

Abstract - Computer vision and image processing continue to

expand its area of application. Traditionally, this technology

was hosted by a sequential processing paradigm of a Central

Processing Unit (CPU). With this implementation in mind

limits the usefulness of a device that is capable of parallel

processing for several years. At the same time, it has been

observed that common problem encountered when image

processing routines are rendered on CPU is a slow processing

rate.

This study presents the application of computer vision and

image processing segmentation rendered on a Graphics

Processing Unit (GPU), a parallel processing capable device,

using CUDA developed by NVIDIA. It results to an impressive

speed-up compared to the CPU. The study implements

computer vision based quality inspection on pre-etched printed

board fabricated by the Printed Circuit Board Prototyping

Laboratory (PCBLab) of the University of San Carlos. The

developed system can successfully detect defects such as open

tracks, shorted tracks, neck form tracks, nick or mouse-bite

form tracks, hole misalignment, and unwanted routes.

Index Terms – CUDA, GPU, image processing, quality

inspection, execution time.

I. INTRODUCTION

N PCB fabrication process, etching is the most critical

stage among all processes. It is important to determine the

defects before etching so that no copper board will be waste.

Thus, pre-etched quality inspection should be done properly

to avoid this. However, current quality inspection in the

PCB laboratory involves human interaction which was

proven to be tedious, time-consuming and more importantly

prone to error caused by tiredness and loss of concentration.

Manuscript received May 15, 2012; revised July 16, 2012. This work is
supported in part by the Department of Science and Technology of the

Philippines under the Engineering Research and Development Technology.
Computer Vision and Image Segmentation Implemented on GPU Using

Compute Unified Device Architecture as Applied on Quality Inspection of

Pre-etched Printed Circuit board.
Philip Virgil B. Astillo is a faculty member from the Department of

Computer Engineering of the University of San Carlos. His field of

research is on machine vision and image processing. He finished his
undergraduate and masters degree in the said university. (Email:

tommy_astillo@yahoo.com)

Van B. Patiluna started his career as an instructor at the Department of
Computer Engineering of the University of San Carlos. He had worked in

several researches in robotics, microelectronics, machine vision and

computer architecture. He finished his undergraduate and masters degree at
the said university. (Email: vbpatiluna@me.com)

Moreover, this method is prone to subjective evaluation of

the quality of the PCB. This means that different inspectors

may have different evaluations on the quality of a single

PCB.

Computer vision based quality inspection could eliminate

this problem. Several computer vision based quality

inspection system has already been developed for this

purpose. However, the processes involved are handled by a

CPU. It had been observed for several years that the

common problem encountered on CPU rendering in this

kind of application is slow processing rate.

This study makes use the power of General Purpose GPU

(GPGPU) in computer vision mainly on image processing

routines using the Compute Unified Device Architecture

(CUDA). This device is capable of parallel processing.

Additionally, program codes for the image processing

routines such as conversion from RGB to Gray Scale,

Histogram Generation, Thresholding and Edge Detection

were written rendering it to both the CPU and GPGPU.

Execution time of both implementations was compared.

II. EXPERIMENTATION

A. Materials

The following materials were used in this study:

TABLE I

LIST OF MATERIALS

Microscope camera 90

90 mm x 180 mm PCB board

USB Dongle Video Capture Card

Desktop computer (dual-core) 3GB RAM

CUDA ready video card (16 cores, 512 MB dedicated RAM)

B. Procedure

There are two major sections in this study. First is the

writing of two separate codes of the image processing

routines that are important in this study for both CPU and

GPU rendering. Furthermore, there were two types of

memory mapping implementation for GPU rendering,

namely global memory mapping and texture memory

mapping. The execution time of the created codes between

Computer Vision and Image Segmentation

Implemented on GPU Using Compute Unified

Device Architecture as Applied on Quality

Inspection of Pre-etched Printed Circuit Board

Philip Virgil Astillo, Van Patiluna

I

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

the CPU implementation and GPU implementations were

compared. 30 sample images were used to get the execution

time of the written codes. Second is the development of an

algorithm in detecting defects of a PCB that is concerned in

this study. To test the reliability of the developed

algorithms, 10 defective images for each type of defects

were provided. Each of the 10 samples was tested 10 times.

Program codes of the image processing routines used in

this research project were easily written for the CPU. Image

conversion operations, for example gray scale image

conversion was simply done by scanning the input image

pixel-by-pixel and calculate the gray scale intensity value.

Thresholding was done by traversing the gray scale image

pixel-by-pixel and compared its intensity value to a

threshold value. Histogram generation was done by

traversing the whole image and pixel-by-pixel and flags its

corresponding intensity bin.

These processes were translated for the GPU since all of

it is parallelizable. Mapping an input image data into the

GPU memory was one challenging factor in this study.

Memory optimization is important area for performance.

Another challenging factor is how to perform the operation

into the GPU. Finding the appropriate and optimized

creation of thread blocks and grid of blocks, which executes

the created function or method called CUDA kernel, helps

increase performance.

Image conversion was done by creating a number of

threads equal to the total number of pixels of the resulting

image. Each thread simultaneously converts the handled

pixels. However, this way of creating threads is not

applicable to histogram generation. Since CUDA thread

works simultaneously, then one or more threads could

access the same intensity bin that obviously result to bank

conflicts. To avoid this issue, histogram generation was

done by creating two kernels called one after the other as

illustrated in figure 1 and 2.

Figure 1 illustrates the operation performed by the first

kernel. A single block containing 512 CUDA threads is

created and at the same time a bin with a dimension of 512

by 256 is allocated on the GPU memory. It follows that each

thread holds one dimensional bin of a width of 256. This bin

serves as a temporary storage of the frequency per intensity

value. As show in the figure, each thread accesses a block of

pixel from the source image traversing it pixel-by-pixel and

gets the gray intensity value then flags its own

corresponding bin. After this operation, the second kernel is

called to get the resultant frequency.

To get the resultant frequency per intensity value, as

shown in figure 2, 256 blocks of thread were created where

each block contains 512 threads. A shared variable is

allocated with a size similar to the THREAD_SIZE. This

variable is accessible by all threads within the block. The

process starts by copying the values generated from the first

kernel into this shared memory. Notice that the values being

copied in this shared variable are the temporary result

frequency of a single intensity value generated from the first

kernel. After which, an algorithm called Parallel Thread

Reduction, as shown in figure 2, was used to get the

resultant frequency

The generated histogram is used to find the optimal

threshold value. This value was used to separate the object

of interest from the background when the binary image

conversion operation was performed. The algorithm used to

find the optimal threshold value is not parallelizable. A

method was developed in this study to find the optimal

threshold value.

However, the developed method assumes that the

generated histogram is bimodal in shape or in other words,

the generated histogram contains two valleys. Figure shows

the process flow in finding the optimal threshold value.

These pre-processed mentioned above are important for

the evaluation of the quality of the PCB. The evaluation

starts by loading the template image or ideal design of the

PCB into the developed system. After which, the test

subject, which is just a small portion of the actual PCB

board, was captured. The captured image undergoes the pre-

processes in preparation for the defect detection stage.

There were three different algorithms developed to detect

the defects. To test the effectiveness of the developed

Fig. 1. Kernel One Process Flow. Each thread accesses an assigned

block of pixels and flags the corresponding intensity bin from its own

bin.

Fig. 2. Kernel Two Process Flow. The kernel implements the algorithm

called Parallel Thread Reduction. It is a process of reducing an active

thread by half at each step and finally copies the resultant to a
corresponding bin of a specific intensity value. Each step simply takes

the sum of the value accessed by the active thread from the shared

memory and then stores back the result on the allocated shared variable.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Fig. 3. Optimal Threshold Finding Process Flow. The algorithm searches

the gray intensity value with the highest score in the two valleys. After

determining these two values, the next operation is to find the gray intensity
values with lowest score between the two highest score. The score refers to

the number of pixels that a hold a specific intensity value.

algorithm properly, the coordinates of the captured image

block is inputted into the system. To determine the location

of the captured image, a two-dimensional grid lines is drawn

on the template image and a guide is provided on the actual

PCB board.

Figure 4 illustrates the developed algorithm in detecting

the misaligned hole. To detect if a hole is misaligned, at

least two opposite side of the edges of the pad should be

present on the captured image. As shown in the figure, the

algorithm starts by finding the center pixel of the hole. As

shown in the figure, the algorithm starts by finding the

center pixel of the hole. After which, the edge of the hole

and pad is then determined. Through determining the

distances from an edge of the hole to an edge of the pad

from a four directions, hole misalignment can then be

determined. It is considered misaligned if the ratio between

the maximum and minimum distance is greater than one.

This condition is used because it indicates that the two

distances are approximately equal which would mean that

the center of the hole is very close to the center of the pad.

Another algorithm was developed to detect neck and nick

form tracks. To detect these two types of defect, pattern

recognition was used. Figure 6 illustrates the operations

behind this algorithm. The process starts by counting the

number of edge objects found in both the rescaled captured

image and its corresponding template image block. If the

number of counted objects between the two images is not

equal then the system notifies that the captured image

contains either of these two defects. Otherwise, it would

now perform pattern recognition. It starts by determining the

direction of the connected edge pixels. The sum of absolute

difference was used to determine the direction. If the sum of

absolute difference of the x-coordinates is greater than with

the y-coordinates, then the traversing direction to determine

the starting coordinate of the connected edge pixels for

Fig. 4. Hole Misalignment Detection Algorithm. The developed

algorithm gives an error if the ratio between maximum distance and
minimum distance is greater than one.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Fig. 6. Neck and Nick Detection Algorithm. The developed algorithm

implements pattern recognition. The generated patterns were analyzed

and the conditions were set to notify that the captured image contains a

defect.

Start

End

pattern generation is through the horizontal direction.

Otherwise, the traversing direction is through the vertical

direction. The starting coordinates serves as the reference

point in generating or representing the connected pixel as

chain of codes. The code is in numbering scheme shown in

figure 6. The number code between two pixels is determined

by simply calculating the rotational measurement. The

generated patterns were then analyzed. If the set condition

presented in the figure is satisfied, it would give a defect

notification.

Another method was used to detect open circuit, short

circuit and unwanted routes. The detection of these three

types of defect was simply done by counting the number of

objects present in the sample image and its corresponding

template image block. If the counted number objects

between the two images are not equal, the system notifies

that the captured image contains any of these three types.

III. RESULT AND DISCUSSION

The primary goal of this study was to make use of the

power of GPGPU in computer vision mainly in image

processing routines. At the same time apply quality

inspection of pre-etched PCB by detecting defects. As such

the gathered data can be classified into types, namely

Performance Data and Detection Defect Effectiveness Test.

A. Performance Data

Execution time was gathered through time stamping. A

time stamp function was inserted before and after the lines

of code that performs a certain operation. Execution time of

the 10 trials for each 30 sample images was tabulated and

averaged. Average execution time per implementation was

then calculated through the calculated average execution

time of each 30 sample images.

Table III summarizes the time stamp result of the three

implementations on performing RGB to Gray Scale

Conversion, Histogram Generation, Gray Scale Image to

Binary Image Conversion and Edge Detection. It shows the

average execution time per implementation. Moreover, it

shows the speed-up percentage between the three

implementation of each operation.

Operation

Average Execution Time

per Implementation

Percentage Speed-Up

(Time1 vs Time2)

CPU GPUg GPUt

CPU

vs

GPUg

CPU

vs

GPUt

GPUg

vs

GPUt

Gray Scale

Conversion
1.66 1.32 1.12 20.18 32.63 15.60

Histogram

Generation
3.80 6.63 5.97 -42.69 -36.33 9.98

Binary

Image

Conversion

12.51 4.11 3.88 67.18 68.98 5.47

Edge

Detection
10.64 3.29 3.10 69.13 70.85 5.57

Figure 7 presents the execution time comparison between

the three implementations of the said operations. It is

observed in the figure that the three operations, namely Gray

Scale Conversion, Binary Image Conversion, and Edge

Detection, completed the execution faster when hosted by

GPU using global memory mapping compared to CPU

hosting. The speed-up percentage reaches up to 20.18%,

67.18% and 69.13%, respectively (Refer on Table II).

Additionally, it is also observable that GPU hosting using

texture memory mapping increases the speed. The

improvement reaches up to 32.63%, 68.98%, 70.85%.

However on Histogram Generation, it is observed that

CPU hosting finishes the execution in a shorter time

Fig. 5. Direction for 8-directional chain code. The pattern of the

connected pixel is represented using this numbering scheme. The code

number between two pixels is determined through calculating the

rotational measurement.

Table III

Summary Execution Time and Performance Percentage

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

compared to the GPU implementations. This caused a

negative percentage as highlighted in Table II. This implies

that the CPU hosting is 42.69% and 36.33% faster compared

to GPUg and GPUt, respectively. On the other hand,

comparing with each other the two GPU implementations, it

appears the texture memory mapping is 9.98% faster than

global memory mapping.

In this study, only six types of defect were taken into

consideration, namely (1)hole misalignment, (2)nick or

mouse-bite form track, (3)neck form track, (4)short circuit

(5)unwanted route and (6)open circuit (Refer to figure 8).

Each developed algorithms to detect a type of defect was

first tested individually and then afterwards integrates them

and test another set of sample image that are defective and

non-defective.

Table IV summarizes the test result of the developed

algorithm for detecting misaligned hole. It shows in the

table that the algorithm could effectively detect the defect.

Table V and VI summarizes the result on testing the

effectiveness of the developed algorithm to detect neck and

nick type of defect. It shows from the tables that the success

rate of detecting these types of defect is very high.

It is important to note that there was only one template

design used to test the developed algorithm for these two

typed of defects. This was because it was very difficult to

simulate these types of defect on other templates since the

tracks are very thin. It would result to open circuit when

tried to simulate on other designs. The template design used

to test has tracks with a width of 16 mils that is wide enough

to form the defects.

Design Name
Location Evaluation Success

Rate % Row Column Pass Fail

PPS10 - 0010 22 22 10 0 100

PPS10 - 0010 16 16 10 0 100

PPS10 - 0010 12 15 10 0 100

PPS10 - 0010 10 16 10 0 100

PPS10 - 0010 13 17 10 0 100

PPS10 - 0010 05 24 10 0 100

PPS10 - 0010 05 15 10 0 100

PPS10 - 0010 21 28 10 0 100

PPS10 - 0010 13 24 10 0 100

PPS10 - 0010 12 34 10 0 100

Design Name
Location Evaluation Success

Rate % Row Column Pass Fail

PPS10 - 0010 18 33 10 0 100

PPS10 - 0010 19 22 10 0 100

PPS10 - 0010 04 30 10 0 100

PPS10 - 0010 09 35 9 1 90

PPS10 - 0010 05 20 10 0 100

PPS10 - 0010 05 34 10 0 100

PPS10 - 0010 07 34 10 0 100

PPS10 - 0010 12 22 10 0 100

PPS10 - 0010 08 16 10 0 100

PPS10 - 0010 02 16 10 0 100

Open circuit and short circuit defects are the most critical

type of defect compared with the other in terms of its effect

on the functionality of the board. It this defect would be

present, the PC board would definitely be not functional.

Though they are the most critical type, they can be easily

detected.

Design Name
Location Evaluation Success

Rate % Row Column Pass Fail

PPS10 - 0010 18 33 10 0 100

PPS10 - 0010 19 22 10 0 100

PPS10 - 0010 04 30 10 0 100

PPS10 - 0010 09 35 10 0 100

PPS10 - 0010 05 20 10 0 100

PPS10 - 0010 05 34 10 0 100

PPS10 - 0010 07 34 10 0 100

PPS10 - 0010 12 22 10 0 100

PPS10 - 0010 08 16 10 0 100

PPS10 - 0010 02 16 10 0 100

Design Name
Location Evaluation Success

Rate % Row Column Pass Fail

PPS08 - 0016 21 07 10 0 100

PPS08 - 0016 09 42 10 0 100

PPS09 - 0016 04 06 10 0 100

PPS09 - 0016b 11 06 10 0 100

PPS09 - 0016 14 21 10 0 100

PPS08 - 0016 19 06 10 0 100

PPS09 - 0025b 11 06 10 0 100

PPS09 - 0016 03 06 10 0 100

PPS09 - 0016b 12 32 10 0 100

PPS09 - 0016b 15 09 10 0 100

C
P

U

C
P

U

C
P

U

C
P

U

G
P

U
g

 (
g

lo
b

a
l

m
e
m

o
ry

)

G
P

U
g

 (
g

lo
b

a
l

m
e
m

o
ry

)

G
P

U
g

 (
g

lo
b

a
l

m
e
m

o
ry

)

G
P

U
g

 (
g

lo
b

a
l

m
e
m

o
ry

)

G
P

U
t

(t
e
x

tu
re

 m
e
m

o
ry

)

G
P

U
t

(t
e
x

tu
re

 m
e
m

o
ry

)

G
P

U
t

(t
e
x

tu
re

 m
e
m

o
ry

)

G
P

U
t

(t
e
x

tu
re

 m
e
m

o
ry

)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Gray Scale
Conversion

Histogram
Generation

Binary Image
Conversion

Edge
Detection

A
v
e
ra

g
e
 E

x
e
c
u

ti
o

n
 T

im
e
 (

m
s)

Fig. 7. Average Execution Time Comparison. This shows the comparison

of the execution time between CPU hosting and GPU hosting. Gray Scale

Conversion, Binary Image Conversion, and Edge Detection operations
finishes a shorter time when handled by the GPU compared to the CPU.

Fig. 8. PCB Image. This shows the six types of defects concerned in this

study.

Table IV

Hole Misalignment Detection Test Result

Table V
Neck Form Detection Test Result

Table VI
Nick Form Detection Test Result

Table VII

Open Circuit Detection Test Result

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Row Column

PPS08-0016 20 27 NO

PPS08-0016 14 26 NO

PPS08-0016 21 17 HM NN HM NN HM

PPS08-0016 08 08 NO

PPS10-0010 14 31 NO

PPS10-0010 14 34 NN

PPS10-0010 16 20 NN

PPS09-0025b 19 5 OSU OSU NN OSU NN OSU NN OSU NN OSU NN

PPS09-0025b 18 15 NO

PPS09-0025b 18 39 OSU OSU NN OSU NN OSU NN OSU NN OSU NN

PPS08-0016 20 27 NO

PPS08-0016 14 26 NO

PPS08-0016 21 17 HM

PPS08-0016 08 08 NO OSU OSU OSU OSU OSU OSU OSU OSU OSU OSU

PPS10-0010 14 31 NO OSU OSU OSU OSU OSU OSU OSU OSU OSU OSU

PPS10-0010 14 34 NN NN NN NN NN NN NN NN NN NN NN

PPS10-0010 16 20 NN NN NN NN NN NN NN NN NN NN NN

PPS09-0025b 19 5 OSU OSU NN OSU NN OSU NN OSU NN OSU NN

PPS09-0025b 18 15 NO

PPS09-0025b 18 39 OSU OSU NN OSU NN OSU NN OSU NN OSU NN

HM NN

OSU NO

Evaluations

NO

NO

NO

NO

NO NO NO

Trial 6 Trial 7

NO

Hole Misalignment Neck/Nick

Open/Short/Unwanted Route None

NO NO

NO NO NO NO

Trial 8 Trial 9 Trial 10

NN NN

NN NN

OSU OSU

OSU OSU

HM HM

NO NO

NO NO NO

NO NO

HM HM HM HM HM

NO

Trial 3
NO

NO

OSU

OSU

NN

NN

NONO

Trial 2
NO

NO

HM

OSU

OSU

NN

NN

NO

NO

OSU

OSU

NN

NN

Design Name
Location

Error
Trial 1 Trial 4 Trial 5

Table VII, VIII, and IX summarize the result of testing

the effectiveness of the developed algorithm to defect open

circuit, short circuit and unwanted route. It shows from the

tables that the developed algorithm could effectively detect

these types of error with a very high success rate.

After the individual testing, another set of samples that

contains defective and non-defective PCBs were tested

putting all the algorithms in active. It can be observed from

Table X that system gave an evaluation of Neck or Mouse-

bite type of defect on all trials of the first two sample

images. However this erroneous evaluation can be explained

for the fact that the sample image contains a track that is

very thin which in the testing of Neck and Nick Algorithm

did not consider. The boundary of the tracks on both the

template block and the resized sample image is adjacent to

each other, thus will be considered as one object. It was out

during this test that the algorithm used to detect neck and

nick is successful if the boundaries of the tracks are distinct.

As for sample block 8 and 10, it was observed that in all

trials the system two evaluations as shown in Table X.

Though the error present is Open/Short/Unwanted Route, it

is acceptable hat is will also give and evaluation of

Neck/Nick since the patterns from template block and the

resized sample image would definitely be unequal and

would always violate the conditions set from on the

Neck/Nick detection algorithm.

IV. CONCLUSION

The study makes use the power of GPU using CUDA to

perform the image processing techniques mentioned above.

Since CUDA thread work simultaneously, ideally it would

finish or complete certain operation faster compared to

CPU. However, it was discovered from the study that not all

cases could speed-up an operation when rendered to GPU.

Rendering an operation to the GPU would slow down

execution time due to how a process is being parallelized

and number of pixels in an image is being accessed or

processed. It was discovered that GPU rendering is

advantageous in terms of performance when high resolution

images are involved.

Applying this technology on computer vision based

quality inspection of pre-etched PCB with the developed

algorithm to detect defects was successful. However since

the developed system only scans a portion of the PCB done

manually, the researcher recommends developing an

automated scanning of the whole PCB.

 ACKNOWLEDGEMENT

The researchers would like to express heartfelt gratitude

and appreciation for the support to the PCB Laboratory

Head, for giving the researchers a space to work on and their

assistance provided whenever the researchers needs help.

REFERENCES

[1] Park, M., Jin, J., Au, S., Luo, S., and Cuit, Y., “Automated Defect

Inspection System by Pattern Recognition”, International Journal of
Signal Processing. Image Processing and Pattern Recognition, vol2.

No.2, June 2009

[2] Heriansyah, R. Ibrahim, Z., Rahman al-Attas, S., Zabidi, M. and
Aspar, Z., “PCB Inspection based-on Wavelet and Morphological

Image Processing Approaches”, Proceeding of the International

Conference of Robotic, Vision, Information, and Signal Processing,
January 2003.

[3] Luo, Y. and Duraiswami, R., “Canny Edge Detection on NVIDIA

CUDA”, Computer Vision and Pattern Recognition (CVPR)
Workshop, pp. 1-8, 15 July 2008.

[4] Nadernejad, E., Sharifzadeh, S., Hassnpour, H., “Edge Detection

Techniques: Evaluations and Comparisons, Applied Mathematical
Science”, vol. 2 no. 2, pp. 1507-1520, 2008.

Design Name
Location Evaluation Success

Rate % Row Column Pass Fail

PPS10 - 0010 02 23 10 0 100

PPS10 - 0010 17 22 10 0 100

PPS09 - 0016b 08 36 10 0 100

PPS09 - 0025b 18 20 10 0 100

PPS09 - 0025b 12 37 10 0 100

PPS09 - 0025 10 37 10 0 100

PPS09 - 0025 09 45 10 0 100

PPS08 - 0016 07 43 10 0 100

PPS08 - 0016b 03 15 10 0 100

PPS09 - 0016 05 43 10 0 100

Design Name
Location Evaluation Success

Rate % Row Column Pass Fail

PPS10 - 0010 16 32 10 0 100

PPS10 - 0010 22 34 10 0 100

PPS09 - 0016b 05 10 10 0 100

PPS09 - 0016b 13 44 10 0 100

PPS09 - 0025b 17 04 10 0 100

PPS09 - 0025b 20 46 10 0 100

PPS08 - 0016 18 07 10 0 100

PPS08 - 0016 22 42 10 0 100

PPS08 - 0016b 02 38 10 0 100

PPS10 - 0010 03 26 10 0 100

Table VIII

Short Circuit Detection Test Result

Table IX
Unwanted Route Test Result

Table X

Integrated Algorithm Test Result

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

