
 

Abstract— Species richness is one of the important 

measures used by ecologists. In this paper we try to predict the 

changes in the number of species and to identify the most 

important features that can be used. For this reason we used 

EcoSim a multi-food chain evolving ecosystem simulation. In 

this study we predict the variations in the number of species in 

EcoSim by applying machine learning techniques. We show 

that environmental and genetic factors have a critical role in 

this prediction. Identifying important features for species 

richness prediction and the relationship between them could be 

beneficial for future conservation studies. 

 

Index Terms— ecosystem simulation, decision tree, 

prediction, species richness 

I.  INTRODUCTION 

PECIES richness is a critical variable for biodiversity 
management that has been used for decision making and 

prioritization of conservation efforts [1-3]. Ecological theory 
assumes that species richness is determined in part by 
environmental gradients and resources [4]. Defining a set of 
environmental variables which are recognized to entail direct 
or indirect responses from presence/absence species and 
linking them by an ecologically-relevant statistical model 
enable the acquisition of significant information aimed at 
conservation planning [4-7]. Several studies have also 
demonstrated strong relationships between total species 
richness and measures of temperature, precipitation and net 
primary productivity [8-12]. Developing a standardized 
method of predicting species richness is vital for 
international conservation efforts [1-3], [13]. Few tools are 
available to provide decision makers with relevant data on 
biodiversity patterns, ecosystem processes, and underlying 
forces at spatial scales from local to global [14]. 

Considering working with real data, it is highly expensive 

and time-consuming to measure species richness over 

extensive areas, especially for nonvascular plants and 

invertebrates and in tropical or marine ecosystems [15-16].  
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By using computer simulations, it would be possible to 

examine factors that could affect the performance of models 

that predict species occurrence based on environmental 

variables [17]. Simulation modeling explicitly incorporates 

the processes believed to be affecting the geographical 

ranges of species and generates a number of quantitative 

predictions that can be compared to empirical patterns. The 

simulation approach offers new insights into the origin and 

maintenance of species richness patterns, and may provide a 

common framework for investigating the effects of 

contemporary climate, evolutionary history and geometric 

constraints on global biodiversity gradients [18]. But most of 

the simulations failed to provide a conceptual bridge between 

macroecology and biogeography. The problem is that those 

simulations are contain a lots of simplifications [18]. They 

are not as complex as real ecosystems [19, 22], therefore in 

most cases the results that come from those simulations are 

not anymore valid for making any conclusion for real 

systems. 

In this research, we try to predict the changes in the 

number of species using several of important features by 

applying machine learning techniques such as different 

feature selection algorithms and decision tree. To best of our 

knowledge, this is the first time that a complex agent-based 

simulation (EcoSim [23]) has been used to examine the 

effects of different features on prediction of changes in 

species richness by extracting meaningful rules from 

environmental and genetic parameters. Several studies 

evaluated the capacity of the EcoSim platform to model real 

ecosystems and to make realistic predictions regarding 

species abundance patterns [20] and the complexity levels of 

the simulation [21]. These studies show that the communities 

of species generated by the simulation follow the same 

lognormal law as natural communities and that EcoSim can 

help evaluate the overall level of diversity of a given 

community. 

For extracting rules and finding a relationship between 

environmental variables and species richness, different 

approaches using nonparametric coefficients, especially 

decision trees, have been demonstrated to outperform linear 

models since both linear and nonlinear relationships between 

biotic and abiotic components were well identified [24]. 

Therefore we used this machine learning algorithm to select 

potential features for the sake of species richness prediction. 

Our objective in this study, was to conduct a robust test of 
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the effectiveness of our framework for identifying important 

features in prediction of changes in the number of species 

and introducing a restricted set of features that could help 

biologists to focus on a specific variables (since there are lots 

of features that can be studied by biologists). Using these 

simulations as a shortcut can save time and resources for 

biologists. Besides, the relationships between these features 

that can be discovered in the predictive rules extracted by our 

approach could lead to a good combination of features that 

biologists can use it in their future studies. 

This paper is organized as follows: In section II, we 

present our ecosystem simulation. In section III, we explain 

the details of methodologies for computation and selection of 

important features and then we present the obtained results 

from applying prediction method to the species richness of 

ecosystem simulation. 

II. AN INDIVIDUAL-BASED ECOSYSTEM SIMULATION 

In this section, the main parts of the evolving agent-based 

predator/prey ecosystem EcoSim are briefly introduced. The 

comprehensive description of this simulation has been 

proposed in [23]. This simulation is a logical description of 

how a simple ecosystem performs. In this simulation, 

complex adaptive agents (individuals), each one of them 

using a Fuzzy Cognitive Map (FCM) as a behavioral model, 

are either a prey or a predator and a virtual torus world is 

implemented as a 1000 × 1000 matrix of cells. 

A. Fuzzy Cognitive Maps 

FCMs are weighted graphs aiming to represent the causal 

relationship between concepts and to analyze inference 

patterns. In our simulation, the FCM is not only the base for 

describing and computing the agent behaviors, but also the 

platform for modeling the evolutionary mechanism and the 

speciation events as it is coded in the individual’s genome. 

Each individual performs an action during a time step based 

on its perception of the environment. The FCM, called a map 

in our system, is used to model the agent behaviors (structure 

of the graph) and to compute the next action of the agent 

(dynamics of the map). A map contains three kinds of 

concepts: sensitive, internal, and motor. The activation level 

of a sensitive concept is computed by a fuzzification of the 

information coming from the environment (see Fig. 1). The 

activation level of the motor concept is used to determine 

what the next action of the agent will be, and a 

defuzzification of its value can be used to determine the 

amplitude of the action. Finally, the internal concepts' 

activation levels correspond to the levels of intensity of the 

internal states of the agent and affect the computation of the 

dynamic of the map. 

B. Intelligent Agents 

Each agent has one FCM and several properties that 

determine its physical capabilities and its behaviors. The 

behaviors are determined by the interaction between the 

FCM and the environment. Each agent possesses its own 

FCM (coded in its genome, which is subject of the 

evolutionary process). The FCM contains sensitive concepts 

like foeClose, foodClose, energyLow, internal concepts like 

fear, hunger, curiosity, satisfaction, and motor concepts like 

evasion, socialization, exploration, and breeding. It also 

contains links and weights representing the mutual influences 

between these concepts. The FCM of an agent, coded in its 

genome, is transmitted to its offspring after being combined 

with the one of the other parent and after the possible 

addition of some mutations. The behavior model of each 

agent is therefore, unique. 

As an example, a very simple map can be defined to 

model an agent perceiving and reacting to its distance from a 

foe. The closer the foe, the more frightened the agent. 

Depending on this distance and also on the fear level, the 

agent will decide whether or not it will evade. The more 

frightened the agent, the faster the evasion. An FCM 

corresponding to this example is given in Fig. 1. In this 

example, there are two sensitive concepts: foeClose and 

foeFar, one internal: fear and one motor: evasion. There are 

also three influence edges: closeness to a foe excites fear, 

distance to a foe inhibits fear and fear causes evasion. 

Activations of the concepts foeClose and foeFar are 

computed by fuzzyfication of the real value of the distance to 

the foe, and the defuzzyfication of the activation of evasion 

tells us about the speed of the evasion. In our simulation each 

individual posses its proper map which contains around 30 

concepts and hundreds of edges. 

C. Species 

In this simulation, a species is a set of individuals 

associated with the average of the genetic characteristics of 

its members. The average map of a species is computed 

based on the FCM matrices of all individuals' members of 

this species. It is considered that a species split if the 

difference between the maps of the two most dissimilar 

agents in the species is greater than a threshold; the threshold 

is the same for all species [23, 25]. Our speciation method 

consists in applying a 2-means clustering algorithm. With 

this process an initial species is split into two new species, 

each one of them containing the agents that are mutually the 

most similar. It is worth to notice that the speciation 

mechanism is only a labeling process. The information about 

species membership is not use for any purpose during the 

simulation but only for post-processing analysis of the 

results. It can be viewed as an online hierarchical clustering 

process. As clustering is a well known difficult and time 

consuming task, it is impossible to apply it to the whole 

population of individuals’ genomes (at some time step there 

are more than 500 000 existing individuals) at every time 

step. We have therefore chosen a heuristic hierarchical 

approach in which the clustering is done through the whole 

process, in a given time step only a small subset of the whole 

population being clustered by our species splitting 

mechanism. However, we have observed that the quality of 

the clusters obtained by this heuristic approach is better, in 

term of both inter and intra cluster similarity, than the one 

obtained by applying a global clustering algorithm to the 

whole population. That can be explained by the fact that the 

loss in quality due to the hierarchical heuristic approach is 

less than the one due the high complexity of solving the 

whole clustering problem.  
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Fig. 1. A simple fuzzy cognitive map for detection of foe and decision to 

evade with its corresponding matrix with 0 for “Foe close”, 1 for “Foe far”, 
2 for “Fear” and 3 for “Evasion” and the fuzzyfication and defuzzyfication 

functions. 

D. Update 

At each time step, the values of the states of all the 

parameters in the model are updated. The successive phases 

of the update process are as follows for each agent: 

perception of the environment, computation of all concepts 

of its map, application of their selected action and update of 

the energy level. Then, there is an update of the lists of 

agents, species and cells around the world. For each action 

which requires the agent movement, its speed is proportional 

to the level of activation of the corresponding action concept. 

Fig. 2 shows the population of prey and predator agents after 

each time step. These patterns and the properties of the 

communities of species that are generated by simulation have 

been shown to be very similar to the ones observed for real 

communities of species [20]. A recent execution of the 

simulation produced approximately 30,000 time steps in 60 

days by using the SHARCNET resources. The computed 

average and standard deviation for the number of prey 

individuals are 150,000 and 47,000 respectively (for predator 

21,000 and 8,000) and the average and standard deviation for 

the number of prey species are 22 and 7 (for predator 13 and 

4). 

 

 
Fig. 2. Population of prey and predator agents. 

 

III. RESULTS 

A. Development of a predictive model 

In this study, the goal is the prediction of changes in 

species richness 100 time steps later using a set of features 

from EcoSim which produces a large amount of data about 

the individuals and the species in each time step. We 

conducted three runs of the simulation with the same 

parameters. The prepared training dataset comes from two 

independent runs that contain 20,000 samples (10000 time 

steps for each unique run) related to about 38 species in 

average. Each sample is label ‘smaller’ or ‘bigger’ if the 

number of species in the world respectively has decreased or 

has increased (or without change) 100 time steps later. The 

test set contains about 10,000 samples. Both the training and 

the test datasets contains almost an equal number of 'smaller' 

labels and 'bigger' labels. The most important part for 

prediction is the selection of the most significant features. In 

each time step, every individual has a certain number of 

attributes (feature). We started our learning process with an 

initial set of 49 features. These features are average over all 

individuals and are: 12 sensitive concepts’ average activation 

level, 7 internal concepts’ average activation level, 7 motor 

concepts’ average activation level, 11 actions frequency, the 

total amount of food in the world, the total population size, 

the ratio of individuals in a species to the whole population 

size, the number of dead individuals in the world, the genetic 

diversity of the whole population, the average age of 

individuals, the average energy and speed of individuals, the 

average genetic distance of all the genomes of the individuals 

from initial genome, the average amount of energy transmit 

from a parent to a child (parental investment) and the current 

number of species. The genetic diversity of a species 

measures how much diversity exists in the gene pool of the 

individuals of a species. The entropy measure, which we use 

in this project, is commonly used as an index of diversity in 

ecology and increasingly used in genetics [26]. 

We use decision tree as a predictive model, applying the 

C4.5 algorithm implemented in [27]. Decision trees are 

effective techniques for discovering the linear and non-linear 

structures in data and are simpler to interpret than artificial 

neural networks since they provide a set of binary decision 

rules. Even if the decision tree technique is not the best 

machine learning techniques in term of accuracy of the 

obtained model, the possibility to understand the obtained 

model and to discover the effect of the variables on the 

prediction is what have guided our choice for this approach. 

The high number of features leads to very complex models 

which are extremely hard to interpret and prone to over-

fitting (the obtained tree has 342 rules). Therefore, we tried 

to reduce the number of features by selecting the ones that 

have the higher impact on prediction. We used different 

feature selection algorithms such as Linear-Forward-

Selection and Greedy-Stepwise search on WEKA (V3.6.4). 

These algorithms rank the features by the level of importance 

in the prediction and eliminate all features that do not 

achieve any score. Both feature selection algorithms show 

the highest scores for only five features: Current number of 

species, amount of food, parental investment, genetic 

evolution and genetic diversity. These features have been 

used to learn the prediction model. Using only this subset of 

features, the prediction accuracy decreases by 5% on training 

set and increases by 9% on validation set. With these five 

features, the obtained tree has 35 rules which are still hard to 

interpret because they are very specialized using different 

values of these five features. For example, there is a branch 

in the tree for every short range of values for a feature. In 
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order to get a smaller tree for extracting meaningful rules 

with reasonable accuracy, we chose to use decision tree with 

the confidence factor 0.25 for pruning and 100 minimum 

instances per leaf [27]. This ensured that the final model 

neither fitted too specific of the training data set, nor was so 

general that it renders its predictions meaningless. With this 

reduction in size, the obtained tree has 10 rules (Fig. 3). The 

accuracy decreased by 7% on training set and increased by 

3% accuracy on validation set. 

For comparing the quality of classification, four measures 

of accuracy, true positive (TP) rate, true negative (TN) rate, 

global accuracy, and ROC area have been used. The global 

accuracy shows the percentage of correctly classified 

samples. The true positive (negative) rate presents the 

percentage of true classified positive (negative) samples. 

Finally, ROC area reveals sensitivity by measuring the 

fraction of true positives out of the positives versus the 

fraction of false positives out of the negatives. 

For the training and test set, using 10-fold cross-validation, 

the final tree model has a total accuracy of 82%, the two 

classes being predicted with almost the same high accuracy. 

The accuracy of the prediction on training data sets with 10-

fold cross-validation is given shown in TABLE I. 

 
TABLE I. Results of prediction on train set. 

Class TP Rate FP Rate Precision ROC Area 

Smaller 0.834 0.184 0.794 0.89 

Bigger 0.816 0.166 0.853 0.89 

Total 0.824 0.174 0.826 0.89 

 

 For the test set, we picked a completely separate run of 

simulation. In this case the total accuracy is about 80% 

which means that, using selected features, prediction of 

changes in species richness time series is possible with high 

level of accuracy even on data generated by an independent 

process (TABLE II). This means that the rules we have 

discovered all quite general and could bring some interesting 

insight on the speciation process. 
 

TABLE II. Results of prediction on test set. 

Class TP Rate FP Rate Precision ROC Area 

Smaller 0.777 0.169 0.798 0.872 

Bigger 0.831 0.223 0.812 0.872 

Total 0.806 0.198 0.805 0.872 

 

B. Extracting the Rules from Decision Tree 

Decision tree effectively modeled much of the variations 

in species richness as this method was able to both select a 

relevant set of predictor variables and to make accurate 

predictions. The splitting rules used in the partitioning 

algorithm split the data at values that were ecologically 

meaningful, describing the relationship between species 

richness and environmental parameters. This demonstrates 

the utility of trees as a powerful exploratory modeling tool 

for building and analyzing prediction models in ecology.  

Looking at the selected features and the tree obtained for 

prediction (Fig. 3), we can conclude that genetic features and 

world productivity have an important role on variation of 

species richness. We can also observe that the tree is well 

balanced in term of rule support and in term of accuracy. It 

means that all of the rules are important and correspond to a 

situation characteristic of one of the two possible states we 

try to predict. One of the rules is about a very high amount of 

food availability and the number of species that is not low 

(Rule #3). This rule associates the high level of food to a 

decrease in the number of species. According to several 

studies [28, 29], this rule makes sense because when there is 

a high amount of food in the environment means there is few 

individuals that consume it. Low number of individuals 

could be a sign for a low number of species. According to 

[28], richness of animal populations is determined by the 

abundance, distribution and diversity of food resources. 

If the number of species is low and also the amount of 

available food is low (Rule #1), it should means that the 

environment is particularly difficult, the fact that it leads to a 

decrease in the number of species is quite intuitive. However, 

this rule is the one with the lowest accuracy which mean that 

the phenomenon is not as simple as that. This should explain 

the multiple rules that exist (#4 to #10) that are in the 

‘Middle Range’ for the amount of food available. If the 

amount of food is high (Rule #2), it means that it is easy for 

the individuals to survive and reproduce and, with an 

increase in population size and as the number of species is 

currently low, we can expect an increase in the number of 

species. Using machine learning algorithms like the one that 

we used allows discovering how adjusting amount of food 

can be used to control the system. This mechanism could be 

a direction for future conservation researches. 

These two cases correspond to extreme situations for the 

availability of food, but there are intermediate situations. 

These cases are trickier for prediction and need the use of 

other features. Our model discovers the interest of the 

variable describing parental investment (the average amount 

of energy transmit from a parent to a child). When parental 

investment is low and the number of species is also low, the 

variable describing the distance evolution become involved. 

Distance evolution reflects the genetic evolution of 

individuals from beginning. If distance evolution is high 

(Rule #5), which represent situation in which the evolution is 

fast, the possibility of an increase in number of species arises 

and we could expect an increase in the number of species. 

This rule is one of the most important one, with the highest 

support and a very good accuracy.  

Conversely, if the distance evolution is low (Rule #4), a 

decrease in the number of species will happen which make 

sense. This phenomenon has been found by other studies [30, 

31]. They emphasize that mating can contribute to the origin 

of reproductive isolation by increasing genetic variance, 

which facilitates splitting of a population into two non-

interbreeding parts. According to [30], distance evolution has 

a direct relationship with the speciation process. If the 

current number of species is high, other features are needed 

to make the prediction. One such feature is the amount of 

genetic diversity (Entropy) that we estimate with the 

Shannon entropy. When the genetic diversity is high (Rule 

#7), there are many individuals that cannot mate together 

anymore and speciation happens, so we can expect an 

increase in number of species. Conversely, when the genetic 

diversity is low (Rule #6), the number of species decreases.  
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Fig. 3. The decision tree corresponding to the partitioned feature space for prediction of changes in species richness. Number of samples covered by each 

rule and the accuracy are also given. 

 

This process also was found by [30], which shows 

speciation through an increase in genetic variance between 

populations can occur by evolution over time. This 

phenomenon has also already been observed in EcoSim [31]. 

When the parental investment is high and the average 

number of species are in a middle range, the next important 

feature again is genetic diversity. High value of genetic 

diversity (Rule #9) could stand for more possibility of 

speciation in the next time steps for the same reasons that 

have been explained above and for low genetic diversity 

(Rule #8), number of species decreases as well. The parental 

investment feature itself stands for the amount of energy that 

is transferred from parents to the new-born individuals. This 

feature is also subject to mutation during evolutionary 

process. High value of parental investment and high number 

of species (Rule #10, which has the highest accuracy and a 

good support) means that for such situation (there is also not 

much food available)  having a high parental investment in 

energy to their child leads to a high probable decrease in the 

number of species. Other studies also emphasize the effect of 

balance of energy on species richness [32]. Environmental 

energy availability can explain much of the spatial variation 

in species richness [33 - 35]. 

By identifying the most influential variables (and the 

relative value for each feature that leads to specific rule), this 

study provides an important first step towards the 

development of future predictions of species richness for 

predator-prey ecosystems that can incorporate higher 

resolution data. 

IV. CONCLUSION 

In this paper a machine learning techniques has been 

applied to data generated by EcoSim, an individual-based 

ecosystem simulation, to predict variations in species 

richness. Our objective in this study, was to conduct a robust 

test of the effectiveness of our framework for identifying 

important features for species richness prediction. We 

initially used all possible features available to predict species 

richness. Then we used feature selection algorithms such as 

Greedy-Stepwise and Linear-Forward-Selection to detect the  

five most important features that guarantee maximum 

possible prediction accuracy. By interpreting the obtained 

decision tree we have been able to extract meaningful rules 

to enrich our knowledge about the kind of features involved 

and how their combination can be used to predict species 

richness variation. 

According to the results, a specific range of amount of 

food available in relation to the current number of species 

could be critical for ecosystem. So for future records and real 

data, finding such a relationship could help biologists in 

conservation efforts. Genetic features have important roles in 

species richness prediction which seems reasonable as the 
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whole concept of species rely on the notion of similar genetic 

characteristics. These results confirmed, that our 

implementation of species in EcoSim has the capacity to 

reflect concepts and behaviors observed in population 

genetics that affect the species richness of an ecosystem. 
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