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Abstract—This paper introduces and investigates related
properties of bipolar fuzzy finite switchboard state machines.
Thus, the notion of bipolar valued fuzzy finite state machine,
the concept of bipolar submachine, bipolar connected, bipolar
retrievable are utilized.

Index Terms—bipolar fuzzy finite state machine, bipolar
switching, bipolar submachine, bipolar connected, bipolar re-
trievable.

I. INTRODUCTION

IN 1965, Zadeh [11] introduced the notion of fuzzy subset
of a set. Since then, the theory of fuzzy sets has become

a vigorous area of research in different disciplines includ-
ing medical and life sciences, management sciences, social
sciences, engineering, statistics, graph theory, artificial in-
telligence, pattern recognition, robotics, computer networks,
decision making and automata theory.

In 1994, Zhang [12], [13] initiated the concept of bipolar
fuzzy sets as a generalization of fuzzy sets. Bipolar fuzzy
sets are an extension of fuzzy sets whose membership degree
range is [−1, 1]. In a bipolar fuzzy set, the membership
degree 0 of an element means that the element is irrele-
vant to the corresponding property, the membership degree
(0, 1] of an element indicates that the element somewhat
satisfies the property (see [2], [15]), and the membership
degree [−1, 0) of an element indicates that the element
somewhat satisfies the implicit counter-property. Although
bipolar fuzzy sets and intuitionistic fuzzy sets look similar
to each other, they are essentially different sets [8]. In many
domains, it is important to be able to deal with bipolar
information. It is noted that positive information represents
what is granted to be possible, while negative information
represents what is considered to be impossible. This domain
has recently motivated new research in several directions.
In particular, fuzzy and possibilistic formalisms for bipolar
information have been proposed [3], because when we deal
with spatial information in image processing or in spatial
reasoning applications, this bipolarity tend to occur too. For
instance, when we assess the position of an object in a
space, we may have positive information expressed as a
set of possible places and negative information expressed
as a set of impossible places. As another example, let us
consider the spatial relations. Human beings consider ”left”
and ”right” as opposite directions, but this does not mean
that one of them is the negation of the other. The semantics
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of ”opposite” captures a notion of symmetry rather than a
strict complementation. In particular, there may be positions
which are considered neither to the right nor to the left
of some reference object , thus leaving some room for
indetermination. This corresponds to the idea that the union
of positive and negative information does not cover the whole
space.

Malik et al. [10] introduced the notions of submachine of
a fuzzy finite state machine, retrievable, separated and con-
nected fuzzy finite state machines and discussed their basic
properties. They also initiated a decomposition theorem for
fuzzy finite state machines in terms of primary submachines.
On the other hand, Kumbhojkar and Chaudhari [7] provided
several ways of constructing products of fuzzy finite state
machines and their mutual relationship, through isomorphism
and coverings. Li and Pedrycz [9] indicated that fuzzy finite
state automata can be viewed as a mathematical model of
computation in fuzzy systems. Recently, a higher order set
with imprecision has been extended to automata. Based
on Atanassov’s intuitionistic fuzzy sets [1], Jun proposed
intuitionistic fuzzy finite state machines in [4] and also
intuitionistic fuzzy finite switchboard state machines in [5].
Zhang and Li [14] presented the properties of intuitionistic
fuzzy recognizers and intuitionistic fuzzy finite automata.
Thus, using the notion of bipolar fuzzy valued sets, the
present author [6] introduced the concepts of bipolar fuzzy
finite state machines, bipolar successors, bipolar subsystems
and studied related properties. He established a condition
for bipolar fuzzy finite state machine to satisfy the bipolar
exchange property.

In this paper, using the notion of bipolar-valued fuzzy
sets, concept of bipolar submachines, bipolar connected,
bipolar retrievable and bipolar fuzzy finite switchboard state
machines (bffssm) is introduced and related properties are
investigated.

II. PRELIMINARIES

Let X be the universe of discourse. A bipolar-valued fuzzy
set ϕ in X is an object having the form

ϕ = {(x, ϕ−(x), ϕ+(x)) | x ∈ X}

where ϕ− : X → [−1, 0] and ϕ+ : X → [0, 1] are mappings.
The positive membership degree ϕ+(x) denotes the satisfac-
tion degree of an element x to the property corresponding to a
bipolar-valued fuzzy set ϕ = {(x, ϕ−(x), ϕ+(x)) | x ∈ X},
and the negative membership degree ϕ−(x) denotes the
satisfaction degree of x to some implicit counter-property
of ϕ = {(x, ϕ−(x), ϕ+(x)) | x ∈ X}. If ϕ+(x) 6= 0 and
ϕ−(x) = 0, it is the situation that x is regarded as having
only positive satisfaction for ϕ = {(x, ϕ−(x), ϕ+(x)) | x ∈
X}. If ϕ+(x) = 0 and ϕ−(x) 6= 0, it is the situation that x
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does not satisfy the property of ϕ = {(x, ϕ−(x), ϕ+(x)) |
x ∈ X} but somewhat satisfies the counter-property of ϕ =
{(x, ϕ−(x), ϕ+(x)) | x ∈ X}. It is possible for an element
x to be ϕ+(x) 6= 0 and ϕ−(x) 6= 0 when the membership
function of the property overlaps that of its counter-property
over some portion of the domain (see [8]). For the sake of
simplicity, we shall use the symbol ϕ = 〈ϕ−, ϕ+〉 for the
bipolar-valued fuzzy set ϕ = {(x, ϕ−(x), ϕ+(x)) | x ∈ X},
and use the notion of bipolar fuzzy sets instead of the notion
of bipolar-valued fuzzy sets.

III. BIPOLAR FUZZY FINITE STATE MACHINES

Definition 3.1: [6] A bipolar fuzzy finite state machine
(bffsm, for short) is a triple M = (Q,X,ϕ), where Q and
X are finite nonempty sets, called the set of states and the
set of input symbols, respectively, and ϕ = 〈ϕ−, ϕ+〉 is a
bipolar fuzzy set in Q×X ×Q.

Let X∗ denote the set of all words of elements of X of
finite length. Let λ denote the empty word in X∗ and |x|
denote the length of x for every x ∈ X∗.

Definition 3.2: [6] LetM = (Q,X,ϕ) be a bffsm. Define
a bipolar fuzzy set ϕ∗ = 〈ϕ−∗ , ϕ+

∗ 〉 in Q×X∗ ×Q by

ϕ−∗ (q, λ, p) :=

{
−1 if q = p,
0 if q 6= p,

ϕ+
∗ (q, λ, p) :=

{
1 if q = p,
0 if q 6= p,

ϕ−∗ (q, xa, p) = inf
r∈Q

[ϕ−∗ (q, x, r) ∨ ϕ−(r, a, p)]

ϕ+
∗ (q, xa, p) = sup

r∈Q
[ϕ+
∗ (q, x, r) ∧ ϕ+(r, a, p)]

for all p, q ∈ Q, x ∈ X∗ and a ∈ X.
Lemma 3.3: [6] Let M = (Q,X,ϕ) be a bffsm. Then

ϕ−∗ (q, xy, p) = inf
r∈Q

[ϕ−∗ (q, x, r) ∨ ϕ−∗ (r, y, p)]

and

ϕ+
∗ (q, xy, p) = sup

r∈Q
[ϕ+
∗ (q, x, r) ∧ ϕ+

∗ (r, y, p)]

for all p, q ∈ Q and x, y ∈ X∗.
Definition 3.4: [6] LetM = (Q,X,ϕ) be a bffsm and let

p, q ∈ Q. Then p is called a bipolar immediate successor of
q if the following condition holds:

(∃a ∈ X) (ϕ−(q, a, p) < 0, ϕ+(q, a, p) > 0).

We say that p is a bipolar successor of q if the following
condition holds:

(∃x ∈ X∗) (ϕ−∗ (q, x, p) < 0, ϕ+
∗ (q, x, p) > 0).

We denote by S(q) the set of all bipolar successors of q. For
any subset T of Q, the set of all bipolar successors of T,
denoted by S(T ), is defined to be the set

S(T ) := ∪{S(q) | q ∈ T}.

Proposition 3.5: [6] For any bffsm M = (Q,X,ϕ), we
have the following properties:
(1) (∀q ∈ Q) (q ∈ S(q)).
(2) (∀p, q, r ∈ Q) (p ∈ S(q), r ∈ S(p) ⇒ r ∈ S(q)).

A. Bipolar Submachine and Bipolar Connected

Definition 3.6: Let M = (Q,X,ϕ) be a bffsm. Let
(∀T ⊆ Q). Let ϕQ = 〈ϕ−Q, ϕ

+
Q〉 be a bipolar fuzzy set in

T × X × T and N = (T,X,ϕQ) be a bffsm. Then N is
called a bipolar submachine of M, if

(i) ϕ |T×X×T = ϕQ,
i.e., ϕ− |T×X×T = ϕ−Q and ϕ+ |T×X×T = ϕ+

Q.
(ii) S(T ) ⊆ T

We assume that ∅ = (∅, X, ϕ) is a bffsm of M. Obviously
it K is a bipolar submachine of N and M is a bipolar
submachine of M, the K is a bipolar submachine of M.

Definition 3.7: A bffsm M = (Q,X,ϕ)is said to be
strongly bipolar connected if p ∈ S(q) for every p, q ∈ Q.
A bipolar submachine N = (T,X, ϕQ) of a bffsm M =
(Q,X,A) is said to be proper if T 6= ∅ and T 6= Q.

Theorem 3.8: Let M = (Q,X,ϕ) be a bffsm. Let N =
(T,X, ϕQi

), i ∈ Λ, be a family of bipolar submachines of
M = (Q,X,ϕ). Then we have

(i)
⋂
i∈Λ

Ni = (
⋂
i∈Λ

Ti, X,
⋂
i∈Λ

ϕQ) is a bipolar submachine

of M.
(ii)

⋃
i∈Λ

Ni = (
⋃
i∈Λ

Ti, X, ϕ∗) is a bipolar submachine

of M where ϕ∗ = (ϕ−∗ , ϕ
+
∗ ) is given by ϕ−∗ =

ϕ− |⋃
i∈Λ

Ti×X×
⋃
i∈Λ

Ti
and ϕ+

∗ = ϕ+ |⋃
i∈Λ

Ti×X×
⋃
i∈Λ

Ti
.

Proof: (i) Let (q, x, p) ∈ (
⋂
i∈Λ

Ti, X,
⋂
i∈Λ

ϕQ). Then

(inf
i∈Λ

ϕ−Q)(q, x, p) = inf
i∈Λ

ϕ−Q(q, x, p)

= inf
i∈Λ

ϕ−(q, x, p) = ϕ−(q, x, p)

and

(sup
i∈Λ

ϕ+
Q)(q, x, p) = sup

i∈Λ
ϕ+
Q(q, x, p)

= sup
i∈Λ

ϕ+(q, x, p) = ϕ+(q, x, p)

Hence ϕ |⋂
i∈Λ

Ti×X×
⋃
i∈Λ

Ti
=
⋂
i∈Λ

ϕQ. Now

S(
⋂
i∈Λ

Ti) ⊆
⋂
i∈Λ

S(Ti) ⊆
⋂
i∈Λ

Ti

Thus
⋂
i∈Λ

Ni is a bipolar submachine of M.

(ii) Since S(
⋃
i∈Λ

Ti) =
⋃
i∈Λ

S(Ti) ⊆
⋃
i∈Λ

Ti,
⋃
i∈Λ

Ni is a

bipolar submachine of M.
Theorem 3.9: A bffsmM = (Q,X,ϕ) is strongly bipolar

connected if and only ifM = (Q,X,ϕ) has a proper bipolar
submachines.

Proof: Suppose thatM = (Q,X,ϕ) is strongly bipolar
connected. Let N = (T,X,ϕQ) be a bipolar submachine of
M such that T 6= ∅. Then there exists q ∈ T . If p ∈ Q then
p ∈ S(q) since M is strongly bipolar connected. It follows
that p ∈ S(q) ⊆ S(T ) ⊆ T so that T = Q. Hence M = N,
i.e.,M has no proper bipolar submachines. Let p, q ∈ Q and
let N = (S(q), X, ϕQ)where ϕQ = 〈ϕ−Q, ϕ

+
Q〉 is given by

ϕ−Q = ϕ− |S(q)×X×S(q)

and
ϕ+
Q = ϕ+ |S(q)×X×S(q)
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Then N is a bipolar submachine of M and S(q) 6= ∅, and
so S(q) = Q. Thus p ∈ S(q), and therefore M is strongly
bipolar connected.

For an bffsm ϕ = 〈ϕ−, ϕ+〉 in a set X , the bipolar support
of ϕ is defined to be the set

Supp(ϕ) := {x ∈ X | ϕ−(x) < 0, ϕ+(x) > 0}.

For a bipolar fuzzy set ϕ = {(x, (ϕ−(x), ϕ+(x)) | x ∈
X} and (s, t) ∈ [−1, 0]× [0, 1], we define

ϕ−t ; = {x ∈ X | ϕ−(x) ≤ t},

ϕ+
t ; = {x ∈ X | ϕ+(x) ≥ t},

which are called the negative s-cut of ϕ and the positive t-cut
of ϕ, respectively.

The set ϕ(s,t) = {x ∈ X | ϕ−(x) ≤ s, ϕ+(x) ≥ t} is
called an (s, t)-level subset of ϕ.

Theorem 3.10: Let M = (Q,X,ϕ) be a bffsm and Q =
(Q,ϕQ, X, ϕ) be a bipolar subsystems of M. Then

(i) N = (Supp(Q), X, ϕQ∗∗)is a bipolar submachine of
M, where ϕQ∗∗ = (ϕ−Q∗∗ , ϕ

+
Q∗∗) is given by

ϕ−Q∗∗ = ϕ− |Supp(Q)×X×Supp(Q)

and
ϕ+
Q∗∗ = ϕ+ |Supp(Q)×X×Supp(Q)

(ii) Let N(s,t) = (Q(s,t), X, ϕQ∗∗
(s,t)

) where

Q(s,t) := {x ∈ Q | ϕ−Q(x) ≤ s, ϕ+
Q(x) ≥ t}

and ϕQ∗∗
(s,t)

= (ϕ−Q∗∗
(s,t)

, ϕ+
Q∗∗

(s,t)
) is given by

ϕ−Q∗∗
(s,t)

= ϕ− |Q(s,t))×X×Q(s,t)

and
ϕ+
Q∗∗

(s,t)
= ϕ+ |Q(s,t))×X×Q(s,t)

,

(s, t) ∈ [−1, 0] × [0, 1]. If N(s,t) is a bipolar subma-
chine of M for all (s, t) ∈ [−1, 0] × [0, 1], then Q is
a bipolar subsystem of M.

Proof: (i) Let p ∈ S(Supp(Q)). Then p ∈ S(q) for
some q ∈ Supp(Q)). Thus ϕ−Q(q) < 0 and ϕ+

Q(q) > 0. Since
p ∈ S(q), there exists x ∈ X∗ such that ϕ−Q∗(q, x, p) < 0

and ϕ+
Q∗(q, x, p) > 0. Since Q is a bipolar subsystem, it

follows from Theorem 3.2 [6] that

ϕ−Q(q) ≤ ϕ−Q(p) ∨ ϕ−∗ (p, x, q) < 0

ϕ+
Q(q) ≥ ϕ+

Q(p) ∧ ϕ+
∗ (p, x, q) > 0

so that p ∈ Supp(Q). Hence S(Supp(Q)) ⊆ Supp(Q), and
therefore N is a bipolar submachine of M.

(ii) Let p, q ∈ Q and x ∈ X∗. If ϕ−Q(p) = s or
ϕ−Q∗(p, x, q) = s, then

ϕ−Q(q) ≤ s = ϕ−Q(p) ∨ ϕ−Q∗(p, x, q).

If ϕ+
Q(p) = t or ϕ+

Q∗(p, x, q) = t, then

ϕ+
Q(q) ≥ t = ϕ+

Q(p) ∧ ϕ+
Q∗(p, x, q).

Suppose ϕ−Q(p) < 0, ϕ−Q∗(p, x, q) < 0, ϕ+
Q(p) > 0 and

ϕ+
Q∗(p, x, q) > 0. Let

ϕ−Q(p) ∨ ϕ−Q∗(p, x, q) = s

ϕ+
Q(p) ∧ ϕ+

Q∗(p, x, q) = t.

Then p ∈ Q(s,t). Since N(s,t) is a bipolar submachine ofM,
we have S(Q(s,t)) ⊆ Q(s,t). Hence p ∈ S(p) ⊆ S(Q(s,t)) ⊆
Q(s,t), and thus

ϕ−Q(q) ≤ s ≤ ϕ−Q(p) ∨ ϕ−∗ (p, x, q)

and
ϕ+
Q(q) ≥ t ≥ ϕ+

Q(p) ∧ ϕ+
∗ (p, x, q)

Using theorem 3.2 [6], we conclude that Q is a bipolar
subsystem of M.
The converse of Theorem 3.8 (ii) is not true in general. In
fact, consider the bipolar subsystem Q in Example. Let 1

2 <
t ≤ 3

4 and − 1
2 < s ≤ − 1

8 . Let N(s,t) = (Q(s,t), X, ϕQ∗∗
(s,t)

)
where ϕQ∗∗

(s,t)
= (ϕ−Q∗∗

(s,t)
, ϕ+

Q∗∗
(s,t)

) is given by

ϕ−Q∗∗
(s,t)

= ϕ− |Q(s,t))×X×Q(s,t)

and
ϕ+
Q∗∗

(s,t)
= ϕ+ |Q(s,t))×X×Q(s,t)

.

Now ϕ−Q(q) = − 1
8 , ϕ+

Q(q) = 3
4 and ϕ−Q(q) + ϕ+

Q(q) > 0.
Hence q ∈ Q(s,t). Also ϕ−Q(q, a, p) = − 1

2 < 0 and
ϕ+
Q(q, a, p) = 1

2 > 0, and so p ∈ S(q) ⊂ S(Q(s,t)). But
ϕ+
Q(p) = 1

2 < t, and thus p 6∈ Q(s,t). Hence S(Q(s,t)) 6⊆
Q(s,t), and therefore N(s,t) is not a bipolar submachine of
M.

B. Bipolar Retrievable

Definition 3.11: A bffsm M = (Q,X,ϕ) is said to be
bipolar retrievable if

(∀q ∈ Q)(∀y ∈ X∗)(∃t ∈ Q)

(ϕ−Q∗(q, y, t) < 0, ϕ+
Q∗(q, y, t) > 0)

=⇒ (∃x ∈ X∗)(ϕ−Q∗(t, x, q) < 0, ϕ+
Q∗(t, x, q) > 0)

Definition 3.12: Let M = (Q,X,ϕ) be a bffsm and
let q, r, s ∈ Q. Then r and s are said to be bipolar q-
related if there exists y ∈ X∗ such that ϕ−Q∗(q, y, r) <

0, ϕ−Q∗(q, y, s) < 0, ϕ+
Q∗(q, y, r) > 0 and ϕ+

Q∗(q, y, s) > 0.
We say that r and s are bipolar q-twins if
(i) r and s are bipolar q-related,

(ii) S(r) = S(s).

Lemma 3.13: Let M = (Q,X,ϕ) be a bffsm. Then the
following assertions are equivalent.

(i) ∀q, r, s ∈ Q, if r and s are bipolar q-related, then r
and s are bipolar q-twins.

(ii) (∀p, q, r ∈ Q)(∀x, y ∈ X∗)
(ϕ−Q∗(q, y, r) < 0, ϕ−Q∗(q, yx, p) < 0,

ϕ+
Q∗(q, y, r) > 0, ϕ+

Q∗(q, yx, p) > 0 =⇒ p ∈ S(r)).
Proof: (i)⇒ (ii) By Lemma 3.1[6], it is clear that

r and s are bipolar q-related. It follows from (i) that r
and s are bipolar q-twins so that p ∈ S(s) = S(r).
(ii) ⇒ (i) Suppose that (ii) is valid. Let q, r, s ∈ Q be
such that r and s are bipolar q-related. Then there ex-
ists y ∈ X∗ such that ϕ−Q∗(q, y, r) < 0, ϕ−Q∗(q, y, s) <

0, ϕ+
Q∗(q, y, s) > 0, and ϕ+

Q∗(q, y, s) > 0. If p ∈ S(s),
then there exists x ∈ X∗ such that ϕ−Q∗(s, x, p) < 0,

and ϕ+
Q∗(s, x, p) > 0. Then

ϕ−Q∗(q, xy, p) = inf
t∈Q

[ϕ−Q∗(q, y, t) ∨ ϕ
−
Q∗(t, x, p)] < 0
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and

ϕ+
Q∗(q, xy, p) = sup

t∈Q
[ϕ+

Q∗(q, y, t) ∧ ϕ
+
Q∗(t, x, p)] > 0.

Thus p ∈ S(r) by hypothesis. Similarly if p ∈ S(r)
then p ∈ S(s). Therefore r and s are bipolar q-twins.

Theorem 3.14: A bffsm M = (Q,X,ϕ) is a bipolar
retrievable if and only if it satisfies

(i) (∀q ∈ Q)(∀y ∈ X∗)(∃t ∈ Q)(ϕ−Q∗(q, y, t) <

0, ϕ+
Q∗(q, y, t) > 0)

=⇒ (∃x ∈ X∗)(ϕ−Q∗(q, yx, q) < 0, ϕ+
Q∗(q, yx, q) >

0)).
(ii) q, r, s ∈ Q, if r and s are bipolar q-related then r and

s are bipolar q-twins.
Proof: Obvious

IV. BIPOLAR FUZZY FINITE SWITCHBOARD STATE
MACHINES

Definition 4.1: A bffsm M = (Q,X,ϕ) is said to be
switching if it satisfies:

ϕ−∗ (q, a, p) = ϕ−∗ (p, a, q)

ϕ+
∗ (q, a, p) = ϕ+

∗ (p, a, q)

for all p, q ∈ Q, and a ∈ X.
A bffsm M = (Q,X,ϕ) is said to be commutative if it
satisfies:

ϕ−∗ (q, ab, p) = ϕ−∗ (p, ba, q)

ϕ+
∗ (q, ab, p) = ϕ+

∗ (p, ba, q)

for all p, q ∈ Q, and a, b ∈ X.

If a bffsm M = (Q,X,ϕ) is both switching and commu-
tative, we say that M is a bipolar fuzzy finite switchboard
state machine (bffssm, for short).

Example 4.2: Let Let M = (Q,X,ϕ) is a bffsm, where
Q = {p, q, r}, X = {a, b} and let ϕQ = (ϕ−Q, ϕ

+
Q) is defined

as follows.
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Fig. 1. Bipolar Fuzzy Finite Switchboard State Machine

Then, by routine computations and using Lemma 3.3 for
all p, q, r ∈ Q and a, b ∈ X, it is easy to see that M =
(Q,X,ϕ) is a bffssm.

Proposition 4.3: If M = (Q,X,ϕ) is a commutative
bffsm, then

ϕ−∗ (q, xa, p) = ϕ−∗ (q, ax, p)

ϕ+
∗ (q, xa, p) = ϕ+

∗ (q, ax, p)

for all p, q ∈ Q, a ∈ X and x ∈ X∗.
Proof: Let p, q ∈ Q, a ∈ X and x ∈ X∗. Suppose

|x| = n. If n = 0, then x = λ. Thus

ϕ−∗ (q, xa, p) = ϕ−∗ (q, λa, p) = ϕ−∗ (q, a, p)
= ϕ−∗ (q, aλ, p) = ϕ−∗ (q, xa, p)

and
ϕ+
∗ (q, xa, p) = ϕ+

∗ (q, λa, p) = ϕ+
∗ (q, a, p)

= ϕ+
∗ (q, aλ, p) = ϕ+

∗ (q, ax, p).

Suppose the result is true for all u ∈ X∗ with |u| = n− 1,
n > 0. Let b ∈ X be such that x = ub. Then

ϕ−∗ (q, xa, p) = ϕ−∗ (q, uba, p)
= inf

r∈Q
[ϕ−∗ (q, u, r) ∨ ϕ−∗ (r, ba, p)]

= inf
r∈Q

[ϕ−∗ (q, u, r) ∨ ϕ−∗ (r, ab, p)] = ϕ−∗ (q, uab, p)

= inf
r∈Q

[ϕ−∗ (q, ua, r) ∨ ϕ−(r, b, p)]

= inf
r∈Q

[ϕ−∗ (q, au, r) ∨ ϕ−(r, b, p)]

= ϕ−∗ (q, aub, p) = ϕ−∗ (q, ax, p)

and
ϕ+
∗ (q, xa, p) = ϕ+

∗ (q, uba, p)
= sup

r∈Q
[ϕ+
∗ (q, u, r) ∧ ϕ+

∗ (r, ba, p)]

= sup
r∈Q

[ϕ+
∗ (q, u, r) ∧ ϕ+

∗ (r, ab, p)] = ϕ+
∗ (q, uab, p)

= sup
r∈Q

[ϕ+
∗ (q, ua, r) ∧ ϕ+(r, b, p)]

= sup
r∈Q

[ϕ+
∗ (q, au, r) ∧ ϕ+(r, b, p)]

= ϕ+
∗ (q, aub, p) = ϕ+

∗ (q, ax, p)

This completes the proof.
Example 4.4: Let M = (Q,X,ϕ) is a bffsm, where

Q = {p, q, r}, X = {a, b} and let ϕQ = (ϕ−Q, ϕ
+
Q) is defined

as follows.
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Fig. 2. M

Routine computations show that M is a commutative, but
M is not switching since ϕ−∗ (q, a, p) 6= ϕ−∗ (p, a, q) and
ϕ+
∗ (q, a, p) 6= ϕ+

∗ (p, a, q).
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Proposition 4.5: If M = (Q,X,ϕ) is an bffssm, then

ϕ−∗ (q, x, p) = ϕ−∗ (p, x, q)

ϕ+
∗ (q, x, p) = ϕ+

∗ (p, x, q)

for all p, q ∈ Q and x ∈ X∗.
Proof: Let p, q ∈ Q and x ∈ X∗. We prove the result

by induction on |x| = n. Since x = λ whenever n = 0, we
have

ϕ−∗ (q, x, p) = ϕ−∗ (q, λ, p) = ϕ−∗ (p, λ, q) = ϕ−∗ (p, x, q)

and

ϕ+
∗ (q, x, p) = ϕ+

∗ (q, λ, p) = ϕ+
∗ (p, λ, q) = ϕ+

∗ (p, x, q).

Hence the result is true for n = 0. Assume that the result is
valid for all u ∈ X∗ with |u| = n− 1; n > 0, that is,

ϕ−∗ (q, u, p) = ϕ−∗ (p, u, q)

ϕ+
∗ (q, u, p) = ϕ+

∗ (p, u, q).

Let a ∈ X and x ∈ X∗ be such that x = ua. Then

ϕ−∗ (q, x, p) = ϕ−∗ (q, ua, p) = inf
r∈Q

[ϕ−∗ (q, u, r) ∨ ϕ−(r, a, p)]

= inf
r∈Q

[ϕ−∗ (r, u, q) ∨ ϕ−(p, a, r)]

= inf
r∈Q

[ϕ−∗ (r, u, q) ∨ ϕ−∗ (p, a, r)]

= inf
r∈Q

[ϕ−∗ (p, a, r) ∨ ϕ−∗ (r, u, q)] = ϕ−∗ (p, au, q)

= ϕ−∗ (q, ua, p) = ϕ−∗ (p, x, q)

and

ϕ+
∗ (q, x, p) = ϕ+

∗ (q, ua, p) = sup
r∈Q

[ϕ+
∗ (q, u, r) ∧ ϕ+(r, a, p)]

= sup
r∈Q

[ϕ+
∗ (r, u, q) ∧ ϕ+(p, a, r)]

= sup
r∈Q

[ϕ+
∗ (r, u, q) ∧ ϕ+

∗ (p, a, r)]

= sup
r∈Q

[ϕ+
∗ (p, a, r) ∧ ϕ+

∗ (r, u, q)] = ϕ+
∗ (p, au, q)]

= ϕ+
∗ (q, ua, p) = ϕ+

∗ (p, x, q)

This shows that the result is true for |u| = n. This completes
the proof.

Proposition 4.6: If M = (Q,X,ϕ) is a bffssm, then

ϕ−∗ (q, xy, p) = ϕ−∗ (q, yx, p)

ϕ+
∗ (q, xy, p) = ϕ+

∗ (q, yx, p)

for all p, q ∈ Q and x, y ∈ X∗.
Proof: Let p, q ∈ Q and x, y ∈ X∗. Assume that |y| =

n. If n = 0, then y = λ and so

ϕ−∗ (q, xy, p) = ϕ−∗ (q, xλ, p) = ϕ−∗ (q, λx, p) = ϕ−∗ (q, yx, p)

and

ϕ+
∗ (q, xy, p) = ϕ+

∗ (q, xλ, p) = ϕ+
∗ (q, λx, p) = ϕ+

∗ (q, yx, p).

Suppose that ϕ−∗ (q, xu, p) = ϕ−∗ (q, ux, p) and
ϕ+
∗ (q, xu, p) = ϕ+

∗ (q, ux, p) for every u ∈ X∗ with

|u| = n, n > 0. Let y = ua where a ∈ X and u ∈ X∗ with
|u| = n− 1, n > 0. Then

ϕ−∗ (q, xy, p) = ϕ−∗ (q, xua, p)
= inf

r∈Q
[ϕ−∗ (q, xu, r) ∨ ϕ−(r, a, p)]

= inf
r∈Q

[ϕ−∗ (q, ux, r) ∨ ϕ−(r, a, p)]

= inf
r∈Q

[ϕ−∗ (r, ux, q) ∨ ϕ−(p, a, r)]

= inf
r∈Q

[ϕ−(p, a, r) ∨ ϕ−∗ (r, ux, q)] = ϕ−∗ (p, aux, q)

= inf
r∈Q

[ϕ−∗ (p, au, r) ∨ ϕ−(r, x, q)]

= inf
r∈Q

[ϕ−∗ (p, ua, r) ∨ ϕ−(r, x, q)]

= ϕ−∗ (p, uax, q) = ϕ−∗ (q, uax, p) = ϕ−∗ (q, yx, p)

and

ϕ+
∗ (q, xy, p) = ϕ+

∗ (q, xua, p)
= sup

r∈Q
[ϕ+
∗ (q, xu, r) ∧ ϕ+(r, a, p)]

= sup
r∈Q

[ϕ+
∗ (q, ux, r) ∧ ϕ+(r, a, p)]

= sup
r∈Q

[ϕ+
∗ (r, ux, q) ∧ ϕ+(p, a, r)]

= sup
r∈Q

[ϕ+(p, a, r) ∧ ϕ+
∗ (r, ux, q)] = ϕ+

∗ (p, aux, q)

= sup
r∈Q

[ϕ+
∗ (p, au, r) ∧ ϕ+(r, x, q)]

= sup
r∈Q

[ϕ+
∗ (p, ua, r) ∧ ϕ+(r, x, q)]

= ϕ+
∗ (p, uax, q) = ϕ+

∗ (q, uax, p) = ϕ+
∗ (q, yx, p)

This completes the proof.
Note that X∗ is a semigroup with identity λ with respect to
the binary operation concatenation of two words. Let x, y ∈
X∗. Define a relation ∼ on X∗ by x ∼ y if and only if
ϕ−∗ (q, x, p) = ϕ−∗ (q, y, p) and ϕ+

∗ (q, x, p) = ϕ+
∗ (q, y, p) for

all p, q ∈ Q. Obviously ∼ is an equivalence relation on X∗.
Let x, y, z ∈ X∗ be such that x ∼ y, and let p, q ∈ Q. Then

ϕ−∗ (q, xz, p) = inf
r∈Q

[ϕ−∗ (q, x, r) ∨ ϕ−∗ (r, z, p)]

= inf
r∈Q

[ϕ−∗ (q, y, r) ∨ ϕ−∗ (r, z, p)] = ϕ−∗ (q, yx, p)

ϕ+
∗ (q, xz, p) = sup

r∈Q
[ϕ+
∗ (q, x, r) ∧ ϕ+

∗ (r, z, p)]

= sup
r∈Q

[ϕ+
∗ (q, y, r) ∧ ϕ+

∗ (r, z, p)] = ϕ−∗ (q, yx, p)

Hence xz ∼ yz. Similarly, zx ∼ zy. Therefore ∼ is a
congruence relation on the semigroup X∗. For any x ∈ X∗.,
we denote [x] = {y ∈ X∗ | x ∼ y} and S(M) = {[x] | x ∈
X∗}.
Define a binary operation � on S(M) by [x] � [y] = [xy]
for all [x], [y] ∈ S(M). Obviously � is well-defined and
associative. For every [x] ∈ S(M), we have

[x]� [y] = [xλ] = [x] = [λx] = [λ]� [x].

This means that [λ] is the identity of (S(M),�). Now let
x ∈ X∗ and x = x1x2 · · ·xn where x1, x2, · · · , xn ∈ X. For
every p, q ∈ Q we obtain
ϕ−∗ (q, x, p) = inf

r1,r2,···,rn−1∈Q
[ϕ−(q, x1, r1) ∨

ϕ−(r1, x2, r2)
∨ · · · ∨ ϕ−(rn−1, xn, p)]

ϕ+
∗ (q, x, p) = sup

r1,r2,···,rn−1∈Q
[ϕ+(q, x1, r1) ∨ ϕ+(r1, x2, r2)

∨ · · · ∨ ϕ−(rn−1, xn, p)]
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Since the image ϕ is finite, the image of ϕ∗ is also finite.
Hence we have the following theorem.

Theorem 4.7: Let M = (Q,X,ϕ) be a bffsm. Define a
binary operation� on S(M) by [x] � [y] = [xy] for all
[x], [y] ∈ S(M). Then (S(M),�) is a finite semigroup with
identity.

V. CONCLUSION

In a nutshell, the bipolar fuzzy sets constitute a gen-
eralization of Zadeh’s fuzzy set theory. Relatively, bipolar
fuzzy sets have potential impacts on many fields including
artificial intelligence, computer science, information science,
cognitive science, decision science, management science,
economics, neural science, quantum computing, medical
science, and social science. The bipolar fuzzy models for
fuzzy finite state machines give more precision, flexibility,
informative, and compatibility to the system as compared
to the classical and intuitionistic fuzzy models for finite
state machines [14]. Subsequently, this paper has introduced
the bipolar fuzzy finite switchboard state machines concept
and investigated some of its related properties. Based on
the results, more studies in bipolar fuzzy transformation
semigroups and bipolar fuzzy topology associated with a
bipolar fuzzy finite state machine are proposed as future
direction. In addition, attempts would be made to locate an
example of real life problem in respect to philosophical study.
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