
 

 

Abstract— Spectral unmixing of hyperspectral images are 

based on the knowledge of a set of unknown endmembers. 

Unique characteristics of hyperspectral dataset enable different 

processing problems to be resolved using robust mathematical 

logic such as image classification. Consequently, pixel purity 

index is used to find endmembers from Washington DC mall 

hyperspectral image dataset. The generalized reduced gradient 

algorithm is used to estimate fractional abundances in the 

hyperspectral image dataset. The WEKA data mining tool is 

selected to construct random forests and neural networks 

classifiers from the set of fractional abundances. The 

performances of these classifiers are experimentally compared 

for hyperspectral data land cover classification. Results show 

that random forests give better classification accuracy when 

compared to neural networks.  The study proffers solution to 

the problem associated with land cover classification by 

exploring generalized reduced gradient approach with learning 

classifiers to improve overall classification accuracy. The 

classification accuracy comparison of classifiers is important 

for decision maker to consider tradeoffs in accuracy and 

complexity of methods. 

 
Index Terms— Generalized reduced gradient, hyperspectral 

image, land cover classification, classifiers. 

 

I. INTRODUCTION 

he advancement in remote sensing technology has brought 

about new perspectives into image processing. The image 

objects are generally entrenched in a single pixel and hence 

cannot be detected spatially [1]. The traditional spatial based 

image processing techniques therefore, cannot be used. The 

importance of image processing that affords abundant data 

to be interpreted into useful information is crucial in image 

classification [2]. The preprocessing of remote sensing 

images before features extraction is important to remove 

noise and increase the ability to interpret image data more 

accurately. All generated images after preprocessing 

procedure must be as if they were obtained from the same 

sensor [3].  

Hyperspectral instruments developed through remote 

 
Manuscript received July 22, 2012; revised August 08, 2012. This work 

was supported by University of Witwatersrand, South Africa. University of 

Johannesburg, South Africa and Tshwane University of Technology, South 

Africa.  

B. T. Abe, School of Electrical and Information Engineering, University 

of the Witwatersrand, Johannesburg. South Africa. Tshwane University of 

Technology, South Africa. (Corresponding author: +27761304108; e-mail: 

abe_tolulope@yahoo.com).  

O. O. Olugbara is with the Department of Information Technology, 

Durban University of Technology, Durban, South Africa (e-mail: 

oludayoo@dut.ac.za). 

T. Marwala is the Dean of the Faculty of Engineering and the Built 

Environment, University of Johannesburg, South Africa. (e-mail: 

tmarwala@uj.ac.za). 

 

sensing technology are capable of collecting hundreds of 

images corresponding to wavelength channels, for the same 

area on earth surface [4]. Hyperspectral images provide 

abundant spectral information to identify and differentiate 

between spectrally similar materials. The advantage of using 

hyperspectral sensors is the ability to provide a high-

resolution reflectance spectrum for each pixel in the image 

[5]. Hyperspectral image data has found applications in 

areas such as mineral exploration, urban processes, 

agriculture, risk prevention, land cover mapping, 

surveillance, resource management, tracking wildfires, 

detecting biological threats and chemical contamination [6]-

[7]. As a result, researchers have developed interest in the 

mathematical analysis of hyperspectral images [8]-[9].  

The ability to obtain useful information from 

hyperspectral image data has stimulated researchers to use 

data mining methods to identify valid, novel, potentially 

useful and ultimately understandable patterns in data [3]. In 

remote sensing technology, there are varieties of earth 

objects present in the direct view of sensors because of the 

complexity of target objects and the limited spatial 

resolution of remote sensors. The information available in a 

certain pixels of a remote sensing image is a mixture of 

information on various ground objects, resulting into mixed 

pixels [4], [8]-[10]. The presence of mixed pixels has 

significant effects on some practical applications of remote 

sensing images such as information extraction, image 

classification and object detection. It is therefore, an 

important task in remote sensing study to discover objects 

and corresponding quantity present in the mixed pixel. This 

has led to the invention of hyperspectral remote sensing 

techniques to proffer solutions to the mixed pixel problem in 

remotely sensed imagery. 

This work considers the problem of land cover 

classification of hyperspectral images by using a linear 

spectral mixture analysis technique, which is a commonly 

accepted approach to mixed-pixel classification. Land cover 

refers to the physical surface of the earth, including various 

combinations of vegetation types, soils, exposed rocks, 

water bodies and anthropogenic elements, such as 

agriculture and built environments [8], [11]. Our objectives 

are to (i) identify a collection of spectrally pure constituent 

spectral, which are referred to as the endmembers [12]-[13]. 

Thereafter, we express the measured spectrum of each mixed 

pixel as a linear combination of endmembers weighted by 

fractional abundances that indicate the proportion of each 

endmember present in the pixel [8], [13], (ii) explore 

Generalized Reduced Gradient (GRG) optimization 

algorithm to estimate the fractional abundance in the dataset 

thereby obtaining the numeric values for land cover 

classification [14]-[15] and (iii) to experimentally compare 
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the performance of random forests and neural networks 

classifiers to examine the suitability of GRG algorithm for 

solving land cover classification problem. The application of 

machine learning techniques such as random forests and 

neural networks is usually to predict land cover of un-

sampled map units that help to retrieve important 

information from the scene. This work establishes that in 

comparison, though the classifiers’ performances are 

remarkable, random forests give better classification 

accuracy when compared to neural networks. 

II. PROBLEM STATEMENT 

   The task of land cover classification can be formulated as 

a linear spectral unmixing problem. The linear spectral 

unmixing is a sub-pixel classification process that 

decomposes mixed pixels and determines the combination of 

fractional abundances. Based upon the linear unmixing 

model assumptions, each pixel at spatial coordinate ),( pl  for 

a particular band in a remotely sensed hyperspectral image 

(I) having M number of bands can be formally expressed as 

[8], [10]:        

),().,(),(
1

plneplaplx k

z

k

k 


       (1) 

The component ),( plx  is the measured reflectance value at 

the spectral coordinate (l, p), ke is the spectral response of 

the k
th

 endmember, ),( plak  is fractional abundance of the k
th

 

endmember, ),( pln  denotes the spectral band error and z is 

the total number of endmembers. For linear spectral mixture 

analysis, each image pixel is a mixture of various 

endmembers and the spectrum recorded by the sensor is a 

linear combination of endmembers spectral [16]. 

   Eq. (1) operates under two physical constraints on 

fractional abundances to account for the full composition of 

a mixed pixel [8], [12]. These are (i) Nonnegativity 

constraint, all abundances should be no negative, that is 

  kkplak ,...,2,1,0,              (2) 

(ii) The abundances sum to one constraint,  
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 The endmembers zkek ,...,2,1,   can be extracted from the 

image (I) by using a certain algorithm such as Pixel Purity 

Index (PPI) and Automated Morphological Endmember 

Extraction (AMEE) [8], [12]-[13] before the equation can be 

solved for a set of fractional abundances. Extant works on 

linear spectral unmixing problem [8], [9]-[10] have explored 

the least square method to estimate a set of fractional 

abundances as follows. 

),()(),( 1 plxeeepla TT
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             (4) 

Eq. 4 can only satisfy the sum to unity of abundances, but 

the non-negativity of fractional abundances cannot always be 

guaranteed. The results obtained by the least square method 

therefore, are generally not optimal in terms of material 

quantification [8], [12].  

In order to find a set of fractional abundances that 

simultaneously satisfy these two constraints, the following 

fully constraint linear spectral unmixing GRG optimization 

problem formulation has to be solved to minimize the 

spectral band error ),( pln .  

Minimize:   

)}).,(),(()).,(),({(

),(

eplaplxeplaplx

pla

T 

   (5)  

Subject to 

















 


z

k

k plapla

1

1 01),(|),(           (6) 

}1),(0|),({2  plapla k
         (7) 

In Equation (5), the expression (X)
T
 represents the transpose 

vector of the vector (X). To solve Equations (5-7) by 

applying GRG algorithm [14]-[15], to obtain an estimate of 

a set of fractional abundances, the PPI algorithm is first 

applied to extract endmembers from the hyperspectral 

image. The PPI method efficiently handles hyperspectral 

imagery as it provides a convenient and physically motivated 

decomposition of an image in terms of a relatively few 

components [17]. After a set of endmembers 
z

kkee 1}{   is 

determined, the corresponding fractional abundances 
z
kk plapla

1
)},({),(


  in a certain pixel vector ),( plx  on the 

image I is estimated by using the GRG algorithm. 

III. DESIGN METHODOLOGY 

The design methodology of the study entails arrangement of 

steps that the input hyperspectral image undergoes for its 

land covers to be classified into one of the desired multiple 

classes. The input data has to be taken through four steps to 

obtain the desired classification result. Figure 1 shows the 

block diagram of the land cover classification process 

implemented in this study. 

Land cover 

classification 

porcedure

Fractional 

abundance 

estimation

Endmember 

determination 
Dimension 

reduction 

Results and 

discussion

Input dataset 

Fig 1: Hyperspectral image classification procedure 

 

Before discussing the vital steps used in our design 

methodology, the input dataset is first introduced. 

A. Dataset 

Figure 2 shows the input airborne hyperspectral image of 

Washington D.C. dataset [18]. The sensor used measured 

pixel response in 210 bands in the 0.4 to 2.4m region of the 

visible and infrared spectrum. It has 1208 scan lines with 

307 pixels in each scan line, which is approximately 150 

Megabytes. Bands in the 0.9 and 1.4m region where the 

atmosphere is opaque have been omitted. The remaining 191 

spectral bands are used for this study. The dataset shown in 

figure 2 contains seven ground cover types namely: Roofs, 

Street, Path, Grass, Trees, Water and Shadow. 
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Fig 2: Hyperspectral image of Washington D. C. mall [18]. 

Accompany the dataset is a copy of the file labeled 

dctest.project, which describes the land cover types (also 

refer to as class labels) used for the experimental procedure. 

B. Image Dimension Reduction 

Dimension reduction as applied to hyperspectral image aims 

at reducing the number of spectral bands in the image. This 

is done to map the data into lower dimension from higher 

dimension at the same time preserve the main features of the 

original data. The process is carried out to reduce the time 

used during the processing of the hyperspectral data. The 

algorithm does not generate an image different from the 

original image. Instead, it is designed to reduce error by 

finding minimum representation of the original image that 

adequately keeps the original information for successful 

unmixing in the lower dimension [19]. Among various 

algorithms normally used for dimension reduction are; 

Principal Component Analysis (PCA) and Maximum Noise 

Fraction (MNF) transform. The aim is to ease computational 

complexity and for compact information in transformed 

components. MNF is used in this study because it is more 

effective than PCA [20]. 

C. Endmember Determination 

An endmember is known as a spectrally pure pixel that 

portrays various mixed pixel in an image [21]. The method 

of feature selection involves identifying the most 

discriminative measurements out of a set of D potentially 

useful measurements, where d ≤ D. Endmember extraction 

has been widely used in hyperspectral image analysis due to 

significantly improved spatial and spectral resolution 

provided by hyperspectral imaging sensor also known as 

imaging spectrometry [20]. Identification of image 

endmember is a crucial task in hyperspectral data 

exploitation, especially classification [13]. After 

endmembers selection, various methods can be used to 

construct their special distribution, associations and 

fractional abundances. For real hyperspectral data, various 

algorithms have been developed to execute the task of 

locating appropriate endmembers. These include Pixel 

Purity Index (PPI), N-FINDR and Automatic Morphological 

Endmember Extraction (AMEE) [20].  

This study applies the PPI algorithm [7], [22]-[23], which 

is available in the Environment for Visualizing Images 

(ENVI) to determine endmembers from the hyperspectral 

image. The choice of the algorithm is motivated by its 

publicity in ITTVIS (http://www.ittvis.com/) ENVI software 

that was originally developed by Analytical Imaging and 

Geophysics (AIG) [24]. PPI generates a large number of n- 

Dimensional vectors called “skewer” [7] [22], through the 

dataset. N-FINDR fully automated method locates the set of 

pixels with the largest possible volume by “inflating” a 

simplex within the image data [21], [25].  In order to 

generate the endmembers from the data, “noise whitening” 

and dimensionality reduction are performed using MNF 

transform [21], [22]. Then pixel purity score is obtained in 

the image cube by producing lines in the n-dimension space 

containing the MNF-transformed data. The spectral points 

are projected on the lines and the points at the extremes of 

each line are counted. Bright pixels in the PPI image 

generally are image endmembers. The highest-valued of 

these pixels are input into the n-dimensional visualizer for 

the clustering process that develops individual endmember 

spectral. 

D. Fractional Abundance Estimation  

After determining the endmembers using PPI procedure, per 

pixel fractional abundances of various materials is estimated 

using GRG optimization method. This study presents six 

endmember models to characterize the land cover structure 

which are; Roofs, Street, Path, Grass, Trees, Water and 

Shadow. Normalized numerical values of the fractional 

abundant generated were calculated from the spectral 

signatures of the land cover label signatures. The values 

obtained were used to train the random forests and neural 

networks classifiers for land cover classification. 

E. Land Cover Classification  

Random Forests (RF) and Neural Networks (NN) classifiers 

are experimentally compared to examine their performances 

in the field of land cover classification. The WEKA [26] 

data mining software is selected as a tool to build the 

classifiers from a training dataset of 3355 instances and 191 

band features.  

The RF ensemble classifier builds several decision trees 

randomly as proposed [27] for classification of multisource 

remote sensing, geographic data and hyperspectral imaging. 

Various ensemble classification methods have been 

proposed in recent times and they have been proven to 

considerably improve classification accuracy. The most 

famous and widely used ensemble methods are boosting and 

bagging [27]. The boosting method is based on sample re-

weighting technique, but a bagging method uses 

bootstrapping. RF classifier uses bagging or bootstrap 

aggregating to yield an ensemble of classification and 

regression trees. The method works by searching only a 

random subset of the features for a split at each node to 

minimize the correlation between the classifiers in the 

ensemble. The method selects a set of features randomly and 

creates an algorithm with a bootstrapped sample of the 

training data [27]. This method provides a potential benefit 

that it is insensitive to noise or overtraining because 

resampling is independent of the weighting scheme 

employed. For our experiment, 10 trees were constructed. 

Out of bag error was 0.0605 while considering 192 random 

features.  

NN methods are general classifiers that can handle 

problems with lots of parameters and can classify objects 

even when the distribution of object in n-dimensional 

parameters space is very complex. Research activities have 

established that NN are promising alternatives to numerous 

conventional algorithms [28]-[29]. They are data driven self-

adaptive technique that adjust themselves to data under 

investigation without any explicit specification of functional 

or distributional form. They are also universal functional 

approximators that can approximate any function with 
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arbitrary accuracy [28]. Furthermore, they are capable of 

estimating the posterior capability that provides the basis for 

creating classification rule and carrying out statistical 

analysis [28]. Various NN models are available for 

classification purposes [28], but this paper focuses on 

MultiLayer Perceptron (MLP) that uses back propagation 

scheme to classify instances. The nodes in the networks are 

all sigmoid. 

IV. RESULTS AND DISCUSSION 

This section presents the results and discussion of our 

experiment for endmember determination and classification 

accuracy of the classifiers investigated.  

A. Result of Endmember Determination 

    The first experiment performed aimed to obtain 

endmembers from image dataset using the ENVI software 

application. The MNF transformation of input hyperspectral 

image was performed for dimension reduction. The next 

stage of the endmember determination is to select a set of 

endmembers by applying the PPI algorithm on the extracted 

Region of Interest (ROI) pixels. Figure 3 shows this result, 

wherein the extreme pixels corresponding to the 

endmembers in each projection are recorded and total 

number of times each pixel is marked as extreme is noted. A 

threshold value of 1 is used to define how many pixels are 

marked as extreme at the ends of the projected vector. 

 

 
Fig 3: Purest pixels occur at edges of the projected vector 

Table I displays the land cover classes and the number of 

pixels extracted from the original image based on the ROI. 

The values of these pixels are input into the ENVI visualizer 

for the clustering process that develops individual 

endmember spectral. The pixels extraction mechanism 

enables the image spectral to accurately account for any 

errors in atmospheric correction. 

TABLE I: NUMBER OF PIXELS EXTRACTED FROM ROI 

Classes Number of Pixels 

Roof 724 

Paths 211 

Water 703 

Street 404 

Trees 398 

Shadow 97 

Grass 818 

 

The estimated number of spectral endmembers and their 

corresponding spectral signatures are obtained using ENVI  

visualizer. Figure 4 shows the generated six fractional 

endmembers of the image from the PPI method.  

 

 
Endmember 1 

 
Endmember 2 

 
Endmember 3 

 
Endmember 4 

 
Endmember 5 

 
Endmember 6 

Fig 4: Fraction images for each endmember 

 

At the completion of specified iterations, a PPI image is 

created in which the value of each pixel corresponds to the 

number of times that a pixel was recorded as extreme. The 

bright pixels in the PPI image are generally the image 

endmembers to characterize the land cover structure. 

B. Result of Land Cover Classification 

RF and NN classifiers are evaluated using the error 

confusion matrix method, which is a representation of the 

entire classification result. According to [29], the error 

confusion matrix can be used to compute the overall 

accuracy and the individual class label accuracy. The error 

confusion matrix is a widely accepted method to report error 

of raster data and to assess the classification accuracy of a 

classifier. The matrix expresses the number of sample units 

allocated to each land cover type as compared to the 

reference data. The diagonal of the matrix designates 

agreement between the reference data and the interpreted 

land cover types [30].  

Table II shows the result of the error confusion matrix for 

the performance of RF classifier. This result shows that 

roofs, paths, water, streets, trees and grass have 100% 

classification accuracy because none of their pixel’s member 
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is misclassified while shadow has one of the pixels’ 

members misclassified.  

 

TABLE II: RANDOM FORESTS ERROR CONFUSION MATRIX 

a b c d e f g classified as 

724 0 0 0 0 0 0 a = Roofs 

0 211 0 0 0 0 0 b = Paths 

0 0 703 0 0 0 0 c = Water 

0 0 0 404 0 0 0 d = Streets 

0 0 0 0 398 0 0 e = Trees 

0 0 1 0 0 96 0 f = Shadow 

0 0 0 0 0 0 818 g = Grass 

 

Table III records the result of the error confusion matrix 

for the performance of NN. From the table, it can be 

observed that roofs and grass are 100% classified while 

other land cover classes have some of their pixels 

misclassified. 

 
TABLE III: NEURAL NETWORKS ERROR CONFUSION MATRIX 

a b c d e f g classified as 

724 0 0 0 0 0 0 a = Roofs 

1 210 0 0 0 0 0 b = Paths 

1 0 699 0 0 3 0 c = Water 

1 0 2 401 0 0 0 d = Streets 

0 0 0 0 398 0 0 e = Trees 

0 0 17 0 0 80 0 f = Shadow 

0 0 0 0 0 0 818 g = Grass 

 

    Generally, the two classifiers performed excellently well. 

Considering individual class label, RF produces a higher 

level of classification accuracy per class label as compared 

to the NN. The entire accuracy assessment procedure is that 

the error confusion matrix must be a representative of the 

entire area mapped from the remotely sensed data [31]-[32]. 

The overall accuracy for correctly classified instances, 

incorrectly classified instances, unclassified instances and 

the Kappa statistic are identified from the error confusion 

matrices [30]-[33].  

     If all the non-major diagonal elements of the error 

confusion matrix are zero, then it means no area in the map 

has been misclassified and the map accuracy is 100 percent. 

Otherwise there are certain percentages of misclassified 

instances [33]. In our experiment, RF as compared to NN 

has only 1 instance misclassified, while NN has 25 instances 

misclassified.  

The Kappa coefficient of agreement is a measure of how 

well the accuracy of the classifier compares with the 

reference or ground truth data [33]. It ranges from 0 to 1, 

with 0 implying no agreement between the classified land 

cover and ground truth and 1 indicates complete agreement. 

Table IV shows the result of error, Kappa statistics and 

overall accuracy classification.  

TABLE IV: CLASSIFICATION ACCURACY 
C 

 

CCI 

 

ICI 

 

UI 

 

KS 

 

MAE 

 

RMSE 

 

RAE  

(%) 

RRSE 

 (%) 

Accuracy 

 (%) 

RF 3354 1 0 0.9996 0.0015 0.0176 0.6568 5.1615 99.9702 

NN 3330 25 0 0.9909 0.003 0.0379 1.2835 11.1095 99.2548 

Where: C– Classifier, CCI – Correctly Classified Instances, ICI–

Incorrectly Classified Instances, UI – Unclassified Instances, KS –  Kappa 

Statistic, MAE – Mean Absolute Error,  RSE – Root Mean Squared error,  

RAE – Relative Absolute Error, RRSE – Root Relative Squared Error 

 

According to this result, there are no unclassified instances 

during the RF and NN classification procedures and the 

overall classification accuracies of the classifiers are seen to 

be comparable. It can be deduced from the predictions that 

RF outperformed NN. In addition, RF is more computational 

effective as compared to NN. 

 

V. CONCLUSION 

This study aimed to establish performance comparison 

between RF and NN classifiers for land cover classification. 

The performance assessment was done, giving overall 

accuracy and error confusion matrix. Experimental results 

demonstrate that the generation of RF and NN based land 

cover classification systems significantly improve overall 

accuracy. As a result, the classifiers can significantly 

contribute to land cover classification system as a source of 

analysis and increase its accuracy. The comparability and 

high accuracy performance of RF and NN indicates that the 

GRG method introduced in this study is effective for solving 

a linear spectral unmixing problem of land cover 

classification. 
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