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Abstract—Monitoring data streams in real time over dis-
tributed streaming environments plays a large role in maintain-
ing situation awareness, which is a great challenge due to huge
data volumes and bandwidth limitations. In this monitoring
process, transmission cost and value accuracy are two very
important but conflicting factors in measuring the efficacy of
the system. On one hand, increasing value accuracy increases
transmission cost. On the other hand, reducing transmission
cost, which can be accomplished by smoothing the data, will re-
duce value accuracy. In this paper, we use V-Optimal histograms
to approximate the data distribution at the data sources. The
V-Optimal algorithm is used for computing optimal number of
buckets and bucket boundaries given a certain error bound,
which are then used to approximate and communicate data
between the source and the server. We introduce the notion of
a soft precision constraint (PC) and use two additional metrics
namely, weighted average error and PC violation rate or error
rate to control the quality of approximation. We show through
extensive experimentation that our approach performs very well
in maintaining data quality as well as reducing communication
cost.

Index Terms—V-Optimal, Histogram, Filter, Continuous
Query, Data Approximation.

I. INTRODUCTION

CONTINUOUS aggregate queries are used in many data
streaming applications such as Internet applications,

and sensor networks for monitoring purposes [3], [13]. For
example, in Internet applications, by monitoring logs gener-
ated by high-speed routers for hot IP addresses, Denial Of
Service (DoS) attacks can be detected. Many environment-
aware technologies need to monitor temperature, light and
moisture. Highway-traffic monitoring systems have to con-
stantly monitor number of cars, their speed and average
distance between cars to estimate traffic conditions and real-
time travel duration. These smart infrastructures must con-
tinuously maintain an accurate representation of the current
environment to be able to perform their jobs. Keeping an
accurate representative view of present conditions is crucial
for optimal decision making. Typically, data is gathered from
hundreds of data sources and sent to a central server for
further analysis. Continuous aggregate queries and analysis
tools are registered at the central coordinator to process the
incoming data. In a naı̈ve approach, remote sources forward
all data to the central server. However, the sheer volume and
speed of the generated data along with energy constraints
and wireless bandwidth limitations make this approach very
inefficient. This approach is also wasteful as many appli-
cations can tolerate inaccuracy to a certain extent. Other
available mechanisms that sacrifice accuracy for transmission
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cost use periodic sampling to estimate current conditions. In
cases where the measurements are stable( [1], [2], [4]), such
sampling measures are sufficient to make real-time decisions.
However, when data is characterized by high variability and
abrupt trend changes and the applications require a certain
level of accuracy, such schemes fail to deliver. In light of this,
we propose to deploy error-bounded histogram based filters
at the remote data sources that would significantly reduce
the volume of data that are transmitted while maintaining
a certain level of data accuracy. Histograms are commonly
used in database systems for approximating data distribution
and providing approximate answers to queries. However,
no prior work has used histograms for approximate data
communication. Although, data filtering will reduce com-
munication cost, it would also result in a reduced level of
accuracy in query results at the central server which may
not be very desirable. The goal of our research is to balance
between communication cost and value accuracy in a way
that minimizes cost without sacrificing accuracy beyond the
threshold demanded by the applications. The basic idea is
to use the average value of a histogram bucket to represent
each value in the bucket. When a new value is produced
at the data source, the bucket number is communicated to
the server only if the previous value did not belong in the
same bucket. The server uses the average value of the bucket
to approximate the new value at the data source. When the
new value is still in the same bucket no transmission is
required and the central server continues to use the same
approximation. The difference between the new value at the
data source and its approximation at the server represents
the approximation error, which must follow any predefined
constraint set by the application or user. In this paper,
we describe our histogram based filtering approach, show
the relationships among different parameters which affect
transfer cost and value accuracy, and demonstrate the efficacy
of our approach through extensive experimentation.

II. PROBLEM DESCRIPTION AND OVERVIEW OF
APPROACH

A distributed data streaming environment constitutes a
central server and several remote data sources. Each source
S j produces a stream of data values v j,i. The applications
and the aggregate queries installed at the server use the data
streams for various purposes such as producing aggregate
results. For many of these queries or applications, complete
accuracy may not be necessary, which allows for the actual
value at the source and the received or estimated value at
the server to be different. We use a predefined parameter
called Precision Constraint (PC) to represent this flexibility.
In order to take advantage of this flexibility a filter can be
installed at each remote data source. The key performance
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metrics in this environment are communication cost and
accuracy.

In this paper, we will mainly focus on one data source
without loss of generality as the same idea can be replicated
across all data sources. From here on, we will use vi to
represent the ith value from a data source. A precision
constraint PC is also specified by the application or user
which determines the window width within which the ap-
proximate value must fall. Given vi and the corresponding
approximation ai, the approximation error ei is computed
as |vi− ai|, which should be less than PC/2. It is possible
that even the precision constraint may be allowed to be
violated, especially for aggregate queries as long as the
average error stays within a certain limit. Therefore, we
consider the precision constraint to be a loose constraint,
not a strict one. Our goal is to reduce both the number of
precision constraint violations and the average error while
keeping communication cost down. Eventually, we would
like to come up with a parameter or a set of parameters
that could be used as a dial to control the number of PC
violations, average error, and communication cost for a given
application or scenario. We measure communication cost as
the percentage of data values at the source that need to
be transmitted to the server, which we call the New Value
Refresh Rate (NVRR). The installed filters at the data source
will reduce NVRR and thus communication cost; however,
it will also result in a reduced level of data accuracy at
the central server which will lead to precision constraint
violations and an increase in average error. Our goal is to
minimize refresh rate without sacrificing accuracy beyond
the threshold desired by the application.

Fig. 1. System Architecture

Below, in Fig. 1 we show a flow diagram describing the
process and the architecture of our approach. During the
training period, the data sources forward data to the stream
coordinator without performing any filtering. The histogram

manager at the coordinator site uses this training data to
create the histograms. In this paper, we use the V-Optimal
Histogram algorithm, which we discuss in section III, to
determine the number of buckets and bucket-boundaries that
would keep the average estimation error below the desired
level while minimizing the number of buckets. The bucket-
boundaries are then communicated to the source to be used
in the filter, which we call the V-Optimal filter. V-Optimal
bucket boundaries are supposed to demarcate the data in a
way where each bucket contains similar elements. In other
words, buckets represent trend sequences or clusters. Note
that, in this work we consider data sequences that follow a
trend but can make abrupt directional changes, e.g. weather
temperature, humidity and stock prices. Once the bucket-
boundaries and bucket-means are computed, we use the
bucket-means as approximations for all the bucket values, i.e.
at the coordinator the value is approximated by the bucket-
mean. Once the filters are in place, any new value generated
at the source has to go through the filter before being sent
to the coordinator. If the current value, unless its the first
value, falls in the same bucket as the previous value nothing
needs to be transmitted, thus reducing cost. On the other
hand, if it is different, the bucket number of the new value is
communicated to the coordinator. The coordinator uses the
bucket-mean as an estimation of the value. The difference
between the real value and the estimated value is the error.
Let V = {vi|vi ∈ V, i ∈ N} be the set of data generated at
the remote source. Let B = {b j|b j ∈ B, j ∈ N} be the set of
all buckets calculated during the training period. Let m j be
the mean value of bucket b j. When the remote source gets
vi ∈ b j, it sends the value b j to the central server. The server
interprets this value as m j, i.e. ai = m j. This gives an error
of |vi−m j|. PC violation occurs when this error exceeds PC

2 ,
i.e. the following constraint must hold:

|vi−m j| ≤
PC
2

(1)

The number of buckets, in effect, indirectly controls the
transfer/update costs and directly controls the average error.
New data values tend to stay close to previous ones and as
a result tend to fall in the same bucket, thus not requiring
any updates. Therefore, when fewer buckets are used their
value intervals are wider, and consequently, fewer updates
are needed. However, this causes the average error to rise
since more values that are further away from the mean are
being approximated by the mean. Similarly, a higher bucket
count results in narrower intervals and consequently, cause
the average error to go down and NVRR to go up. The goal of
the V-Optimal algorithm is to keep the average error between
the actual values and their approximations within a certain
bound while minimizing the required number of buckets.

Fig. 2 gives a concrete example to further illustrate the
process. The training data consists of values between 1
and 18 with various frequencies, e.g. 2 occurred 3 times.
The optimal bucket boundaries using at most 3 buckets that
minimizes average error for the given training data is shown
in the figure along with the corresponding bucket-means. The
average error for the training data is 2.05 in this case. If
the requirement were to come up with a histogram with the
minimum number of buckets that keeps the average error to
at most 2.05 then the same histogram would be produced by
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Fig. 2. An example

the V-Optimal algorithm. After the filter is installed at the
source, the value 12 is produced at the data source. Since it is
the first value, the corresponding bucket number, 2, is sent to
the server or stream coordinator. The server uses the bucket-
mean, 10.75, as an estimation of the value thus incurring an
error of 1.25. The next value at the source is 13, which is still
in the same bucket and does not require any update. Over
the first four values, the average error is 1.48 and new value
refresh rate is 0.5. If the precision constraint was set to 4,
then there would be only one precision constraint violation
(i.e. error >2) out of 4 instances, resulting in a violation rate
of 0.25.

III. RELATED WORK AND BACKGROUND

Precision constraints for aggregate queries were first in-
troduced in [15], [16], where only one-time ad-hoc queries
were explored. A smooth trade off between precision and
performance was offered in [14] for distributed continuous
queries using adaptive filters . They describe a way to
maintain accuracy while reducing cost by timely adjusting
the width boundaries for continuous queries. However, their
weakness is that although filter widths are periodically reset,
the quality of the approximations cannot be guaranteed.
Reference [11] proposes an algorithm to efficiently dis-
patch precision windows to reduce the total communica-
tion overhead while keeping the quality of answers to the
registered aggregate queries. However, they only consider
strict precision constraint. In this paper, we allow precision
constraints to be violated by specifying the allowable error
rate. This flexibility allows us to achieve higher savings
in communication overhead. We also have an additional
metric, the weighted average error, to maintain the quality
of the approximations. Our approach employs the V-Optimal
algorithm to compute error-bounded histograms which are
then used to communicate approximate answers between data
source and server.

As pointed out in [5], histograms were first proposed in
Kooi’s PhD thesis [12] for approximating data distributions.
These were the equi-width histograms that divide the value
range into buckets of equal width. Then came the equi-depth
histograms [17]. In [7], it was shown that errors in query size
estimates can grow exponentially, in the worst case. This
led to the effort in [8] that finds methods to minimize error
propagation. This was followed by other optimality results
for histograms such as [6], [9]. Reference [9], which is of
particular interest to us, showed that V-Optimal histograms
using a new kind of partition constraint can minimize the

error by minimizing the cumulative variance of source pa-
rameter values of all the buckets.

Given a set of n numbers X = x1, · · · ,xn the V- Optimal
histogram construction problem searches for a piecewise
constant representation (function) H that approximates X
with at most B non-overlapping intervals such that e(H) =
||X −H||22 = ∑i(xi−H(i))2 is minimized. Each piece is a
bucket and defines a subrange [p,q] of the range [1,n]. The
dual problem, which is called the error-bounded histogram
problem, searches for H with the minimum number of
buckets for which e(H) is less than a certain bound ε .
Jagadish et. al. show in [10] that the best representative
value v of a bucket or range [ j+ 1, · · · , i] which minimizes
the Sum Squared Error e( j + 1, i) = ∑

i
r= j+1(xr− v)2 is the

mean
∑

i
r= j+1 xr

j−i . They gave an O(n2B) time algorithm that
find the optimum histogram boundaries using O(nB) space.
They also gave an alternative approach that reduces the space
requirement to O(n) at the expense of increasing the running
time to O(n2B2). Their Dynamic Programming algorithm,
which is the optimal Polynomial time algorithm for the V-
Optimal partition constraint, is given in Algorithm 1. Error
e( j + 1, i) can be computed in O(1) time from the arrays
Sum[i] = ∑

i
r=1 xi and SumSquare[i] = ∑

i
r=1 x2

i as e( j+1, i) =
SumSquare[i]−SumSquare[ j]− (Sum[i]−Sum[ j])2/(i− j)

Algorithm 1 V-Optimal
1: LetE[i,b] = min. error b bucket histogram for [1, · · · , i].
2: Initially E[i,1] = e(1, i) for all 1≤ i≤ n
3: for b = 2 to B do do
4: for i = 2 to n do do
5: E[i,b] = ∞

6: for j = i−1 downto 1 do do
7: E[i,b] = min{E[i,b],E[ j,b−1]+ e( j+1, i)}
8: /* perform book-keeping if minimum is changed

*/
9: end for

10: end for
11: end for

Using this algorithm to solve the error-bounded histogram
problem is quite simple. We can run the above algorithm and
terminate once we compute an E[N,k] that is at most ε . We
can also use the dual approach shown in [10].

IV. EXPERIMENTAL RESULTS

We conducted a series of experiments to assess the
effectiveness of our approach and the impact of various
parameters on the transfer cost and approximation accuracy
at the server. In our experiments, we use the one-dimensional
random walk model to generate data at the data source. The
random walk model is a well-known and often used model
to simulate scalar value changes [14], [15]. In this model,
given the step parameter SS and a current scalar value Vi,
the next value Vi+1 is randomly chosen from the interval
[Vi− SS,Vi + SS]. For our experiments, the lower and upper
bounds of the data are respectively 60 and 90, i.e. when
Vi−SS < 60, it is set to 60. Similarly, if Vi−SS > 90, it is set
to 90. The data generated during the training period was used
to calculate the buckets and their boundaries using the V-
Optimal algorithm for the error-bounded histogram problem,
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based on a given precision constraint, PC. Note that, PC and
the error-bound ε used in V-Optimal are not the same. To
this end, we introduce a parameter α and compute ε as

ε = PC∗α (2)

ε = PC∗α . Thus, the three parameters that have an impact
on performance are PC, SS and α . The three performance
metrics that we consider are new value refresh rate (NVRR),
weighted average error (WAE) and error rate (ER). NVRR
has already been discussed in section 1. WAE is computed
as ∑i |vi−ai|

N , where ai is the approximation for vi and N is the
total number of values. Error rate is defined by the fraction
of values that cause the precision constraint to be violated.

In the following subsections we present the impact of PC,
SS and α on NVRR, WAE and ER.

A. Impact of Step Size

In a real data stream, step size is the maximum difference
two consecutive data values can have between them, which
is dictated by the underlying phenomenon the data stream
represents. E.g. if the data stream is for daily temperature
and the samples are being taken every second then step
size is going to be very small. On the other hand, if the
samples are being taken every hour then the step size will be
much larger. In our experiments, the step size is being used
by the random walk model for generating the data values.
The purpose of step size is to control the variability among
consecutive values of the data stream. If the variability in
data is to the extent where two consecutive values are always
very distant from each other then consecutive values will
always fall in different buckets thus nullifying any utility of
approximation. In this paper, we are targeting data streams
where the underlying variability between consecutive values
is much more controlled, although the actual data pattern can
be quite unpredictable, e.g. stock prices, number of packets
going through routers, highway traffic.

In these experiments, step sizes were varied among
PC
2 , PC

4 and PC
8 to vary the data characteristics and α was

fixed at 0.13. Fig. 3(a) shows the relationship between NVRR
and step size. With step size decreasing, the probability of
the new value jumping to the next bucket decreases and
consequently, NVRR decreases regardless of the PC value.
In all cases, NVRR stays below 0.05, i.e. values have to
be communicated less than 5% of the time. Fig. 3(b) shows
that the step size does not have any significant impact on
WAE. Weighted average error remains the same even when
SS is increased. The impact of step size on error rate can be
seen in Fig. 3(c). For all precision constraints, as step size is
increased the probability of a precision constraint violation
or error rate increases. These violations occur when bucket
width is larger than the precision constraint. Such violations
are unavoidable since the goal of error-bounded V-Optimal
algorithm is to minimize the bucket count while keeping the
average error below the error bound, ε . While doing so it may
choose to keep some of the bucket widths large where the
data values are sparse. This allows the algorithm to use more
buckets where the data density is higher. This dense area
contributes more to the overall weighted average error and
thus requiring higher accuracy and narrower bucket widths.

B. Impact of Precision Constraint

Precision constraint, PC, is the maximum width of the
error window for any value and is an user defined input.
For any pair of (vi,ai), where ai is the approximation of
vi, the constraint in equation 1 must hold. We use the PC
to compute ε , which is the error bound for the V-Optimal
algorithm, using equation 2. Consequently, PC determines
the number of buckets in the V-Optimal histogram. When
the value of PC is high the histogram can tolerate high
error which in turn reduces the number of buckets. This
increases the width of the buckets and as a result, decreases
NVRR. This is evident in Fig. 4(a), especially when SS is
fixed, i.e. SS ∈ {1,2,3,4,5}. When SS is fixed, variability
among consecutive data points stay the same; however, with
increasing PC, the buckets become wider, which reduces
NVRR. However, when SS increases with increasing PC (i.e.
SS ∈ {PC

2 , PC
4 , PC

8 } in Fig. 4(a)), the value of PC does not
have much effect on NVRR. Fig. 4(b) shows that PC and
WAE have a positive correlation, which is quite intuitive.
Increasing PC also reduces error rate as it becomes easier to
maintain the PC when it is higher. In any case, our method
performs quite well in all scenarios as both NVRR are error
rate stayed relatively low. NVRR was below 11% and ER
stayed below 1%. For these experiment, α was fixed at 0.13.

C. Impact of α

For these experiments, we varied α between 0.1 and 0.2
for different precision constraints while step size was fixed
at 4. α is the parameter which relates PC to error bound, ε ,
as given in equation 2. For a given PC, increasing α will
increase ε , which in turn will make the V-Optimal algorithm
to produce fewer and wider buckets. Wider buckets will
increase the WAE and decrease NVRR, which can be seen
in figures 5(a) and 5(b). The positive correlation between
α and WAE, and the negative correlation between α and
NVRR holds for all values of PC. However, we can see
that for a fixed α as PC increases WAE increases while
NVRR stays unaffected just as expected. This trend was
also deduced in the previous subsection. Also, for almost
all the data points WAE has a value close to ε which is
the goal of V-Optimal algorithm. Fig. 5(c) shows that error
rate has a positive correlation with α because when α is
increased while keeping PC unchanged, ε becomes larger
and as a result the number of buckets that are wider than PC
increases. This causes more approximations to violate the
precision constraint and error rate to go up.

D. Impact of Training Period

In this set of experiments, our goal was to find out if the
size of the training data set has an effect on the performance
of our scheme. Step size and α where fixed at 4 and 0.13
as usual. It is quite obvious that the training set has to be
large enough to cover the whole data range (in our case 60-
90). However, it is not obvious whether the performance will
deteriorate if we keep applying the same histogram without
retraining. To this end, we increased TeVC

TrVC and noticed that
NVRR stays unaffected (Fig. 6), where TeVC and TrVC are
respectively, the number of test values and the number of
training values. Fig. 7 shows that for the same PC values,
WAE stays unchanged when the ratio is increased.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012



(a) Impact on New Value Refresh Rate (b) Impact on Weighted Average Error (c) Impact on Error Rate

Fig. 3. Impact of temporal variability in data

(a) Impact on New Value Refresh Rate (b) Impact on Weighted Average Error (c) Impact on Error Rate

Fig. 4. Impact of Precision Constraint (PC)

(a) Impact on Weighted Average Error (b) Impact on New Value Refresh Rate (c) Impact on Error Rate

Fig. 5. Impact of Alpha (α)

E. How to choose α

α is a parameter that can be tuned to achieve desired
outcome. However, if desired outcome is unrealistic, any
fine tuning may be futile. E.g. if PC is too low compared
to the underlying step size of the data, then both NVRR and
ER will be high. Moreover, we cannot have very low WAE
relative to PC because of the positive correlation between
them. We can also notice from figures 5(b) and 5(c) that
there has to be a trade-off between NVRR and ER due to
the inverse correlation between them. Therefore, we cannot
desire unrealistically low values for both NVRR and ER. So,

the question is how can we fine-tune α to achieve good but
realistic performance goals or how do we even set realistic
performance goals. Our suggestion is that first we perform
statistical analysis ( e.g. examine mean, max, variance) on
consecutive value differences to determine the underlying SS.
Once SS is known, we suggest that PC be set to SS× 2 or
higher. If we have a desired WAE upper-bound ε , we can
compute the upper bound for α as ε/PC. If we have a desired
NVRR upper-bound β and an ER upper bound η , then we
can use graphs similar to 5(b) and 5(c) to lower α until we
find an α for which NVRR and ER are lower than β and η .
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Fig. 6. Effect of TeVC
TrVC on NVRR

Fig. 7. Effect of TeVC
TrVC on WAE

V. CONCLUSION

In this paper, we have proposed a novel approach based
on V-Optimal histograms for approximating and communi-
cating data values between a source and coordinator. In our
approach, a V-Optimal filter is installed at each remote source
to filter data that are still in the same histogram bucket as
previous values. The remote source and the server are in
sync as to what the bucket boundaries and means are. We
introduced the notion of soft precision constraints as opposed
to strict ones. Experimental results show that our approach
can significantly reduce data transfer cost as well as maintain
data quality not only in terms of precision constraint but also
in terms of weighted average error and PC violation rate.
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