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Abstract— Feature preserved enhancement is of great 

interest in medical ultrasound images. Speckle is a main factor 

which affects the quality, contrast resolution and most 

important texture information present in ultrasound images 

and can make the post-processing difficult. This paper presents 

a new computationally efficient enhancement approach which 

is based on the rational-dilation wavelet transform (RADWT) 

and non-linear bilateral filter. RADWT, a new family of the 

discrete wavelet transform for which frequency resolution can 

be varied, is employed to provide effective representation of the 

noisy coefficient. Bilateral filter and different thresholding 

schemes are applied to the noisy RADWT coefficient to 

improve the denoising efficiency and preserve the edge features 

effectively with this consideration that blurring associated with 

speckle reduction should be less and fine details are enhanced 

properly for the visual enhancement of ultrasound images. The 

proposed approach helps also to improve the visual quality of 

the ultrasound images. Experimental results demonstrate the 

ability of proposed method for noise suppression, feature and 

edge preservation in terms of different performance measures. 

 
Index Terms—Ultrasound, Rational-dilation wavelet 

transform, Non-linear Bilateral Filter, Thresholding, Speckle. 

 

I. INTRODUCTION 

VER the years, the research in the medical imaging has 

produced many different imaging modalities for the 

clinical purpose. Among the medical images from 

different imaging modalities, ultrasound B-scan images are 

widely used. This widespread choice is due to its cost 

effectiveness, portability, acceptability and safety [1].  

However, the images obtained from ultrasound imaging are 

of relatively poor quality. The analysis of these images is 

very complex due to their data composition. Medical 

ultrasound images which are obtained from coherent energy, 

suffer from interference of backscattered echoes from the 

randomly distributed scatters, called speckle [2].  

Speckle is considered as a multiplicative noise which has 

undesirable interference effect on the images. Due to 

presence of these noises, diagnosis becomes a time 

consuming job besides being susceptible to the errors 

depending upon the clinicians/radiologist experience and 

expertise. Apart from this high level image processing tasks 

like segmentation, feature extraction, classification etc. may  

 
Deep Gupta is with Department of Electrical Engineering, Indian 

Institute of Technology Roorkee, Roorkee-247667, India (e-mail: 

er.deepgupta@gmail.com, dg268dee@iit.ernet.in).  

 

R.S. Anand and Barjeev Tyagi are also with Department of Electrical 

Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, 

India). 

 

become very difficult. Therefore, detecting and enhancing 

the boundaries between different cavities, organ etc., is of 

great need in ultrasound imaging. To improve the quality of 

the images, the most important issue is the reduction of these 

speckles. Sometimes speckle reduction process may 

suppress the important details/features of the ultrasound 

images, so speckle reduction algorithms should be designed 

in such a manner that it smoothens the images without 

significant loss of information. 

 Ultrasound speckle reduction methods can be classified in 

two categories viz. image averaging and image filtering [3]. 

Image averaging is usually achieved by averaging a series of 

uncorrelated ultrasound images in the spatial or frequency 

domain. These uncorrelated images may be sampled at 

different times, from different views or with different 

frequency for same target [4]. It is apparent that such 

methods suffer from the loss of spatial resolution. Filtering 

methods are a practical alternative for most clinical 

applications. It can be further classified as single scale 

spatial filtering such as linear, non-linear adaptive methods 

etc., multiscale spatial filtering such as diffusion based 

methods and others multiscale methods in different 

transform domain. 

 Linear spatial filter introduce severe blurring and loss of 

diagnostically important features and useful information [5]. 

Many non-linear filters have been also introduced such as 

median and weighted median filters (AWMF) which are 

based on pixel replication to eliminate the requirement in 

traditional median filtering [6] that speckle must be smaller 

than half of the size of the filter window. It retains the edges 

but it suffers from loss of resolution by suppressing the fine 

details present in the images.  

In the second category, various popular filter used in 

spatial domain are Wiener filter [7], proximity based filters 

[8] and order statistic filter [9]. Wiener filter works well 

when the noise is of constant power additive noise while 

proximity filters help in removing the noise at the cost of 

blurring the edges. Mostly cited adaptive filters incorporate 

the Kuan [10], Lee [11], Frost filter [12] and Gamma Map 

filters. These filters are obviously superior measured up to 

low pass filter, however there is a tradeoff between 

smoothing efficiency and preservation of discontinuities due 

to sensitiveness between size and shape of the filter window. 

As regards Y. Yu [13] presented anisotropic diffusion filter 

[14]. This filter was based on the non-linear partial 

derivative equations. Later on the modified forms of 

anisotropic diffusion based filter have been presented [15] 
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 Lately comprehensive efforts have been made to reduce 

the speckle noise and overcome the drawback of spatial 

domain filtering, using the wavelet transform. In [17] [18] 

wavelet thresholding has been proposed as a true signal 

estimation technique that exploits the capabilities of wavelet 

transform for signal denoising. In [19] soft thresholding 

denoising method is presented in which the main critical task 

of the thresholding scheme is the selection of the threshold 

value. Various threshold selection techniques have been 

proposed as VisuShrink, SureShrink and BayesShrink [18] 

[20] [21]. In [22] [23] the statistical method such as 

Bayesian approach has been applied in denoising of images 

and later on, the researchers extended this approach using 

different noise models for the different noisy wavelet 

coefficients [20] [24] [25]. The main strength of wavelet 

shrinkage method is the capability to treat the different 

frequency components of an image separately but in this, the 

problem experienced is generally smoothening of edges. In 

[26] [27] wavelet based total variation filtering method is 

also presented in which noisy image undergoes several 

iterations for suppressing the Gaussian noise. This method 

works well but more number of iteration leads to blurring 

effect. The bilateral filter was proposed in [28] as an 

alternative to wavelet thresholding. It is a non-linear filter 

and used in spatial domain for edge preserved denoising. In 

[29] [30] a wavelet transform based bilateral filtering 

approach has been presented. It provides better denoising 

and also effectively preserves the edges. This method 

exploits the potential features of both wavelet thresholding 

and bilateral filter at the same time. However, wavelet 

transform based method may introduce many visual artifacts 

in the denoised images due to fixed wavelet basis and fixed 

resolution.  

 Currently research is concentrated in the wavelet domain 

because of its primary properties like sparsity and 

decomposition of wavelet coefficients.  The sparsity 

property of the wavelet transform, combined with the 

capacity for analyzing time frequency information 

simultaneously within different frequency subbands or 

temporal resolution, makes the wavelet domain ideal for the 

problem. Wavelet transform is an effective processing tool 

for smoothing the signals. However, it has a poor frequency 

resolution or low Q-factor which limit the effectiveness of 

this wavelet transform. In 2009, Selesnick introduced a new 

family of the wavelet transform, known as rational-dilation 

wavelet transform, for which the frequency resolution can be 

varied [31]. This wavelet transform is more flexible and 

modestly overcomplete, based on rational-dilation. This 

paper combines the rational-dilation wavelet transform with 

bilateral filter and thresholding scheme to enhance the 

ultrasound images.  

II. THEORETICAL BACKGROUND 

A. Rational-Dilation Wavelet Transform (RADWT) 

RADWT is a discrete wavelet transform with the wavelet 

variables of time and frequency subband as a position and 

scale along with the rational-dilation factor. Different 

wavelet transform are used in the different image processing 

application such as debluring, sharpening, denoising etc. 

Wavelet transform are based on the analysis of the signal at 

different resolution levels. Those applications which require        
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Fig.1. Analysis and synthesis filters for the implementation of RADWT 

the transforms are invertible; the resolution is doubled from 

one resolution level to other level. In this transform dilation 

factor is two and the wavelet transform is dyadic. The 

RADWT is based on the rational-dilation factor of between 

one and two, where the resolution is increased more from 

one resolution level to another resolution level. It provides 

more flexibility for varying frequency resolution because the 

dyadic wavelet transform limits its effectiveness due to low 

Q-factor i.e. poor frequency resolution in case of oscillatory 

signal [32] but the RADWT provide a wide range of the 

constant Q factor depending upon the dilation factors. The 

RADWT is implemented using a perfect reconstruction by 

using two iterated two channel filter bank with rational-

dilation factor (p and q) and high pass sampling factor (s). 

The RADWT is characterized by its Q factor and its 

redundancy i.e. oversampling rate [31]. The RADWT is 

implemented using the iterated filter bank with dilation 

parameters A q p and sB  , which is shown in Fig. 1. 

In Fig. 1, H is a low pass filter and G is a high pass filter 

in the analysis filter bank which are used for the 

implementation of the RADWT. RADWT is a self-inverting 

(or form a tight frame) if the analysis and synthesis filter 

bank shown in Fig. 1 have a perfect reconstruction property. 

If the analysis and synthesis filters are so designed that the 

output signal is equal to the input signal then the filters are 

said to satisfy the perfect reconstruction condition. The 

necessary and sufficient conditions on the filter H and G to 

insure the perfect reconstruction are explained as follows 

[31]: 

 ( ) 0 ,H for q                     (1) 

 ( ) 0 0, 1 1G for s                   (2) 

   
2

1 1 2
1 0,H G for

pq p s


  

 
   

 
                                (3)  

For the perfect reconstruction of the wavelet transform, the 

length of the signal should be multiple of q and s. The signal 

length should be multiple of the least common multiple of q 

and s. Inverse rational-dilation wavelet transform 

(IRADWT) is computed by the transpose of the forward 

RADWT. For rational-dilation wavelet transform, the 

wavelet is defined in frequency domain as in [31]. 

 
2

ˆ lim

j j
p p

G j
q qj

  
 

              

                                       (4)                               

So by choosing the parameter p, q, and s, RADWT can 

achieve high Q factor with good time frequency localization. 

Four stage forward and inverse rational-dilation wavelet 

transform are illustrated in Fig. 2. 

B. Bilateral Filter (BLF)  

Bilateral filter is a non-linear filtering process that 

performs the edge preserved denoising within the spatial 

domain [28]. Bilateral filter replaces the pixels value by a 

weighted sum of the pixels in a local neighborhood and the 

weights depend on the spatial distance of the pixel around  
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Fig. 2. Four stage RADWT decomposition 

(a) Analysis filter bank 
(b) Synthesis filter bank 

the neighborhood and the intensity distance around the 

neighborhood of a pixel. It is achieved by the combination 

of two Gaussian filters; first one is domain filter while the 

second is the range filter [30]. So at a pixel location i, the 

response of the BLF can be computed as 

1
ˆ( ) ( , ) ( , ) ( )( )x i D i j R i j x jf fj N iC

            (5) 

 Where i and j are the coordinate vectors, ( , )D i jf and 

( , )R i jf are domain and range filter components of the 

bilateral filter, respectively, which are defined as  

2

( , ) exp
22

j i
D i j

f
d



 
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  
 
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( , ) exp
22

x j x i
R i j

f
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( )N i  is the spatial neighborhood of x and C is the 

normalization constant defined as below: 

( , ) ( , )( )C D i j R i jf fj N i                           (6)  

where d  and r  are the domain and range parameters 

which control the behavior of the weights.  

In bilateral filter, the choice of the parameters d  and 

r  is very important. If their values are set too high, the 

filter will act as a smoothing filter and will blur the edges. If 

their values are set too low, the noise cannot be removed. 

Generally, d and r depend on the standard deviation of 

the noise. The optimal value of d  is relatively insensitive 

to noise variance while the optimal value of r changes 

significantly as the noise standard deviation changes [32]. 

The optimal value of range parameter r  is linearly related 

with the standard deviation of noise. 

C. Thresholding Schemes (THR) 

In recent years, the thresholding method is considered in 

many studies for image denoising [19] [23] [29]. The basic 

idea of the thresholding is that the energy of a signal is 

concentrated on few coefficients while the energy of noise is 

spread among all coefficients in RADWT domain. So 

denoising can be achieved by applying a thresholding 

function to the coefficients in the transform domain. The 

thresholding schemes provide the threshold coefficients by 

comparing the transformed coefficients against a threshold 

to remove the noise from a signal while preserving the 

important information of the original signal. The subband 

containing high frequency coefficients are processed with 

the different thresholding techniques. Usually two types of 

the thresholding are used. 

1. Soft thresholding 

 Soft thresholding is used to approximate the noisy 

coefficient of the signal. The coefficients whose absolute 

values are lower than the particular threshold (  ) are first 

set to zero and then scaling the nonzero coefficients i.e. 

whose values are greater than the threshold (  ). So the 

noiseless coefficients are computed using soft thresholding 

as follows [19], 

( , ) ; ( , )

( ( , )) ( , ) ; ( , )

0; ( , )

d i j d i j

THR d i j d i j d i j

d i j

  


  
 

          (7) 

2. Hard thresholding 

 Hard thresholding involves setting to zero the coefficient 

whose absolute values are lower than the threshold (  ) 

otherwise left out the entire signal values. So the noise free 

coefficients are estimated as follows, 

( , ); ( , )
( ( , ))

0;

d i j d i j
THR d i j

otherwise

 
 


            (8) 

Three methods are presented to compute the threshold value 

(  ) namely Visushrink, Sureshrink and Bayesshrink [18] 

[20]. Visushrink is based on applying the universal threshold 

which is also called Donoho threshold and it is calculated 

from 2log( )NN  .            

where N  is the length of the signal and N  is estimated 

standard deviation of noise which is computed using the 

median of absolute deviation from the first level of the 

RADWT coefficient (d1). The N  is evaluated as  

 
( ( , ) )

0.6745

median d i j
N                   (9) 

III. PROPOSED METHOD 

 The proposed RADWT based denoising method consists 

of the three steps as shown in Fig. 3: 1) select the 

appropriate filter, number of decomposition level, dilation 

factors (p and q) and high pass sampling factor (s), to 

compute the RADWT noisy coefficient from the input noisy 

signal. 2) select and perform the appropriate filtering 

algorithm on these RADWT noisy coefficients, to get the 

modified RADWT coefficients, and 3) finally obtain the 

reconstructed signal by taking inverse RADWT of these 

manipulated RADWT coefficients. 

 Let ( , )x i j  is the input noisy image signal on which a 

rational-dilation wavelet transform (WRADWT ) is applied. 

After applying the rational-dilation wavelet transform 

(RADWT) at different levels, it is decomposed into a set of 

the RADWT coefficient as a vector of  consisting of N 

subbands with different spectral resolution such as  

( , ) ( , )W x i j i jRADWT                        (10) 

where [ , , ,..., , ]1 2 3d d d d cN N    and [ , , ,..., ]1 2 3d d d dN N 
 

The noise and significant part of the image exist in the 

different subband of RADWT coefficient. 
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Fig. 3.  Proposed RADWT based method 
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High frequency noise mainly exists in the lower stage 

coefficient (d1). On the other hand, in the last stage 

coefficient (cN) noise is negligible. Thus, performing the 

appropriate filtering in each layer suppress the noise 

effectively without degrading the signal which are varying 

very slowly. 

 After this a bilateral filter (BLF) is applied on the 

RADWT coefficient of the final stage i.e. low frequency 

component Nc  and rest of all the RADWT coefficients i.e. 

N  is thresholded by appropriate thresholding technique 

(THR). 

( )rc BLF cN N  and ( )r THRN N              (11) 

where  , , ,...,1 2 3r rd rd rd rdN N   

 After applying these two filtering techniques, the modified 

filtered RADWT coefficients are obtained, which can be 

expressed as 

, , , ,..., ,1 2 3r r rc rd rd rd rd rcN N N N                 (12) 

Finally, the inverse rational-dilation wavelet transform 

( 1W
RADWT
 ) is applied on the filtered coefficients to 

reconstruct the approximation of the noisy image 

signal ˆ( , )x i j . 

1ˆ( , ) ( )x i j W r
RADWT

                             (13) 

IV. RESULTS AND DISCUSSIONS 

 To analyze the noise suppression and edge preservation 

capability of the proposed approach, different performance 

indices have been used. The MSE and PSNR are the 

parameters to measure the noise suppression capability; 

however, it cannot be optimal with respect to perceived 

quality or reflect the performance of edge preservation 

capability of the denoising approaches. Hence, other 

performance measures like ρ,
 
IQI [33], SSIM [34] and FSIM 

[35] have been used to measure the closeness of the fine 

details in denoised image with respect to the original image. 

For the quantitative evaluation of the edge preservation in 

denoised image, Pratt’s figure of merit (FOM) [5] is most 

commonly used parameter with Canny operator. The results 

have been compared on the basis of all these performance 

indices computed for various images. 

  

  

 

Fig. 4. From A1-E1: original 

ultrasound medical image 

From A2-E2: Enhanced de-

speckled images  

TABLE I 

PERFORMANCE OF THE PROPOSED METHOD 

Test 

Img 
MSE PSNR IQI ρ SSIM FSIM FOM 

A1 172.292 25.768 0.504 0.971 0.716 0.836 0.796 

B1 75.875 29.329 0.566 0.972 0.791 0.861 0.656 

C1 142.673 26.587 0.559 0.965 0.621 0.740 0.767 

D1 65.354 29.978 0.574 0.977 0.813 0.826 0.791 

E1 110.944 27.679 0.572 0.977 0.685 0.770 0.684 

A. Experiment 1 

 To analyze the effectiveness of this proposed approach 

different speckled ultrasound medical image, shown in Fig. 4 

(from A1 to E1), were processed.  Test images were acquired 

from a medical image database available at website http://ra 

d.usuhs.edu/medpix/parent.php3?mode=image_atlas and htt 

p://www.ultrasound- cases.info/Category.aspx?cat=73. The 

analysis has been performed on several ultrasound medical 

images to evaluate the validity of the proposed method. 

The performance of the proposed method depends on the 

number of decomposition level (J), dilation factor (p and q) 

and high pass sampling factor (s) of RADWT 

decomposition, d and r of bilateral filter. The best 

optimal values of these parameters are determined by 

performing the successive experiments on the processed 

ultrasound medical images. The speckled ultrasound images 

are processed using proposed method with optimal values 

J=4, p=3, q=4, s=2 for RADWT decomposition, window 

size=11×11, d =1.8 and r =2 n  for performing bilateral 

filter. For visualization, the despeckled images obtained 

using proposed method, are shown in Fig. 4 (from A2 to E2).

 Visual study of the processed image by the proposed 

method shows that speckles are reduced at the cost of 

appearance of the image textures. Apart from the 

visualization, the performance has been extensively analyzed 

and evaluated based on the obtained values of the 

performance indices as mentioned above. Here five different 

ultrasound images are used in Table I, to check the 

effectiveness of the proposed RADWT based method. 

B. Experiment 2  

To analyze the robustness of the proposed approach, three 

standard test images, shown in Fig. 5(a-c), have been used. 

All these images are initially corrupted by simulated 

Gaussian random noise of different standard deviation and 

later denoised by the proposed and other existing methods. 

Comparative visual performance of the proposed method 

with other alternative methods is shown in Fig. 5 which 

shows that the proposed method is not only suitable in 

suppressing the noise but it also maintains the resolution in 

the denoised image against the other available methods. 

 The different performance indices of the proposed method 

against the existing denoising method for three different test 

images with different noise levels are given in Table II to 

Table V for the performance comparisons of noise 

suppression, features and edges preservation. From the 

quantitative results of the Table II, it can be observed the 

proposed method yield the highest values of PSNR and the 

lowest values of MSE, which indicate the more suppression 

of noise. 

 Table III and Table IV indicate the exhaustive comparison 

of the proposed method with other in terms of quality and 

fine detail preservation evaluation.  Higher value i.e. more 

close to unity of the IQI, SSIM, and FSIM indicate that the 

performance of  RADWT with BLF and THR is superior to 

other alternative methods, producing more detailed images 

in which all the structural features are well preserved. 

Another statistical similarity measure using higher value or 

closer to unity of correlation coefficient for proposed 

method ensures that the strong correlation between the 

original and the denoised image. 
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Fig. 5. Comparative performance of the proposed method with other 

alternative methods  
1: Noisy image used in experimentation 

2: Wavelet transform combine with wiener filter (M-1)  

3: Wavelet transform with hard thresholding (M-2)  

4: Wavelet transform with soft thresholding (M-3)  

5: Wavelet transform with bilateral filter (M-4)  

6: Wavelet transform with total variation filter (M-5)  

7: Proposed method (M-6)  

   Table V shows the edge preservation quality of the 

proposed approach with the higher value of the FOM. From 

the quantitative results, it is observed that the proposed 

RADWT based method has not only the highest FOM value 

but also it has the value closer to unity which means the 

edges are well preserved using the proposed method in this 

paper. It also indicates that the improvement in noise 

suppression is not at the cost of edge loss. 

V. CONCLUSION 

 In this paper, rational-dilation wavelet transform based 

non-linear filtering approach has been presented with 

appropriate thresholding scheme on the noisy medical 

ultrasound images as well as on different standard test 

images.  In this proposed method variation in frequency 

resolution features of rational-dilation wavelet transform are 

utilized and image is decomposed into different noisy 

subbands at different stages. Bilateral filtering of the final 

stage coefficient suppresses the large amplitude noise 

components and thresholding provide the rest modified 

threshold coefficients which improves the denoising 

efficiency. It can be seen from the results that for almost all 

the denoised image used here with various noise levels, there 

is an improvement in MSE, PSNR, IQI, ρ, SSIM, FSIM and 

FOM as compared to the other considered technique. 

Further, in the proposed approach there is not only 

improvement in the noise suppression but also features and 

edges preservation performance indices get enhanced. The 

experimental results also show that the proposed method 

yields significant improvement in visual quality and 

outperforms many tested methods. 
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TABLE II 

COMPARATIVE NOISE SUPPRESSION PERFORMANCE AT NOISE LEVEL 10, 20 AND 30 

Image  
Noise 

Level 

MSE PSNR 

M-1 M-2 M-3 M-4 M-5 M-6 M-1 M-2 M-3 M-4 M-5 M-6 

a 

10 90.5568 75.3098 137.1061 48.6437 35.0236 27.1173 28.5616 29.3623 26.7603 31.2606 32.6873 33.7983 

20 154.7229 114.9608 182.7242 104.0916 78.3991 59.3841 26.2353 27.5254 25.5129 27.9567 29.1877 30.3941 

30 255.7572 155.6101 220.4036 156.5352 127.5721 94.6711 24.0526 26.2105 24.6987 26.1847 27.0733 28.3686 

b 

10 169.1255 77.1727 160.2917 73.0475 52.2545 35.115 25.8488 29.2562 26.0817 29.4948 30.9496 32.6759 

20 238.1844 153.7965 268.6348 153.9734 116.2726 68.6911 24.3617 26.2614 23.8392 26.2564 27.4761 29.7618 

30 345.8139 223.8306 367.6727 235.4674 189.033 119.264 22.7424 24.6317 22.4762 24.4115 25.3655 27.3657 

c 

10 80.1851 53.3617 86.5882 38.46 27.6478 15.8818 29.0899 30.8586 28.7563 32.2808 33.7143 36.1218 

20 137.3674 86.9779 119.4196 84.9357 66.0515 38.5518 26.752 28.7368 27.3601 28.84 29.932 32.2704 

30 234.7405 116.8862 146.9461 127.5021 111.0218 72.789 24.425 27.4532 26.4593 27.0757 27.6768 29.5101 

 

TABLE III 

COMPARATIVE FEATURE PRESERVATION PERFORMANCE AT NOISE LEVEL 10, 20 AND 30 

Image  
Noise 

Level 

IQI ρ 

M-1 M-2 M-3 M-4 M-5 M-6 M-1 M-2 M-3 M-4 M-5 M-6 

a 

10 0.5388 0.5588 0.4691 0.6751 0.6997 0.7254 0.9801 0.9835 0.97 0.9894 0.9924 0.9941 

20 0.437 0.4996 0.4189 0.5456 0.5669 0.6171 0.9658 0.9747 0.9596 0.9772 0.9828 0.987 

30 0.3607 0.4475 0.3836 0.4538 0.4744 0.5556 0.9442 0.9655 0.9509 0.9654 0.9718 0.9792 

b 

10 0.5374 0.6232 0.5642 0.6799 0.713 0.7204 0.9597 0.9812 0.9634 0.9825 0.9878 0.9916 

20 0.4534 0.5637 0.5007 0.5889 0.6049 0.612 0.941 0.9622 0.9367 0.963 0.9722 0.9833 

30 0.3867 0.5219 0.4498 0.5132 0.525 0.5502 0.913 0.9447 0.911 0.9429 0.9538 0.9708 

c 

10 0.3819 0.4852 0.3485 0.581 0.6293 0.6922 0.9691 0.9796 0.967 0.9855 0.9896 0.9941 

20 0.313 0.3664 0.2743 0.4263 0.4892 0.609 0.9472 0.9665 0.954 0.9674 0.9747 0.9854 

30 0.25 0.3109 0.2391 0.3394 0.3848 0.5239 0.9128 0.9548 0.9429 0.9505 0.957 0.9723 

 

TABLE IV 

COMPARATIVE FEATURE PRESERVATION PERFORMANCE AT NOISE LEVEL 10, 20 AND 30 

Image  
Noise 

Level 

SSIM FSIM 

M-1 M-2 M-3 M-4 M-5 M-6 M-1 M-2 M-3 M-4 M-5 M-6 

a 

10 0.8407 0.8556 0.7926 0.9248 0.942 0.9503 0.9134 0.9207 0.8774 0.9543 0.9689 0.9759 

20 0.787 0.8101 0.7484 0.8548 0.8808 0.8812 0.9002 0.8973 0.8515 0.9132 0.939 0.9426 

30 0.717 0.7671 0.7131 0.7948 0.8241 0.8463 0.8805 0.8776 0.8317 0.883 0.9146 0.9213 

b 

10 0.8278 0.9331 0.8888 0.951 0.9596 0.961 0.8751 0.94 0.8983 0.9548 0.9662 0.9789 

20 0.7835 0.8851 0.8322 0.9 0.9126 0.9213 0.8627 0.8947 0.8552 0.9095 0.9302 0.9441 

30 0.7235 0.8459 0.7836 0.8488 0.8617 0.8812 0.8429 0.8628 0.8243 0.8773 0.8994 0.9014 

c 

10 0.7373 0.802 0.7131 0.8746 0.9113 0.9324 0.8479 0.8971 0.8087 0.917 0.9475 0.9731 

20 0.6725 0.7064 0.6424 0.7535 0.808 0.834 0.8424 0.8423 0.7653 0.8425 0.8976 0.9431 

30 0.5962 0.6416 0.5939 0.6734 0.7168 0.7332 0.8334 0.818 0.7468 0.8019 0.8621 0.9071 

 

TABLE V 

COMPARATIVE EDGE  PRESERVATION PERFORMANCE AT NOISE LEVEL 10, 20 AND 30 

Image  
Noise 

Level 

FOM 

M-1 M-2 M-3 M-4 M-5 M-6 

a 

10 0.8171 0.8045 0.7303 0.808 0.8544 0.9021 

20 0.7035 0.7777 0.6627 0.7374 0.8048 0.817 

30 0.5566 0.7275 0.5937 0.7003 0.7726 0.7728 

b 

10 0.7597 0.8947 0.8121 0.8793 0.9168 0.9313 

20 0.704 0.7884 0.757 0.8268 0.872 0.8732 

30 0.6682 0.7593 0.7221 0.7763 0.824 0.8331 

c 

10 0.7624 0.7653 0.5689 0.7236 0.8683 0.9126 

20 0.6924 0.597 0.4503 0.669 0.7829 0.8588 

30 0.7459 0.6095 0.4122 0.6386 0.7411 0.7887 
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