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Abstract—Judgments, preferences, and other cognitive tasks
entail an emotional foundation and cannot function in an
emotional vacuum. This essential emotional component how-
ever, needs to be continuously monitored. Emotion regulation
strategies target the potential risk of having inappropriate
level of emotions in the process of decision making. This
study is a follow-up on a formerly proposed computational
model for emotion regulation strategies based on Gross theory
and applies several enhancements to it. In particular, we
extend the dynamism and realism of the original model by
considering a dynamic environment in which we study the
effect of emotion eliciting events such as psychiatric therapies or
traumas occurring during the simulation period. Furthermore,
the new model uses an emotion-dependent regulation process
based on the mood of individuals. This approach is consistent
with human behavior in the real life. In addition, some key pa-
rameters in our proposed computational model, such as emotion
persistence factor were made adaptive. Results obtained from
the simulation experiments using our proposed model show
further consistency with the base theory.

Index terms - emotion regulation, cognitive modeling, adap-
tivity

I. INTRODUCTION

Emotions pose an important component in the process of
decision making and other cognitive tasks. Recent studies
emphasize the important role of emotions as major adjusters
in the process of decision making, ready to use behavioral
responses, and an effective mean to ease the social inter-
personal communications [1]. Conversely, emotion can have
adverse impacts if it is applied at the wrong time and/or
with inappropriate level of intensity. This nonconstructive
attribution can be tracked in many forms of social difficulties
and even psychopathology [1].

Emotion regulation strategies target the potential risk of
having such inappropriate (over or below) level of emo-
tions and thus they are aimed at balancing one’s emotional
responses in different situations. Gross in [2] states that,
“Emotion regulation includes all of the conscious and non-
conscious strategies we use to increase, maintain, or decrease
one or more components of an emotional response”.

According to Gross [3], humans use strategies to influence
the level of emotional response to a given type of emotion;
for instance, to prevent a person from having a too high
or low response level. Emotion regulation strategies would
consist of “changes in emotion latency, rise time, magnitude,
duration and offset of responses in behavioral, experiential
or physiological domains” [3].

Bosse et al. in [4] used Gross theory to develop the
Cognitive Model for Emotion Regulation based on Gross
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(CoMERG). This model, which consists of a set of difference
equations combined with logical rules, can be used to simu-
late the dynamics of the various emotion regulation strategies
described by Gross. CoMERG was the base for our formal
computational model [5], whereas the current work is an
augmented version of that model with a special emphasis on
the dynamism of the environment as well as adaptation of
the system parameters.

Computational models of emotions can have several ap-
plications in the fields of Psychology, Biology and Neu-
roscience at which such models could be used to test and
improve formalization of the background theories [6]. Fur-
thermore, many application for such models can be named
in the fields of robotics and computer gaming industry.
Also, these models can be used to significantly improve the
performance of HCI applications in order to enable virtual
agents to exhibit a maximal degree of human-like behavior
[4].

This article extends a formerly proposed computational
model for emotion regulation [5] and applies a set of
enhancements in order to increase the adaptivity and hence
usability of the model under different circumstances. In next
section, we overview the related work done in this area.
Section 3 elaborates on Gross informal process model of
emotion regulation. Next, we review briefly our previous
model and address some of the shortcomings associated with
it. In section 5, we explain the new approach to this problem
and introduce our augmented model for emotion regulation
strategies followed by simulation experiments, discussion
and conclusion.

II. RELATED WORK

In most of old psychological theories, emotions were
considered as a negative and sometimes neutral element in
the process of decision making and hence must be avoided
or kept at its minimum level [7]. Conversely, in almost all
recent theories of emotion (e.g., Ortony and colleagues [8],
Lazarus [9], Scherer [10], and Frijda [11]), the necessity and
functionality of emotions and affect in general in cognitional
activities and in particular, decision making is emphasized.

Considering the deep influence that emotions have in our
lives and in shaping our decisions, researchers from relevant
science fields have considered studying emotions and thus
there were many trials to build comprehensive models of
emotions. These endeavors were intensified by IT researchers
after the eruption of the new field of affective computing
[12] at the end of last century. Affective computing tries to
redefine the problem of building a comprehensive model of
affect in general or emotion in specific within a well defined
computational framework. According to its founder, Rosalind
Picard, affective computing is “computing that relates to,
arises from, or deliberately influences emotions” [12].
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Gebhard in his computational model, ALMA[13] which
is based on OCC process model of emotion [8], integrates
three major affective characteristics: emotions, moods and
personality in a three-dimensional space (either of which can
impact the behavior of the agent).

FLAME is an OCC-inspired appraisal model which uses
fuzzy logic rules to map the appraisals of events impact on
goals into emotional intensities [14]. FLAME also includes
several inductive algorithms for the purpose of learning about
event expectations, rewards, patterns of user actions, etc.

In some recent works, an increasing number of studies
have concentrated on building an independent computational
model for the process of emotion regulation. These studies
consider different strategies and techniques that could be
used to modulate and finally regulate emotional responses
in order to utilize emotions more effectively in cognitive
activities at different levels. (e.g., [3], [2], [15]).

Gratch and Marsella in their detailed model of Emotion
and adaptation (EMA) [16], assign a great deal of their
work to the process of emotion regulation. EMA adopts the
approach of Lazarus [9] in building its detailed computational
model of coping (i.e., the regulation of negative emotions).
They suggest four groups of such strategies: attention-
related coping, belief-related coping, desire-related coping,
intention-related coping [17].

III. EMOTION REGULATION STRATEGIES

Gross identifies two main streams in the formation of emo-
tion regulation strategies, antecedent-focused and response-
focused. Antecedent-focused strategies contribute in shaping
the emotional response tendencies before they are fully acti-
vated while response-focused can be applied to the emotional
responses which have already taken place.

The first antecedent-focused regulation strategy in Gross
theory is situation selection. Here, the target is to choose a
situation that would meet with the desired response levels for
a certain emotion. A person might stay away from a place
which provokes a bad memory about a negative event which
has had happened before at that specific place. This example
depicts a down-regulating possible grief emotion.

The second antecedent-focused regulation strategy is situ-
ation modification. Based on this strategy, a person tries to
modify some controllable attributes of a current situation in
order to acquire a different level of emotion.

The third antecedent-focused regulation strategy is at-
tention deployment. Based on this strategy, emotions can
be regulated without changing the world. Each situation
has many aspects at which an individual can shift his/her
attention to a certain one in order to manipulate his/her
emotion response level. A person who is watching a TV
show might cover his/her eyes at a horrible scene.

The fourth antecedent-focused regulation strategy is cogni-
tive change. This strategy is aimed at changing the cognitive
meaning of an event and thus altering its emotional signifi-
cance. A specific type of cognitive change, which is aimed
at down-regulating a negative emotion is reappraisal. Reap-
praisal means that “the individual reappraises or cognitively
re-evaluates a potentially emotion-eliciting situation in a way
that decrease its emotional impact”[2].

As of the response-focused category, response modulation
is an important strategy that can be applied after the mani-

Figure 1. A process model of emotion regulation. According to this model,
emotion may be regulated at: (a) selection of the situation, (b) modification
of the situation, (c) deployment of attention, (d) cognition change, and (e)
modulation of experiential, behavioral, or physiological responses. [18]

festation of the emotion. Figure 1 depicts a comprehensive
picture for different regulation strategies along with the
points at which each strategy can be applied.

IV. COMPUTATIONAL MODEL BASED ON GROSS

In our formerly presented work [5], we had proposed
a computational model for emotion regulation strategies
based on Gross informal process model. According to Gross,
a hyper emotional state can be regulated using different
strategies. Thus, the first step in the modeling process is
to declare a set of variables corresponding to the available
strategies.

Hence, at each point in time, it is assumed that for each
element k a specific choice is in effect and it has an emotional
value of vk attached to it. Each emotional component vk
contributes to the emotion response level ERL with an as-
sociated weight of wk. In order to include a decay component
in ERL between two consecutive time steps (each time step
= 1 time unit), a persistence factor β indicating the degree of
persistence of the emotion response level (i.e., the slowness
of adjustment) was considered. Someone who can switch
between different emotional states rapidly (e.g., stops being
upset right after an apology) will have a low β.

Humans often look for a certain favorite level for each
emotion. These levels vary among different individuals and
also along the time for a single individual. In general, most
people aim at a relatively high level of positive emotions
(e.g., happiness, joy, etc.) while they target a lower level
for negative emotions (e.g., fear, anxiety, etc.). In fact,
the regulation process begins with a simple comparison
between the current emotion response level ERL and the
emotion response level aimed at ERLnorm. The difference
d between these two components is the basis for the amount
of adjustments required for each of the elements k. In other
words, in each time step, we try to make ERL converges
more toward ERLnorm. Since different emotion regulation
strategies can be applied with different intensities (frequen-
cies), a modification factor αn was considered to reflect the
strength of the adjustments using different strategies. In fact,
αn is the flexibility or willingness of an individual to change
his/her emotional value using strategy n.

In the rest of this article, we refer to this model as S-
model. For brevity we do not elaborate more on S-model
and the full work can be reviewed in [5].
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V. OUR APPROACH

The major motivation for our approach that inspired us
to have a follow-up on the former model was the fact
that the environment was considered static with no events
occurring during the simulation period. This assumption
makes the computational model oversimplified and limits to
a large extent, the useability and possible applications of the
model. This limitation is due to the fact that such premise is
unrealistic in the real world with many expected/unexpected
events occur in the environment. Therefore, in the proposed
model, we generate different events with opposite valences
(i.e., with positive/negative impact on the regulation process)
and also different intensities. We use a scale of [0..1]
in order to measure event’s intensities. Furthermore, our
proposed computational model suggests using an emotion-
dependent regulation mechanism rather than having a generic
emotion-independent regulation process adopted in the previ-
ous model. The new approach is more realistic in the sense
that it comes in-line with individual’s emotional behavior.
Humans generally use different strategies to regulate different
emotions and they are more sensitive towards regulating
negative emotions than those hyper positive emotions.

In brief, we argue that people gives different precedences
to regulate different emotions. Thus, more critical and typ-
ically negative emotions such as anger, fear and grief often
take higher priority and urgency in the regulation process.
In our suggested model, this problem was addressed by
associating the regulation process to the attributes of each
emotion. For this purpose, we adopt the approach taken
in ALMA (A Layered Model of Affect) [13] with some
changes. We consider three nearly independent attributes
including pleasure (P), arousibility (A) and dominance (D)
to express each emotion. All these quantities range in the
interval of [-1, +1]. +P reflects the degree of pleasure (relief)
for a particular emotion, whereas -P indicates the degree of
displeasure or discomfort that an emotional response might
bring for the individual. Compromisingly, it is possible to
state that emotions with +P are positive emotions, whereas
those with -P depict negative emotions. Arousibility attribute
with positive values +A show the ease of arousal (i.e.,
elicitation) of a particular emotion, whereas -A represents
the degree of difficulty in eliciting a particular emotion.
The attribute of dominance indicates the ability to control
a particular emotional response by the individual. Hence,
+D shows the degree of dominance, whereas -D reflects the
degree of submission (i.e., the feeling of being controlled)
by a specific emotion. By using this approach, each emotion
can be represented in terms of a 3-tuple vector. For instance,
Shame emotion can be expressed with the 3-tuple of (-
0.3,0.1,-0.6).

A. The detailed model

In our model, an agent entity refers to an individual who
tries to modulate his/her emotion response level. Also, base
model refers to S-model. Furthermore, a time step in our
model equals one time unit (i.e., second, hour, etc.). The
emotion response level is represented in a scale of real
numbers between 0 and 2. A value of 0 is equivalent to
No-emotion state while 2 indicates the state of extremely
emotional. As a simple illustration, suppose an agent wants to

Table I
MOOD OCTANTS OF THE PAD SPACE[13]

+P+A+D Exuberant -P-A-D Bored
+P+A-D Dependent -P-A+D Disdainful

+P-A+D Relaxed -P+A-D Anxious
+P-A-D Docile -P+A+D Hostile

influence its state of excitement by going to the wonderland.
It will have the choice of riding a scary roller coaster
or a Taxi Jam (milder ride). This can be represented by
introducing two situations, sit1 and sit2, with for example,
sit1 = 1.2 and sit2 = 0.6 (since roller coaster will increase
the state of excitement more). Moreover, we assume that
ERLnorm is for instance = 1.5 (i.e., one aims at being
excited, but not too excited). In this case, if the agent’s
current ERLexcited is already high, it would likely take the
Taxi jam ride (i.e., to choose sit2), etc.

1) Updating emotion response level: In order to measure
the emotional response level at each time step, we adopt the
same approach taken in the base model with the difference
that the persistence factor β is not a constant value, but rather
is a function of the mood of the agent at each time step.
Therefore,

ERLnew = (1− β) ∗
∑

n(wn ∗ vn) + β ∗ ERL (1)

β = f(mood) (2)

In order to express the persistence factor in terms of the
agent’s mood, we use the approach taken by Gebhard in
his layered model of affect (ALMA) [13]. ALMA adopts
the approach of Mehrabian [19], in which he describes the
mood with the three traits of pleasure (P), arousal (A) and
dominance (D). In order to implement the PAD mood space,
three axes ranging from -1.0 to 1.0 are used. Hence, the mood
is described based on the classification of each of the three
mood axises: +P and –P to reflect pleasant and unpleasant,
+A and –A for aroused and unaroused, and +D and –D for
dominant and submissive. These three discrete factors builds
the so called PAD space in which each point and based on
its coordinates in this three dimensional system, represents
a mood state called mood octant (such as relaxed, bored,
anxious, etc. see Table I). Although emotions are not the only
factor in mood changes, for simplicity, we consider only the
role of emotions in shaping the mood of the agent. Using this
approach, a mapping between emotions and the PAD space
of mood was suggested in ALMA. Table II depicts the full
mapping between the OCC emotions set [8] and the PAD
space. In our model, we exploit this approach to encode the
mood of the agent into a single quantifier through calculating
the Euclidean distance of each emotion to the origin of the
PAD three dimensional space. This distance can be expressed
as the magnitude of the PAD vector for each emotion. In
Figure 2, vector

−−→
OP shows the intensity of emotion pride in

the PAD coordinate system.
Here, we express β as a function of these mood quantifiers.

In our approach, the persistence factor has two components.
The first component,

−−−−−−→
PADbase, is a fixed PAD vector

which indicates the basic (initial) value of β. The second
component,

−−−−−→
PADvar, is the emotion-dependent part of β

which uses the PAD attributes of the current (i.e., under
regulation) emotion. Thus, we have:
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Figure 2. PAD vector for emotion Pride

β =
−−−−−−→
PADbase +

−−−−−→
PADvar (3)

In the above equation,
−−−−−−→
PADbase represents the PAD vector

of (0.39,0.26,0.33) as the default constant component for the
persistence factor. These values were calculated by taking
the mean of the corresponding trait (i.e., P, A or D) for all
emotions. Based on this PAD vector, the initial value of β
will be:

β =
√
0.392 + 0.262 + 0.332 ∼= 0.57

which means that initially, 57% of the previous emotional
state will persist in the new emotional response (i.e., after
regulation), whereas the remaining 43% will be determined
by the regulation process.

On the other hand, after careful calculations, we came
up with the following equations for the PAD attributes of−−−−−→
PADvar components:

Pvar =

{
+0.25Pemotion P > 0

−0.25|Pemotion| P < 0

Avar =

{
+0.25Aemotion A > 0

−0.25|Aemotion| A < 0

Dvar =

{
+0.50Demotion D > 0

−0.50|Demotion| D < 0

As a simple illustration on above equations, let’s consider
a scenario at which an agent is trying to regulate its hyper
fear emotion. As per table II, the PAD vector for emotion
fear is <-0.64,0.6,-0.43>. These values indicates that such
an emotion creates a great deal of displeasure (-0.64) with
high arousibility (0.6) and proportionally high degree of
submissive feeling (-0.43). By applying above formulas in
order to compute the overall persistence factor for such
emotion, we obtain β = 0.76 which means that 76% of the
current emotional response (level of fear) will persist in the
new emotional response and only 24% (1−0.76) of that will
be determined by the regulation process. This finding makes
sense since a person under a fear emotion will not be able to
comply well with the regulation process and it would take a
longer time to reach its aimed at emotional response level.

Therefore, in our model the value for β, unlike the original
model which was considered as a pair of fixed values, would
be a simple function of the mood traits of the agent.

2) Difference between the two emotion response levels:
As discussed before, the difference between emotion re-
sponse level ERL and the aimed at emotion response level
ERLnorm at any point in time poses the main motor to

Table II
MAPPING OF OCC EMOTIONS INTO PAD SPACE[13]

Emotion P A D Mood octant
Admiration 0.5 0.3 -0.2 +P+A-D Dependent

Anger -0.51 0.59 0.25 -P+A+D Hostile
Disliking -0.4 0.2 0.1 -P+A+D Hostile

Disappointment -0.3 0.1 -0.4 -P+A+D Anxious
Distress -0.4 -0.2 -0.5 -P-A-D Bored

Fear -0.64 0.6 -0.43 -P+A+D Anxious
FearsConfirmed -0.5 -0.3 -0.7 -P-A-D Bored

Gratification 0.6 0.5 0.4 +P+A+D Exuberant
Gratitude 0.4 0.2 -0.3 +P+A-D Dependent
HappyFor 0.4 0.2 0.2 +P+A+D Exuberant

Hate -0.6 0.6 0.3 -P+A+D Hostile
Hope 0.2 0.2 -0.1 +P+A-D Dependent
Joy 0.4 0.2 0.1 +P+A+D Exuberant

Liking 0.4 0.16 -0.24 +P+A-D Dependent
Love 0.3 0.1 0.2 +P+A+D Exuberant
Pity -0.4 -0.2 -0.5 -P-A-D Bored
Pride 0.4 0.3 0.3 +P+A+D Exuberant
Relief 0.2 -0.3 0.4 +P-A+D Relaxed

Remorse -0.3 0.1 -0.6 -P+A-D Anxious
Reproach -0.3 -0.1 0.4 -P-A+D Disdainful

Resentment -0.2 -0.3 -0.2 -P-A-D Board
Satisfaction 0.3 -0.2 0.4 +P-A+D Relaxed

Shame -0.3 0.1 -0.6 -P+A-D Anxious

direct the process of choosing the more effective strategies
in emotion regulation. Thus, we have:

d = ERL− ERLnorm (3)

3) Updating emotional components: In order to specify
the emotional contribution level of each regulation strategy
vn in the total emotion response level ERL, we use the same
approach taken in the original study. Therefore, we have:

4vn = −αn ∗ d
dmax
4t (4)

vnnew
= vn +4vn (5)

Adopting the same approach of S-model in calculating
the emotional components is beneficial in the sense that it
provides a more concrete and accurate comparison between
the base and proposed models.

4) Adaptivity of the modification factors with events:
The modification factors are the most critical elements that
provide the required dynamism and adaptivity for the sys-
tem. As elaborated before, a modification factor αn reflects
the willingness to change the agent’s behavior in favor of
emotion regulation strategy n. In other words, it gives a
measure for the speed with which different emotional values
are changed over time. In order to study the impact of events
(either positive or negative) on the adaptation process of the
modification factors, we generate different events during the
simulation and monitor the influence of these events on the
values and trends of αn’s. The events are expressed in real
numbers in the interval of [-1,1]. An event with positive value
such as a psychiatric therapy session, indicates a positive
impact in favor of the corresponding strategy n (increase in
αn), whereas an event with a negative value such as a trauma
attack, represents an adverse impact on current regulation
strategy n diminishing the value of αn. An event with a value
of 0 represents a non relevant event with no impact on the
adaptation process of current strategy. We use the following
equation to let events influence the adaptation process of the
modification factors.
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Table III
VALUES OF PARAMETERS USED IN THE SIMULATION

Var. value Var. I. value
ERL/ERLnorm 1.85 / 0.7 v1 1.90

w1 − w4 0.35, 0.30, 0.20, 0.15 v2 1.85
α1 − α4basic 0.10 v3 1.80
θ1 − θ4 0.15 v4 1.75

4αn = θn∗Event/(1+(αn−αnbasic
)∗Event)4t (6)

αnnew = αn +4αn (7)

In the above equation, θn’s are strategy-dependent coeffi-
cients that represent the speed of the adaptation process. The
exact values for this set of variables are left for the simulation
experiments. αnbasic

indicates the initial (default) value for
each modification factor at the beginning of the experiment.
These values are all equal for different strategies and remain
constant during the simulation.

VI. SIMULATION EXPERIMENTS AND DISCUSSION

In order to assess the behavior of our suggested model
under different circumstances and its consistency with Gross
theory, as well as to compare its performance against the
base model, a number of simulation experiments have been
conducted. In each of below explained experiments, we
address a specific scenario. Table III gives a summery of
the setup and values for the system parameters. According
to Gross, those strategies applied at an earlier time in the
regulation process will have a bigger influence on the reg-
ulation process. Therefore, a weight of 0.35 was associated
to situation selection, whereas weights of 0.30, 0.20, and
0.15 were assigned to situation modification, attentional
deployment and cognitive change respectively.

A. Experiment 1: Emotion-dependent regulation versus
generic regulation

In this experiment, we compare the performance of the
regulation process using our suggested emotion-dependent
model versus the emotion-independent method adopted by
S-model. In this experiment and after trying different values
for 0 ≺ α ≺ 1, we found out that at α = 0.15, the regulation
seemed optimal. Part A of Figure 3 shows the the graph for
ERL during the regulation of hyper hope (positive) emotion,
whereas Part B depicts the graph for ERL for a similar
regulation process, but this time for hyper anger (negative)
emotion. Based on these graphs, we observe that for the
regulation of hope emotion, the ERL obtained from our
approach managed to reach its target level (i.e., ERLnorm)
relatively much faster than that of S-model. In particular, in
our model this situation occurs at time step = 30, while in S-
model this state was not reached before time step ∼= 55. With
regards to part B, we observe a somehow opposite behavior
at which S-model shows a similar trend for ERL as Part
A, while our model exhibit a much slower and sometimes
volatile regulation behavior. Particularly, we observe that the
ERL in our model does not meet with its target value before
time step ∼= 80. (in fact, it does reach ERLnorm at step
∼= 50, but it does not become stable until step = 80). These
two scenarios describe graphically our so called emotion-
dependent approach to the regulation process. This behavior

Figure 3. Emotion-dependent versus generic regulation. Part A, shows the
ERL during the regulation of emotion hope, whereas part B depicts the ERL
graph for the regulation of emotion anger

Table IV
LIST OF EVENTS IN EXPERIMENT 2

Event occurrence time Intensity
20 0.8
50 -0.7
80 0.9

of the ERL comes consistent with the expectations of our
model to have a smooth and rapid regulation for positive
emotions and a slow and somehow volatile regulation for
negative emotions. These results are clearly in line with
one of Gross rules stating that “Emotion approaches norm
monotonically”. [4]

B. Experiment 2: events and the regulation process

Several experiments have been conducted to analyze the
performance of our model in a dynamic environment. The
purpose of those experiments was to test the ability of the
proposed model to simulate the influence of events on the
emotion regulation process. Here, we consider two cases of
these experiments and elaborate on the results obtained from
the simulation. The first case depicts an under regulation
(with very small α, say 0.01) process for an agent suffering
from a hyper distress emotion. at time step= 30, an event with
intensity of +0.85 indicating a successful psychiatric therapy
session occurs in the system. Figure 4 shows the trend of
the ERL during the regulation process. We observe that the
trend of ERL starts to drop dramatically few time steps after
the incidence of the event and manages to cross ERLnorm

at time step = 60, though it does not become stable before
time step = 90. Conversely, ERL in S-model fails to touch
ERLnorm and the best value that it reaches is 1.0 at the end
of simulation which is still proportionally far away from the
target value (i.e., 0.7).

The second experiment in this set, is a more sophisticated
scenario at which several events with different valences
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Figure 4. the trend of ERL in both models in the case of events occurrence

Figure 5. the trend of ERL in our proposed model in the case of multiple
events

occur in the system during the simulation. Table IV lists the
events that take place during the simulation along with their
occurrence times. The graph of the ERL for this experiment
is shown in Figure 5. This scenario initially depicts an under
regulation process for emotion fear. At time step = 20, a
positive event in favor of the regulation process occurs.
We observe that few steps later, the ERL drops quickly
towards its target value, but before it reaches the ERLnorm,
an adverse event such as a trauma occurs in the system
which slows down the regulation once again. This situation
continues until step = 80 when another in-favor of regulation
event occurs which results in a sharp regulation in the ERL
which manages to cross the ERLnorm at step ∼= 95.

Above experiments emphasize the crucial role of events in
the emotion regulation process. Furthermore, these findings
are consistent with another Gross rule which states that “high
strategy flexibility leads to large adjustments”

VII. CONCLUSION

In this paper, a computational model for emotion reg-
ulation strategies based on Gross theory was considered.
According to Gross [2], humans use strategies to influence
the level of emotional response to a given type of emotion.
These strategies can be applied to five points in the emotion
generative process: (a) selection of the situation, (b) mod-
ification of the situation, (c) deployment of attention, (d)
change of cognition, and (e) modulation of experiential, be-
havioral, or physiological responses. In Gross process model
for emotion regulation, the hypothesizes and inferential rules
are described informally.

S-model, a formerly proposed computational model for
Gross theory had several shortcomings which inspired us to
have a follow-up on that model and enhance it in several
directions.

In brief, we suggested an adaptive persistence factor ex-
pressed as a simple function of mood. The findings from our
experiments were consistent with the tenet that an agent in a
bad mood tends to internally impede the changes in its nega-
tive emotional state through retaining a bigger portion of the
previous emotion response in the new emotion response level
and hence to have a slower emotion regulation. Conversely,
an agent in a positive mood will exhibit more cooperative
behavior and thus have a relatively faster regulation process.
Furthermore, the environment in our model is dynamic with
different events occurring in the system during the simulation
period. We believe that the existence of events is a vital
element in such computational models in order to effectively
use them in different applications. With these enhancements,
our proposed model managed to exhibit more adaptive and
realistic behavior and showed more consistency with Gross
theory.
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