

Abstract- The low precision of the Web search engines
coupled with the ranked list presentation make it hard for users
to find the information they are looking for. In this paper, the
Web Document Clustering problem is studied. We propose a
new data structure known as Compact Directed Acyclic Word
Graph (CDAWG). The CDAWG is a space-efficient data
structure used in handling and analyzing repetitions in a text. It
is superior in terms of memory/space usage over Suffix Trees
and ordinary DAWG especially on large data collection sets.

Index Terms--Information retrieval, Acyclic Word Graph,
clustering, suffix trees

I. INTRODUCTION

Document retrieval systems typically present search

results in a ranked list, ordered by their estimated relevance
to the query. The relevancy is estimated based on the
similarity between the text of a document and the query.
Such ranking schemes work well when users can formulate
a well-defined query for their searches. However, users of
Web search engines often formulate very short queries (70%
are single word queries [1]) that often retrieve large numbers
of documents. These problems are provoked when the users
are unfamiliar with the topic they are querying about.
Therefore, the vast majority of the retrieved documents are
often of no interest to the user. Such searches are termed low
precision searches.

Document clustering algorithms attempt to group similar

documents together. Clustering the results obtained by Web
search engines can provide a powerful browsing tool. The
“user-cluster hypothesis” used in this research is that users
have a mental model of the topics and subtopics of the
documents present in the result set.

Similar documents will tend to belong to the same mental
category in the users’ model. Thus, the automatic detection
of clusters of similar documents can help the user in
browsing the result set.

The key requirements for document clustering of search
engine results are:

1. Coherent Clusters: The clustering algorithm should

group similar documents together.

2. Efficiently browsable: The user needs to determine at a

glance whether the contents of a cluster are of interest.
Therefore, the system has to provide concise and accurate
cluster descriptions.

Manuscript received July 2, 2012; revised August 11, 2012.
I.A.R. Moghrabi is a professor of Computer Science at the M.I.S
Department, Gulf University for Science and Technology, Kuwait
(moughrabi.i@gust.edu.kw).

3. Speed: The clustering system should not introduce a

substantial delay before displaying the results.

Response time of an information system can be improved

by reducing the number of buckets accessed when retrieving
a document set. One approach is to restructure the document
base in such a way that similar documents are placed in
close proximity in the document space.

In this work, we study CDAWG (Compact Directed

Acyclic Word Graphs) Clustering which is well suited for
large collection sets like web documents and is both
memory and space efficient.

II. DOCUMENT CLUSTERING IN INFORMATION
RETRIEVAL

Document clustering has initially been investigated in

Information Retrieval mainly as a means of improving the
performance of search engines by pre-clustering the entire
corpus [2], [3], [4]; [5]. The cluster hypothesis [6] states
that similar documents will tend to be relevant to the same
queries, thus the automatic detection of clusters of similar
documents can improve recall by effectively broadening a
search request.

A second approach has been to group retrieval results

using a pre-computed hierarchy of clusters of the entire
corpus [7]. As the pre-computed clusters are not always
“suitable” for the retrieval results, additional processing
might be needed to improve the quality of the clusters [8].
This is done by first finding a set of clusters in the existing
cluster hierarchy that represent a reasonable embedding of
the retrieved documents. Large clusters are expanded and
replaced by their children, resulting in a predefined constant
number of clusters. A clustering algorithm is then applied to
these predefined clusters (merging similar clusters together).

The CDAWG algorithm identifies phrases that are

common in the document set, and use these phrases as the
basis for creating clusters.

Phrases have long been used to supplement word-based

indexing in IR systems. Syntactic phrases are generated
using syntactic parsing to find words in a particular syntactic
relationship. These techniques break down into two major
categories: template-based and parser-based. Template-
based techniques attempt to match adjacent words against a
library of templates such as <JJ-NN NN> (adjective noun)
and <NN PP NN> (noun preposition noun) [7]. Parser-based
systems attempt to analyze entire sentences. Recently, the
use of syntactic phrases has shown a consistent and
significant improvement in retrieval performance (typically
improving precision without hurting recall [9]).

Acyclic Word Graph for Web Clustering

Issam A.R. Moghrabi, Member, IAENG

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

The use of phrases or multiword features in document
clustering is less common. Pairs of words that co-appear
within a sliding window of five words (termed lexical
affinities) were used as the attributes of the documents'
vector representations (instead of single words) [10]. A
standard HAC algorithm was then applied, producing better
results than when using vector representations with single
words as attributes.

III. COMPACT DIRECTED ACYCLIC WORD

GRAPHS

The Directed Acyclic Word Graph (DAWG) is a space-

efficient data structure to treat and analyze repetitions in a
text, especially in DNA sequences and large data collection.

In this section we will utilize a new linear algorithm

presented in [11] constructs Compact DAWG (CDAWG) as
the data structure to hold the Web Document Suffixes.

Fast and space-economical methods for direct

construction are important because the automaton serves as
an index on the underlying word. Basically DAWGs provide
an implementation of indexes on texts [12]. The index on a
text T helps searching it for various patterns. The typical
running time of a query is O(|w|) (for w = count of the query
terms) on a fixed alphabet, and is O(|w|log||) if the
alphabet of the text is unbounded.

A. Definitions

In this section we will recall the basic notions on DAWG

and CDAWG.

Definition1: The Suffix Automaton of a word x, denoted

DAWG(x), is the minimal deterministic automaton that
accepts S(x), the (finite) set of suffixes of x.

Definition 2: The size of the DAWG of a word is O(|x|)

and the automaton can be computed in time O(|x|). The
maximum number of states of the automaton is 2|x|-1, and
the maximum number of edges is 3|x|-4.

Definition 3: Let u be a word of C, a class of factors of

S(x). If at least 2 letters a and b of exist such that ua and
ub are factors of x, then C is called a strict class of factors of
S(x).

Below are the functions Endpos and length.
Endposx(u) = min{|w| | w prefix of x and u suffix of w}
Lengthx(p) = |u|, with u representative of p.

Definition 4: Let p be a state of DAWG(x), different

from the initial state, and let u be a word of the equivalence
class. The suffix link of p, denoted by sx(p), is the state q
which representative v is the longest suffix z of u such that
u sx(z).

B. Compact DAWG

Compaction of DAWG is based on the deletion of some

states and their outgoing transitions [11]. This is possible by
using multi-letter transitions and selecting strict classes of
factors.

Definition 5: The CDAWG of a word x, denoted by

CDAWG(x), is the compaction of DAWG(x) obtained by
keeping only states that are either terminal states or strict
classes of factors according to S(x), and by labeling
transitions accordingly.

We achieve CDAWG by deleting every state having

outdegree one exactly, except terminal states (Initial and
Final states).

When a state p is deleted, the deletion of its outgoing

edges is realized by concatenating their label to the labels of
incoming edges. For example, let r and p be the states linked
by a transition (r,b,p). The edges (r,b,p) and (p,a,q) are
replaced by the edge (r,ba,q) if p is deleted.

Definition 6: If p is a state of CDAWG(x), the sx(p) is a

state of CDAWG(x).

Theoretical average number of states calculated by [12],

are 0.54n for CDAWG, 1.62n for DAWG and 1.62n for
suffix trees, when n is the length of x. This gives respective
sizes in bytes per character of the source: 45.68 and 32.70
for suffix trees, 33.62 and 27.80 for DAWG, and 22.40 and
22.78 for CDAWG.

We define a binary similarity measure between phrase

clusters based on the overlap of their document sets. Given
two phrase clusters mi and mj, with sizes |mi| and |mj|
respectively, and |mi mj| representing the number of
documents common to both phrase clusters, we define the
similarity sim(mi,mj) of mi and mj to be:

sim(mi,mj) = 1, if |mi mj| / |mi| >
and |mi mj| / |mj| > ,
sim(mi,mj) = 0 otherwise,

where is a constant between 0 and 1 (we typically use =
0.6).

Next, we look at the phrase cluster graph, where nodes are
phrase clusters, and two nodes are connected if and only if
the two phrase clusters have a similarity of 1. A cluster is
defined as being a connected component in the phrase
cluster graph. We call these merged clusters. Each merged
cluster contains the union of the documents of all its phrase
clusters. Figure 1 illustrates the phrase cluster graphs of the
six phrase clusters from Table 1, for values of 0.6 and 0.7.
Table 2 lists the final merged clusters identified from the
based cluster graphs of Figure 1.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Table 1. Internal suffix tree nodes as phrase clusters

Node Phrase Document

s

a cat ate 1,3

b ate 1,2,3

c cheese 1,2

d mouse 2,3

e too 2,3

f ate cheese 1,2

Table 2. Merged clusters in the phrase cluster graph

Figure Cluster

Number

Phrase

clusters

Docu

ments

(a) 1 a 1,3

 2 b 1,2,3

 3 d,e 2,3

 4 c,f 1,2

(b) 1 a,b,c,d,e,f,g 1,2,3

(c) 1 a 1,3

 2 d,e 2,3

 3 c,f 1,2

The phrase cluster graphs of the six phrase clusters from
Table 1:

(a) for = 0.7 there are four connected components is the

graph, representing four merged clusters.

(b) for = 0.6 there is a single connected component is the
graph, representing one merged cluster.

 (c) If the word ate had been in our stoplist, the phrase
cluster b would have been discarded as it would have had a
score of 0, and for = 0.6 we would have had three
connected components in the graph, representing three
merged clusters.

In essence, in this step we are clustering the phrase clusters
using the equivalent of a single-link clustering algorithm,
where a predetermined minimal similarity between phrase
clusters serves as the halting criterion. We do not encounter
the undesired chaining effect of single-link clustering
because in the realm of phrase clusters we typically find
only small connected components.

Phrase: too
Documents: 2,3

 Phrase: ate
Documents: 1,2,3

Phrase: mouse
Documents: 2,3

Phrase: ate cheese
Documents: 1,2

Phrase: cheese
Documents: 1,2

Phrase: cat ate
Documents: 1,3

c

e f

a

d

b

(a) = 0.7

Phrase: too
Documents: 2,3

 Phrase: ate
Documents: 1,2,3

Phrase: mouse
Documents: 2,3

Phrase: ate cheese
Documents: 1,2

Phrase: cheese
Documents: 1,2

Phrase: cat ate
Documents: 1,3

c

e f

a

d

b

(b) = 0.6

Phrase: too
Documents: 2,3

Phrase: mouse
Documents: 2,3

Phrase: ate cheese
Documents: 1,2

Phrase: cheese
Documents: 1,2

Phrase: cat ate
Documents: 1,3

c

e f

a

d

(c) = 0.6 & word “ate” is stopped

Figure 1. The phrase cluster graph

C. Constructing CDAWG

In this section, we give the direct construction of

CDAWG based on [11]. The running time of the algorithm
is linear in the size of the input word x on a fixed alphabet
(see figure 2). The memory space is proportional to the size
of the automaton.

Since the CDAWG of x is the minimization of its suffix

tree, it is rather natural to base the direct construction on
McCreight’s algorithm [13].

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

We will restrict ourselves to presenting a rather general

overview of the linear algorithm to construct CDAWG. For
more information refer to [11].

Linear Algorithm
Input word x and threshold
1. p I; i 0; //p is the current state
2. While not end of x Do
3. (q,) Find(p); //q state of the longest suffix
4. If (=) Then
5. Insert (q,tail,F);
6. Sx(F) q;
7. If (q I) Then p sx(q) Else p I;
8. Else
9. Create v locus of headI splitting (q,);
10. Insert the edge (v,tail,F);
11. sx(F) v;
12. find r = sx(v);
13. p r;
14. update i;
15. End While;
16. Mark terminal states

The algorithm time cost is O(|x|) and the corresponding

space cost is O(|x| x card()) using a transition matrix, or
O(|x| x log card ()) and space cost of O(|x|) with adjacency
lists.

The present structure provides an interesting space gain

compared to the standard DAWG, and also when compared
with suffix trees. From the theoretical point of view, the
upper bounds are of |x| + 1 and 2|x| - 2 transitions. This
saves |x| states and |x| transitions of the DAWG and at the
same time leads to a faster use.

D. Implementation

The web document clustering process will proceed as

mentioned by [14] mainly following the steps:
1. Document Cleaning
2. Identifying Base Clusters
3. Combining Base Clusters

The change will be in implementing the CDAWG data

structure for storing all data pertaining to the documents and
their associated phrases.

IV. CONCLUSIONS

We have considered the Compact Directed Acyclic Word

Graph, which is an efficient compact data structure to solve
the web document clustering problem. This structure
provides an interesting space gain compared to Suffix Trees
and standard DAWG. From the theoretical point of view, the
upper bounds are |x|+1 states, and 2|x|-2 transitions. This
saves |x| states and |x| transitions of the DAWG and at the
same time leads to a faster use.

Web Document Clustering is a relatively new topic that is

gaining interest worldwide due to the Internet revolution.
Web document clustering can save time and effort and
provide accuracy to the user who is searching the web. It
provides a means for determining which cluster is of interest
to the user.

Several enhancements can be included such as relevance

feedback and the ability to use it online (at indexing time)
taking into consideration the dynamic nature of the web.

Figure 2. Six steps during the construction of CDAWG(aabbabbc)

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

REFERENCES

[1] H. Motro, Infoseek CEO, CNBC, May 7, 1998.
[2] N. Jardine and C. J. Van Rijsbergen,.” The use of hierarchical

clustering in information retrieval”, Information Storage and
Retrieval, 7:217-240, 1971.

[3] G. Salton, “Cluster search strategies and the optimization of
retrieval effectiveness”, In Salton, G. (ed), The SMART
Retrieval System, Prentice-Hall, Englewood Cliffs, N.J., 223-
242, 1971.

[4] W. B. Croft, “Organizing and searching large files of
documents”. Ph.D. Thesis, University of Cambridge, 1978.

[5] A. Griffiths, H. C. Luckhurst, and P., Willet, “Using inter-
document similarity information in document retrieval
systems”. Journal of the American Society for Information
Science, 37:3-11, 1986.

[6] C. J. Van Rijsbergen, Information Retrieval, Butterworths,
London, 1979.

[7] D. R Cutting,., Karger, D. Pedersen, J. O. Tukey and J. W.
Scatter, “Gather: A cluster-based approach to browsing large
document collections”, In Proceedings of the 15th
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR'92), 318-329,
1992.

[8] C. Silverstein, and J. O Pedersen,. “Almost-constant time
clustering of arbitrary corpus subsets”. In Proceedings of the
20th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR'97), 60-66, 1997.

[9] Zhai, C., Tong, X., Milic-Frayling N. and Evans, D. A.
“Evaluation of syntactic phrase indexing - CLARIT NLP track
report”. In: D. K. Harman (ed.), The Fifth Text Retrieval
Conference (TREC-5). NIST Special Publication, 1997.

[10] Maarek, Y. S. and Wecker, A. J. “The Librarian's Assistant:
Automatically organizing on-line books into dynamic
bookshelves”. In Proceedings of the 1994 RIAO Conference
(RIAO'94), 1994.

[11] M. Crochemore and R. Verin, “On Compact Directed Acyclic
Word Graphs”, Institut Gaspard Monge, Universite de Marne-
La-Vallee, http://www-igm.univ-mlv.fr.

[12] A. Blumer, J. Blumer, D. Haussler, and R. McConnell.
“Complete inverted files for efficient text retrieval and
analysis”. Journal of the Association for Computing
Machinery, 34(3):578-595

[13] E. M. McCreight, “A space-economical suffix tree
construction algorithm”. Journal of the ACM, 23:262-272,
1976.

[14] O. Zamir, , D. Etzioni, F. Madani and R.M. Karp, R. M. “Fast
and intuitive clustering of Web documents”. In Proceedings of
the 3rd International Conference on Knowledge Discovery and
Data Mining (KDD’97), 287-290, 1997.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

