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Abstract—This paper addresses grammatical induction with
error correction for deterministic context-free L(D0L)-system;
that is, proposed is a method of L-system grammar induction
from a transmuted string mY. In our method, a set of parameter
values is exhaustively searched and if it is located within the
tolerable distance from a point determined by a given string mY,
then the parameters are used to form candidates of production
rules. Candidates of production rules are used to generate a
candidate string Z, and the similarity between Z and mY is
calculated and stored. Finally, several candidates having the
strongest similarities are shown as the final solutions. Our
experiments using strings having various r-type transmutation
rates showed the proposed method discovered the true grammar
when the transmutation rate is less than around 20%.

Index Terms—grammatical induction, L-system, error cor-
rection, plant model, transmutation

I. INTRODUCTION

L-systems were originally developed by Lindenmayer as
a mathematical theory of plant development [1]. The central
concept of L-systems is rewriting. In general, rewriting is a
powerful mechanism for generating complex objects from a
simple initial object using production rules.

As for rewriting systems, Chomsky’s work on formal
grammars is well known. L-systems and formal grammars
are both string rewriting systems, but the essential difference
is that productions are applied in parallel in L-systems, while
productions are applied sequentially in formal grammars.

The reverse process of rewriting is called grammatical
induction, which discovers a set of production rules given
a set of strings. Although grammatical induction of formal
grammars has been studied for decades, the induction of
context-free grammars is still an open problem.

The induction of L-system grammars is also an open
problem little explored so far. L-systems can be broadly
divided using two aspects: (1) deterministic or stochastic,
and (2) context-free or context-sensitive.

McCormack [2] addressed computer graphics modeling
through evolution of deterministic/stochastic context-free L-
systems. Nevill-Manning [3] proposed a simple algorithm
called Sequitur, which uncovers structures like context-free
grammars from various sequences, however, with limited
success for grammatical induction of L-system grammar.
Schlecht, et al. [4] proposed statistical structural inference for
microscopic 3D images through learning stochastic L-system
model. Damasevicius [5] addressed structural analysis of
DNA sequences through evolution of stochastic context-free
L-system grammars.
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Nakano and Yamada [6] proposed a very efficient method
of L-system grammar induction employing a number theory-
based approach. The method assumes a given string does not
include any errors, which makes it possible to employ the
number theory. In the real world, however, any object may
have some noise, errors, or transmutations. In string trans-
mutation, we can consider several types such as replacement-
type, deletion-type, insertion-type, or mixed-type.

Here we address grammatical induction with error correc-
tion for deterministic context-free L(D0L)-system. That is,
the paper proposes a method of L-system grammar induction
from a transmuted string mY . In our method, a set of
parameter values is exhaustively searched and if it is within
the tolerable distance from a point determined by a given
mY , then the parameters are used to form candidates of
production rules. Candidates of production rules are used
to generate a candidate string Z, and the similarity between
Z and mY is calculated and stored. Finally, several best
candidates are shown as the output. Our experiments using
replacement-type transmutation revealed how the success rate
of our method is influenced by the transmutation rate.

II. BACKGROUND

D0L-system. The simplest class of L-systems are called
D0L-system (deterministic context-free L-system). D0L-
system is defined as G = (V, C, ω, P ), where V and C
denote sets of variables and constants, ω is an initial string
called axiom, and P is a set of production rules. A variable
is a symbol that is replaced in rewriting, and a constant is a
symbol that remains unchanged in rewriting and is used to
control turtle graphics.

Notation. Shown below is the notation employed in this
paper. Here we consider the following two production rules.

rule A : A →????????
rule B : B →??????

mY : given transmuted string.
n: the number of rewritings.
Z(n): string obtained after n times rewritings.
αA, αB, αK : the numbers of variables A, B and
constant K occurring in the right side of rule A.
βA, βB, βK : the numbers of variables A, B and
constant K occurring in the right side of rule B.
yA, yB, yK : the numbers of variables A, B and
constant K occurring in mY .
z
(n)
A , z

(n)
B , z

(n)
K : the numbers of variables A, B and

constant K occurring in Z(n).
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Transmutation. As for string transmutation, there can be
several types: replacement-type (r-type), deletion-type (d-
type), insertion-type (i-type), or mixed-type (m-type). Since
what each type means is obvious, we skip the explanation.
As our first step, only r-type transmutation is considered. In
r-type transmutation, a designated symbol is replaced with a
symbol selected randomly from the set of symbols.

As for how transmutation occurs, we consider two rates:
coverage rate Pc and occurrence rate Po. We assume trans-
mutation occurs only locally around the center of an original
string Y . The coverage rate Pc represents the proportion of
transmutation area to the whole Y . For example, Pc = 0.25
means 25 % area around the center of Y is to be transmuted.
The occurrence rate Po represents the probability of transmu-
tation in the transmutation area. Thus, overall transmutation
rate Pt can be represented as follows:

Pt = Pc × Po (1)

Valid Transmutation. Simple transmutation will generate
an invalid string, which means the string cannot be drawn
through turtle graphics. To keep the transmutation valid, the
numbers of left and right parentheses are to be monitored
throughout transmutation and controlled if necessary. That
is, in the transmutation area the number count` of left
parentheses should be larger than or equal to the number
countr of right ones. Moreover, when the transmutation
ends, we should assure count` = countr by adding the
right parentheses if necessary. By applying such controlled
transmutation, we get a valid transmuted string mY from the
original string Y .

III. L-SYSTEM GRAMMAR INDUCTION WITH ERROR
CORRECTION

The method proposed below is called LGIC (L-system
Grammar Induction with error Correction). Although we
consider the following D0L-system having two production
rules, the method can be easily extended to a different
number of rules.

n =?, axiom : A

rule A : A →????????
rule B : B →?????

Given a transmuted string mY , we are asked to estimate
the number of rewritings n and to induce the rules A and B.

Growth Equation. The above D0L-system has the following
growth of the numbers of occurrences of A and B.

(1 0) Tn = (z(n)
A z

(n)
B ), T =

(
αA αB

βA βB

)
(2)

Exhaustive Search of Variable Parameters and the Num-
ber of Rewritings. Since the given string mY is transmuted,
we cannot rely on a number theory-based approach as
taken in [6]. Here, we employ exhaustive search to find a
reasonable set of (n, αA, αB , βA, βB) because z

(n)
A and z

(n)
B

are easily calculated using eq.(2). The exhaustive search ex-
amines all the combinations of value ranges [0, max var] of
five parameters. Then, the following difference is calculated
to evaluate how reasonable the set is.

diff = |z(n)
A − yA| + |z(n)

B − yB | (3)

If the above diff is smaller than or equal to the tolerable
distance, the set (n, αA, αB , βA, βB) is selected for the later
processing.

Selection of Constant Parameters. For each constant K
we repeat the following independently. Using the following
equations we calculate r

(n)
A and r

(n)
B , the numbers of A and

B rewritings occurred until n rewritings.

r
(n)
A = 1 + z

(1)
A + z

(2)
A + · · · + z

(n−1)
A (4)

r
(n)
B = z

(1)
B + z

(2)
B + · · · + z

(n−1)
B (5)

Then we have the following equation whose coefficients and
solution are non-negative integers.

z
(n)
K = r

(n)
A αK + r

(n)
B βK (6)

This can be used to narrow down the upper bounds of
constant parameters αK and βK .

αK ≤ dz(n)
K /r

(n)
A e + 1 ≡ upperA (7)

βK ≤ dz(n)
K /r

(n)
B e + 1 ≡ upperB (8)

For each set (n, αA, αB , βA, βB), we find the best pair
of (αK , βK) which minimizes |z(n)

K − yK | from all the
combinations of [0, upperA] × [0, upperB ].

Generate-and-test of Rule Candidates. Now we have
candidates of (n, αA, αB, βA, βB , αK , βK). Since in given
string mY the right sides of rules A and B repeatedly appear
as substrings, we exhaustively extract from mY the following
two substrings:

(a) a substring having αA A’s, αB B’s, and αK K’s to form
a rule A candidate,
(b) a substring having βA A’s, βB B’s, and βK K’s to form
a rule B candidate.

For each combination of rules A and B candidates, we
rewrite the axiom n times using the candidates to generate
a string Z(n). Then, we calculate the similarity between
Z(n) and mY . Finally, several pairs of candidates having
the strongest similarities are selected as solutions.

Similarity between Two Strings. As stated above, we need
the measure to evaluate the similarity between two strings.
To consider such a measure, we employ the longest common
subsequence (LCS) [7]. For example, an LCS of ABCDABC
and BDCAB is BDAB or BCAB. Given two strings we may
have more than one LCSs, but, of course, the length of each
LCS is the same. As the similarity between two strings S1

and S2, we use the length of LCS of S1 and S2. Note that
LCS can cope with any type of transmutation.

LCSs and its length can be found using dynamic program-
ming [7]. The code size is very small, but the processing
time will be long if two string lengths get large. Here we
only need the length of an LCS, which makes the memory
size much smaller accelerating the processing speed.

Another reasonable measure is Levenshtein distance [8],
which is defined as the minimum number of modifications
required to transform one string into the other. We consider
these two measures will result in much the same result.
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Procedure of LGIC Method. The procedure of LGIC
method is shown below. The tolerable distance tol diff and
the number of final solutions tops are given to the procedure
as system parameters.

(step 1) Select parameter candidates.
(step 1.1) Count occurrences in mY to get yA, yB , and yK .
(step 1.2)] Select a set of parameters (n, αA, αB, βA, βB)
whose diff is smaller than or equal to tol diff .
(step 1.3) For each (n, αA, αB , βA, βB) selected above,
select the best pair (αK , βK).
(step 2) For each (n, αA, αB , βA, βB , αK , βK) generate rule
candidates.
(step 2.1) From mY get a substring having αA A’s, αB B’s,
and αK K’s to form a rule A candidates.
(step 2.2) From mY get a substring having βA A’s, βB B’s,
and βK K’s to form a rule B candidates.
(step 2.3) For each combination of rule A candidates and
rule B candidates, generate a string Z(n), and calculate the
similarity between Z(n) and mY .
(step 3) Among the candidates, select tops candidates having
the strongest similarities as the final solutions.

IV. EXPERIMENTS

The proposed LGIC method was evaluated using a plant
model. Plant model ex05p is shown in [1] and ex05n is its
variation with a smaller n. Figure 1 shows ex05n, which was
used in our experiments. The string length of ex05n is 4,243.
PC with Xeon(R), 2.66GHz, dual was used.

(ex05p) n = 7, axiom : X

rule : X → F [+X][−X]FX

rule : F → FF

(ex05n) n = 6, axiom : X

rule : X → F [+X][−X]FX

rule : F → FF

Fig. 1. Normal plant model ex05n

As for transmutation, we examined all the combinations of
three coverage rates Pc = 0.25, 0.5, 0.75 and four occurrence
rates Po = 0.25, 0.5, 0.75, 1.0. For each combination we
transmuted ex05n five times changing a seed for random
number generator.

As for LGIC system parameters, the tolerable distance
tol diff is set to be 100 at first and then changed to 150;
the number of final solutions tops is set to be 10. Moreover,
the maximum of variable or constant occurrences in a rule
max var is set to be 10.

Table I shows the success rates of LGIC error correction
for tol diff = 100. When Pt = Pc × Po ≤ 1/8 (= 0.125),
LGIC with tol diff = 100 discovered the true grammar
ex05n with 100 % (= 5 out of 5 runs). However, when Pt

exceeds 3/16 (= 0.188), the success rate rapidly dropped to
around zero. Moreover, when the true grammar was found, it
was always rated No.1 showing the strongest similarity. Thus,
the number of final solutions tops = 10 is large enough.

TABLE I
SUCCESS RATES OF LGIC ERROR CORRECTION FOR R-TYPE

TRANSMUTATION (ORIGINAL PLANT MODEL EX05N, tol diff=100)

Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
Pc = 0.25 5/5 5/5 1/5 0/5
Pc = 0.50 5/5 0/5 0/5 0/5
Pc = 0.75 0/5 0/5 0/5 0/5

Figure 2 shows one of plant models transmuted with Pc =
0.25 and Po = 0.50. LGIC with tol diff = 100 successfully
discovered the true grammar for this transmuted plant.

Fig. 2. Plant model transmuted from ex05n (Pc = 0.25, Po = 0.50)

Figure 3 shows one of plant models transmuted with Pc

= 0.50 and Po = 0.25. Even for this transmuted plant, LGIC
with tol diff = 100 discovered the true grammar.

Fig. 3. Plant model transmuted from ex05n (Pc = 0.50, Po = 0.25)
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Table II shows CPU time spent and the number of simi-
larity calculations needed by LGIC with tol diff = 100 for
each combination of Pc, Po, and random number seed. In
our experiments we observed most CPU time was spent for
similarity calculation. Moreover, there is a strong tendency
that CPU time is proportional to the number of similarity
calculations.

TABLE II
CPU TIME (SEC) OF LGIC TOGETHER WITH THE NUMBER OF

SIMILARITY CALCULATIONS IN PARENTHESES (tol diff=100)

Pc Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
93.8 (23) 329.4 (163) 98.0 (26) 127.2 (45)
158.8 (59) 133.7 (50) 95.7 (22) 161.1 (61)

0.25 187.4 (71) 247.8 (113) 199.5 (83) 107.3 (33)
158.3 (62) 426.6 (215) 107.7 (31) 217.5 (100)
205.7 (92) 350.1 (173) 439.7 (223) 286.8 (140)
619.4 (301) 501.1 (244) 684.4 (338) 186.8 (33)
307.9 (130) 545.8 (273) 734.2 (357) 205.4 (46)

0.50 594.9 (297) 370.0 (167) 390.7 (157) 315.1 (103)
1898.3 (1044) 239.9 (84) 375.3 (142) 251.0 (64)

711.0 (357) 562.3 (287) 845.1 (436) 388.7 (157)
1556.8 (855) 2049.7 (1108) 856.7 (394) 700.4 (278)
1232.2 (664) 1606.7 (866) 694.4 (282) 921.1 (434)

0.75 422.3 (168) 2567.6 (1401) 1102.6 (530) 553.4 (194)
423.6 (177) 2236.8 (1194) 773.3 (326) 874.7 (354)

1878.1 (1029) 1206.9 (639) 560.9 (206) 874.9 (370)

Table III shows the average taken for each combination of
Table II. For each Po, average CPU time spent by LGIC gets
longer as Pc gets larger; however, for each Pc, average CPU
time does not necessarily increase even if Po gets larger.
This may indicate when Pc gets larger, the number of rule
candidates will get larger.

TABLE III
AVERAGE CPU TIME (SEC) OF LGIC TOGETHER WITH THE AVERAGE

NUMBER OF SIMILARITY CALCULATIONS IN PARENTHESES
(tol diff=100)

Pc Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
0.25 160.8 (61) 297.5 (143) 188.1 (77) 180.0 (76)
0.50 826.3 (426) 443.8 (211) 605.9 (286) 269.4 (81)
0.75 1102.6 (579) 1933.5 (1042) 797.6 (348) 784.9 (326)

Since we came to know tol diff seriously influences the
success rate of LGIC, we changed it from 100 to 150. Then
the range to search variable parameters is enlarged. Table
IV shows the success rates of LGIC error correction for
tol diff = 150. When Pt = Pc×Po ≤ 3/16 (= 0.188), LGIC
with tol diff = 150 discovered the true grammar with 80 or
100 % (= 4 or 5 out of 5 runs). However, when Pt exceeds
about 1/4 (= 0.25), the success rate dropped to 20 % for
Pc = 0.5 and Po = 0.5.

TABLE IV
SUCCESS RATES OF LGIC ERROR CORRECTION FOR R-TYPE

TRANSMUTATION (ORIGINAL PLANT MODEL EX05N, tol diff=150)

Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
Pc = 0.25 5/5 5/5 5/5 4/5
Pc = 0.50 5/5 1/5 0/5 0/5
Pc = 0.75 4/5 0/5 0/5 0/5

Figure 4 shows one of plant models transmuted with Pc =
0.50 and Po = 0.50. LGIC with tol diff = 150 successfully
discovered the true grammar for this transmuted plant.

Fig. 4. Plant model transmuted from ex05n (Pc = 0.50, Po = 0.50)

Figure 5 shows one of plant models transmuted with Pc

= 0.75 and Po = 0.25. Even for this transmuted plant, LGIC
with tol diff = 150 discovered the true grammar.

Fig. 5. Plant model transmuted from ex05n (Pc = 0.75, Po = 0.25)

Table V shows CPU time spent and the number of sim-
ilarity calculations needed by LGIC with tol diff = 150.
When Pt ≤ 1/8, it is obvious LGIC with tol diff = 150
will succeed; thus, skipped. On the other hand, when Pt ≥
1/2, it is also rather obvious LGIC with tol diff = 150 will
fail; thus, skipped. Again, there is a tendency that CPU time
is proportional to the number of similarity calculations.

TABLE V
CPU TIME (SEC) OF LGIC TOGETHER WITH THE NUMBER OF

SIMILARITY CALCULATIONS IN PARENTHESES (tol diff=150)

Pc Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
633.9 (315) 397.7 (166)
329.1 (125) 672.4 (328)

0.25 n/a n/a 692.9 (338) 299.5 (104)
250.3 (80) 580.7 (273)

n/a 488.0 (222)
1922.8 (1008) 1449.9 (710)
1932.4 (1026) 992.2 (438)

0.50 n/a 1638.3 (841) 2249.3 (1157) n/a
1621.9 (811) 997.3 (423)
1716.6 (888) 1720.8 (889)

3786.1 (2095) 2767.7 (1424)
3599.8 (1959) 2834.8 (1495)

0.75 2646.8 (1418) 3255.8 (1686) n/a n/a
3191.4 (1724) 4325.3 (2350)
3904.4 (2144) 2067.1 (1025)
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Table VI shows the average taken for each combination
of Table V. Again, for each Po, average CPU time gets
longer as Pc gets larger; however, for each Pc, average CPU
time does not necessarily increase even if Po gets larger.
This may reflect when Pc gets larger, the number of rule
candidates will get larger. Moreover, as is rather obvious,
when tol diff gets larger, the number of rule candidates gets
larger, and therefore, CPU time gets longer. When tol diff
was changed from 100 to 150, CPU time increased more
than double in most cases.

TABLE VI
AVERAGE CPU TIME (SEC) OF LGIC TOGETHER WITH THE AVERAGE

NUMBER OF SIMILARITY CALCULATIONS IN PARENTHESES
(tol diff=150)

Pc Po = 0.25 Po = 0.50 Po = 0.75 Po = 1.0
0.25 n/a n/a 476.6 (215) 487.7 (219)
0.50 n/a 1766.4 (915) 1481.9 (723) n/a
0.75 3425.7 (1868) 3050.1 (1596) n/a n/a

V. CONCLUSION

This paper proposed a method of grammatical induction
with error correction for deterministic context-free L-system.
Given a transmuted string, the method induces L-system
grammar candidates. As transmutation this paper focuses
only on replacement-type. In the method, a set of parameter
values is exhaustively searched and if it is located within
the tolerable distance from a point determined by the given
string, then the parameters are used to form rule candidates.
Rule candidates are used to generate a candidate string, and
the similarity between a generated string and the given one
is calculated, and candidates having the strongest similarities
are shown as the output. Our experiments showed the pro-
posed method discovered the true L-system grammar when
the transmutation rate is less than around 20%. In the future
we plan to extend the method to cope with other types of
transmutations such as deletion-type or insertion-type.
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