement parameter estimation

Mxi and Myi are movement model of the subject. If the
subject is the rigid body, movement model Mxi and Myi are
constant. Meanwhile, human gait is not a constant. Mxi and
Myi

needs the movement model because the subject body is
moving wildly.

b) Human gait modeling: arm swing: Collins et al. [14]
has reported that arm swing is an very important role in the
gait motion based on the simple gait model. We consider the
human gait modeling based on Collins et al. [14] model (see
Figure 5).

Frontal View Lateral View Top View

Fig. 5. Gait model
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Fig. 6. Arm swing model

It seems reasonable to think that arm is single pendulum.
Collins et al. [14] model assumed the arm swing is move to
anteroposterior direction. Our model, on the other hand, can
assume that arm swing move to an oblique direction (Figure
6).

Figure 6’s model has an ungaugeable area. Our method’s
width/height calculation is based on integration calculation
of row and column at each frame. If the arm move to inside
body area, arm length is ungaugeable. Arm swing model is

xi =

(
W (P1,P2,Q1,Q2,g1,g2,f,i)
W (P1,P2,Q1,Q2,g1,g2,f,n)

+ s
)
γ

γ + (n− i)
xn + ϵi

W (P1, P2, Q1, Q2, g1, g2, f, i) =

P1τ(fi+Q1, g1) + P2τ(fi+Q2, g2)

τ(θ, g) =

{
sin(θ) + g (sin(θ) + g > 0)

0 (Otherwise)
(10)

where P1 = a1 cos(ψ) and P2 = a2 cos(ψ). P1τ(fi +
Q1, g1) and P2τ(fi + Q2, g2) are right and left arm model
respectively. From Eq.(10), we estimate each gait parameter
using nonlinear least squares method.

S(γ, P1, P2, Q1, Q2, g1, g2, f, s) =

n∑
i=1

{
xi −

(
W (P1,P2,Q1,Q2,g1,g2,f,i)
W (P1,P2,Q1,Q2,g1,g2,f,n)

+ s
)
γ

γ + (n− i)
xn

}2
(11)

Here, f is gait cycle frequency, s is adjustment parameter,
P1, P2 are arm swing amplitude parameters, Q1, Q2 are arm
phase parameters, and g1, g2 are ungaugeable area parame-
ters.

c) Human gait modeling: leg swing: The leg swing
modeling is simpler than arm swing model because the leg
model does not have a ungaugeable area. Okusa et al. [12]
and Okusa & Kamakura [13] does not consider the leg swing.
It seems reasonable to think like arm swing that leg swing
is single pendulum (Figure 7).

b cos(ω)

ω

b

Fig. 7. Leg swing model

Leg swing model is

yi =

(
H(b1,Q3,f,i)
H(b1,Q3,f,n)

+ s
)
γ

γ + (n− i)
yn + ϵi

H(b1, Q3, f, i) = b1 cos(fi+Q3). (12)

Here b1 is leg swing amplitude parameter, and Q3 is leg
phase parameter.

E. Speed changing parameter estimation

Frontal view video data is difficult to see the subject’s
speed. If our gait model is correct, observed value xi and yi
is same as the fitted value of gait model at point ℓi. Previous
model’s ℓi assumes equally spaced (ℓi = i = 1, ..., n). We
estimate ℓxi and ℓyi value for minimize the observed value
and model fitted value at ℓi. We can define estimated value
ℓxi and ℓyi as a virtual space coordinate at i-th frame (Figure
8).
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Eq.5, Eq.7 with the coordinate estimation shows

xi =
Mxiγ

γ + (n− ℓxi )
xn + ϵi

yi =
Myiγ

γ + (n− ℓyi )
yn + ϵi. (13)

Here, ℓxi , ..., ℓxn and ℓyi , ..., ℓyn are virtual space coor-
dinate parameters of width and height respectively. From
Eq.13, arm swing and leg swing model with the coordinate
estimation shows Eq.14, Eq.15.

xi =

(
W (P1,P2,Q1,Q2,g1,g2,f,ℓxi

)

W (P1,P2,Q1,Q2,g1,g2,f,ℓxn )
+ s

)
γ

γ + (n− ℓxi )
xn + ϵi

W (P1, P2, Q1, Q2, g1, g2, f, ℓxi ) =

P1τ(fℓxi +Q1, g1) + P2τ(fℓxi +Q2, g2)

τ(θ, g) =

{
sin(θ) + g (sin(θ) + g > 0)

0 (Otherwise).
(14)

yi =

(
H(b1,Q3,f,ℓyi )

H(b1,Q3,f,ℓyn )
+ s

)
γ

γ + (n− ℓyi )
yn + ϵi

H(b1, Q3, f, ℓyi ) = b1 cos(fℓyi +Q3). (15)

Fig. 8. Virtual space coordinate estimation

We suppose that virtual space coordinate of subject is
ℓ̂i = (ℓ̂xi + ℓ̂yi)/2. Then, we can assume that subjects speed
is 1st order difference of ℓ̂i, and acceleration is 2nd order
difference of ℓ̂i.

We estimate these models parameters using Okusa &
Kamakura [15] method. This method is very stable and very
fast to estimate these parameters.

F. Gait parameter estimation

In this section, we discuss the gait parameter estimation.
Figure 9 is plot of the subject width(pixel) time-series

behavior. Here dotted line represent fitted value of Eq.5 (scale
variant estimation model), continuous line represent fitted
value of Eq.10 (scale variant + arm movements estimation
model), dashed line represent fitted value of Eq.14 (scale

variant + arm movements + speed variant estimation model).
Similarly, Figure 10 is plot of the subject height(pixel)
time-series behavior. Here dotted line represent fitted value
of Eq.7 (scale variant estimation model), continuous line
represent fitted value of Eq.12 (scale variant + leg movements
estimation model), dashed line represent fitted value of Eq.15
(scale variant + leg movements + speed variant estimation
model).
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TABLE I
RSS, AIC, CAIC OF WIDTH DATA

RSS AIC cAIC
1st order regression 6834.98 569.94 569.99
2nd order regression 3808.77 526.91 527.08
Eq.5 model 3077.40 508.50 510.66
Eq.10 model 425.63 372.17 374.86
Eq.14 model 189.46 463.84 -1032.56

TABLE II
RSS, AIC, CAIC OF HEIGHT DATA

RSS AIC cAIC
1st order regression 21502.96 665.65 665.70
2nd order regression 7149.68 581.77 581.93
Eq.7 model 5248.84 555.66 557.82
Eq.12 model 631.11 406.43 409.08
Eq.15 model 401.15 519.09 -1804.91
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Table I is RSS, AIC [16] and cAIC [17] value of 1st
order regression, 2nd order regression, Eq.5, Eq.10 and Eq.14
models of width data. Table II is RSS, AIC and cAIC value
of first order regression, second order regression, Eq.7, Eq.12
and Eq.15 models of height data.

In Table I, II, most minimal AIC model is Eq.10, Eq.12.
Meanwhile, most minimal RSS and cAIC model are Eq.14,
Eq.15. Burnham & Anderson [18] strongly recommend using
cAIC, rather than AIC, if number of data n is small or
number of parameters k is large. Since cAIC converges to
AIC as n gets large, cAIC generally should be employed
regardless. Therefore, we select the Eq.14, Eq.15 model.
Figure 9, 10 and Table I, II illustrates our method has a
good performance.

In next section, we discuss the effectiveness of our method.

IV. EXPERIMENTAL DETAILS AND RESULTS

To demonstrate the effectiveness of our method, we con-
ducted two sets of experiments, assessing the proposed
method in gait analysis for young/elderly person and abnor-
mal gait detection. We use SONY DCR-TRV70K camera.
Frame rate of video data is 15 fps and resolution is 640×480.

In this paper, we focus on γ̂ (speed parameter), (P̂1 +
P̂2)/2 (width amplitude parameter), and b̂1 (height amplitude
parameter).

A. Gait analysis: young person

In this experiment we took movie of 120 subjects walking
video data from frontal view (10 steps, Male: 96 (aver-
age height: 173.24cm, sd: 5.64cm), Female: 24 (average
height:156.25cm, sd: 3.96cm)) and apply to our proposed
method for the gait analysis.

Figure 11 is plot of speed vs width amplitude vs height
amplitude. Figure 12, 13 are width amplitude vs speed and
height amplitude vs speed. The important point to note is
that speed parameter γ̂ is zn/v̄. If the subject walking fast,
speed parameter γ̂ is small. From Figure 11, 12, 13, width
amplitude vs speed and height amplitude vs speed have a
nonlinear relationship. This results means, if the subject’s
arm swing and leg swing moving strongly, subject’s walking
speed is fast.

Fig. 11. Speed vs width amplitude vs height amplitude (young)
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Fig. 12. Width amplitude vs speed (young)
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Fig. 13. Height amplitude vs speed (young)

B. Gait analysis: elderly person

In this experiment we took movie of 60 subjects walking
video data from frontal view (10 steps / average age: 76.97・
sd: 4.16 / abnormal gait subjects; average age: 77.56・sd:
4.35 / normal gail subjects; average age: 75.37・sd: 3.18)
and apply to our proposed method for the gait analysis.

Fig. 14. Speed vs width amplitude vs height amplitude (elderly)

Figure 14 is plot of speed vs width amplitude vs height
amplitude. Black and red dot means normal and abnormal
gait subjects respectively.

Figure 15, 16 are width amplitude vs speed and height
amplitude vs speed. Black and red dot means normal and
abnormal gait subjects respectively. From Figure 14, 15, 16,
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normal gait subject width amplitude vs speed and height
amplitude vs speed have a nonlinear relationship like a young
person. However, on the other hand, abnormal gait subject
estimated parameters does not have nonlinear relationship.
These abnormal gait parameters clustered in different place
from normal gait subjects. The result leads to our presump-
tion that the abnormal gait subject trying to moving fast, but
this effort is not effective to moving speed.

0.5 1.0 1.5 2.0

40
50

60
70

80

Width amplitude

Sp
ee
d

Fig. 15. Width amplitude vs speed (elderly)
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Fig. 16. Height amplitude vs speed (elderly)

C. Abnormal gait detection

In this section, we apply K-NN classifier (K=3), using
the estimated parameters, to perform normal/abnormal gait
detect, and present results from an experiment involving 120
subjects (young person), and 60 subjects (elderly person).

To evaluate our estimated parameters, we apply these
parameters to leave-one-out cross-validation test. Table III
is average detection rate of normal/abnormal gait. Table
III shows our estimated parameters may be used for the
normal/abnormal gait detection.

TABLE III
NORMAL/ABNORMAL GAIT AVERAGE DETECTION RATE(%)

Normal Gait Abnormal Gait
Normal Gait 98.2 1.8

Abnormal Gait 0 100

V. CONCLUSIONS

In this article, focusing on the human gait cycles, we
consider the human gait modeling based on simple gait struc-
ture. We estimate the parameters of the human gait cycles

using the method of nonlinear least squares. We also show
that estimated parameters may be used for the human gait
analysis and abnormal gait detection. Experimental results
verify that our model can estimate the various parameters
and these parameters are good feature values of the human
gait. We plan to implement this scheme for the sports analysis
of the long-distance runner.
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