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Abstract—In this paper we propose a method based on
compressed sensing (CS) for estimating the spectrum of a signal
written as a linear combination of a small number of sinusoids.
In the case of finite-length signals, the Fourier coefficients are
not exactly sparse due to the leakage effect if the frequency is
not a multiple of the fundamental frequency; To overcome this
problem our algorithm transform the DFT basis into a frame
with a larger number of vectors, by inserting columns between
some of the initial ones. The algorithm applies Basis Pursuit
(BP) to estimate the sinusoids amplitude, phase and frequency.

Index Terms—Basis Pursuit, compressive sensing, spectral
estimation, sparse representations.

I. INTRODUCTION

THE compressive sensing theory allows us to recover,
sparse or compressible signals, from a number of mea-

surements M , much smaller than the length N of the signal.
Instead of acquiring N samples, compute all the transform
coefficients and then discard the small ones, we can acquire
a number of random mixtures proportional to the sparsity K.

The samples are obtained projecting x on a set of M
vectors {ϕi} ∈ RN , that are independent of the signal, with
which we can build the sampling matrix Φ ∈ RM×N , with
M < N . The measurement vector is obtained by y = Φx.

To reconstruct the K-sparse signal x, we search for the
sparsest coefficient vector x, solving the underdetermined
system y = Φx. Since the matrix Φ is rank deficient, and so
it loses information, one can think the problem is impossible,
but it can be shown that if the matrix obeys the Restricted
Isometry Property (RIP), we can recover x exactly by solving
the convex problem [1], [2]:

(P1) : min ∥x∥1 : y = Φx, (1)

where ∥x∥1 = Σ|xi|.
Essentially, the RIP requires that every set of less than K

columns, approximately behaves like an orthonormal system.
More precisely, let ΦT , T ⊂ {1, · · · , N}, be the M × |T |
submatrix consisting of the columns indexed by T . The K-
restricted isometry constant δK of Φ is the smallest quantity
such that

(1− δK)∥x∥2 ≤ ∥ΦTx∥2 ≤ (1 + δK)∥x∥2 (2)

for all the subset T ⊂ N , with |T | ≤ K and coefficient
sequences (xj), j ∈ T .

The signal x, which is K-sparse or compressible, can be
recovered by solving the indeterminate system y = Φx, by
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(P1), from only M ≥ CK log(N/K) samples, particularly
with matrices Φ, with Gaussian entries [3].

The problem (P1) cannot be solved analytically, but can
be reformulated as a linear programming problem when the
data is real, and as a second order cone problem when
the data is complex [4], [5]. In the complex case, ∥x∥1
is neither a linear nor a quadratic function of the real and
imaginary components, and cannot be reformulated as one:
∥x∥1 =

∑√
ℜ(xi)2 + ℑ(xi)2. In this case, the problem

can be reformulated into second order cone programming,
(SOCP), and solved with algorithms implemented in the
framework of Interior Point Methods, for example using the
CVX algorithm [6]. If a signal x can be written as a linear
combination of K sinusoids, the signal presents few non-
zero spectral lines in the classical Fourier Transform sense,
that is, it is K-sparse in the frequency domain. However,
in practical applications, because we use finite N -length
signals, the signal is sparse only if the frequencies are mul-
tiples of the fundamental frequency 2π

N . Leakage limits the
success of the traditional CS algorithms. Here, we propose an
iterative algorithm which find a first approximate location of
a sinusoid and then refine the sampling in frequency around
the neighborhood of this sinusoid up to a required precision.
If several sinusoids have to be found, the procedure iterate
as many times as needed this locale refinement.

The idea comes from the dual problem of fractional
time-delay estimation, as studied in the work of Fuchs and
Deylon [7]: the true value of the frequency can be obtained
by BP between frequencies values having the higher values.

II. SPECTRAL ESTIMATION WITH COMPRESSIVE
SENSING

Consider Ψ ∈ CN×N as the inverse of the DFT matrix.
Then, if x is a time domain discrete signal with length N ,
the DFT of x will be s = Ψ−1x. If x is observed using
random measurements, we have y = Φx, and we can write
the problem (P1), from the equation (1):

min ∥s∥1 : y = ΦΨs = Θs, (3)

The CS theory ensures that a signal that is sparse or
compressible in the basis Ψ can be reconstructed from
M = O(K log(NK )) linear projections onto a basis Φ that
is incoherent with the first, solving the problem (P1) using
the equation (3), [8], [9].

If x contains only sinusoids with frequencies multiples of
2π
N rad, then s will be a sparse signal. Otherwise, s will be
not sparse. If we apply the CS to solve this problem, the
recovered signal s will not be sparse, as we can see in the
example depicted in Fig. (1). The error is 0.5986 and even if
we increase the number of measurements, the error remains
large, having a value of 0.4368 for M = 80 and a value of
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0.2892 for M = 150. Since the signal is not sparse we will
need more measurements to get a better result. This comes
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Fig. 1. Spectrum of a signal with length N = 1024 composed of three
sinusoids that are not multiple of the fundamental frequency of the DFT,
using the DFT and the CS using M = 50 measurements.

from the fact that no column vector in the matrix Ψ has
a frequency matching one of the frequencies present in the
signal. The first idea is to expand the matrix Ψ, so that each
frequency present in the signal is represented by a column.
We would have a redundant frame instead of the orthogonal
basis of the DFT. By increasing the frame size, signals
with frequencies that are not multiples of the fundamental
frequency of the DFT become more compressible, resulting
into a recovery performance improvement, but in return,
the frame becomes increasingly coherent, which leads to a
decrease in performance recovery. So the idea was to add
only a small number of columns. If we know between which
columns of the Ψ matrix, are the frequencies that are not
multiples of the fundamental frequency, we can add columns
to the matrix Ψ, only in that interval, but in CS we only have
access to the signal y.

A. Problem of fractional time-delay estimation

The dual problem of the fractional frequency spectral
estimate is the fractional time-delay estimation. Fuchs and
Deylon, in [7], presented an analytical expression of the
minimal ℓ1-norm interpolation function which is independent
of the signal, to solve the problem to get an estimate of the
delay τ , having a bandlimited signal x(t), with a maximal
sampling period h = 1, which is given by y(t) = x(t − τ).
One possibility is to seek the values sn in

y(t) = x(t− τ) =
∑
n

x(t− nh)sn.

An estimation of the delay τ is determined from the max-
imum location of the interpolating function which is given
by

ψ(t) =
∑
k≥0

βk
ϕ(|t| − k)

|t|
, |t| ∈ [k, k +

1

l
],

with
ϕ(x) =

1

Γ(x)Γ( 1l − x)
, x ∈ [0,

1

l
],

βk = (−1)k
Γ(k + 1

l )

Γ(k + 1)
,

where Γ is the standard gamma function. This reconstruction
function is very localised and as the oversampling factor, l,
increases more localised it will be, unlike what happens with
the sinc function, which keeps the width of the main lobe,
as one can see in Fig. (2).
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Fig. 2. ℓ1-norm interpolating function with oversampling factors l = 2
and l = 5, compared with the sinc function.

Since the minimal ℓ1- norm reconstruction function is
quite localised, the sn values can be obtained by solving
the minimal ℓ1-norm problem

min ∥sn∥1 : y(t) =
∑
n

x(t− nh)sn, h < 1,

which is the BP.
The problem we are dealing with is the dual of the problem

studied by these authors. If we have a signal with a frequency
fi, which is a multiple of the fundamental frequency of the
DFT, we know that the DFT of the signal has a maximum
in the position of this frequency.

Looking to the frequency of the signal as the dual of
the delay, the interpolating function will have a maximum
exactly in the same place, independently of the considered
l value. If we have a signal with a frequency fi, which is
not multiple of the DFT fundamental frequency, the signal is
not sparse, therefore there are no maximums. However, the
interpolating function will have a maximum in the position
of the frequency, regardless of the amount of l which is
considered. If the signal has two frequencies that are not
multiples of the fundamental frequency, the interpolating
function has two maximums, both between the values of
the frequencies with higher values obtained by BP. See the
example depicted in Fig. (3).

Thus, one possible solution to our problem of knowing
where the frequencies are, is to apply the BP. Each of the
frequencies in question, will be between the position of
the two frequencies multiple of the fundamental frequency,
where BP obtains maximum values.

If the frequencies are very close, a greater value of l must
be used in order to discover them. See Fig. (4).

The proposed algorithm starts by finding the first interval
where BP obtains maximum values. After that, we add
columns among those corresponding to the endpoints of
the interval. Then, we choose the column position where
is the maximum value between the added columns, which
is an estimation for the position of the desired frequency.
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Fig. 3. Minimal l1 norm using BP and using the l1 interpolating function.
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Fig. 4. Minimal l1 norm using BP and using the interpolating function
with frequencies very close, using two values of l.

Therefore, to determine the approximated value of another
frequency, we expand the original matrix by adding that
column. Then, by applying again the BP we find another
interval and we repeat the same procedure.

This algorithm can be easily extended for more frequencies
as shown in the next section.

B. Algorithm

We begin by calculating ŝ, which is the approximate value
of s, solving the minimisation ℓ1-norm problem:

ℓ1 : min ∥s∥1 : y = Θs.

Then:
1) We will calculate the argmax of ŝ, smax;
2) The interval [smax − 1, smax] or [smax, smax + 1] is

chosen as the image nearest to smax. Let’s call this
interval [a,b];

3) We will add columns between the two extremes that
correspond to the interval considered in the previous
point:
I := 0
while (I < Nmaxpoint and ϵ > error threshold)

a) I := I + 1
b) We will consider matrix Ψ1, adding I columns

to Ψ. The I frequencies of columns to add are
given by: (a+ (1 : I)/(I + 1))− 1.

c) We will calculate the ŝ values, in the interval
[a, b], considering the matrix Ψ1;

d) We will calculate the argmax of ŝ, only in the in-
terval [a, b], which contain the I added columns;

e) We will consider a new matrix, Ψ2, from Ψ,
where in the interval [a, b] is added the column
which corresponds to the argmax of the values
obtained in the previous point;

f) We will calculate the ŝ values, using the matrix
Ψ2;

g) We compute the value of ϵ
4) Ψ = Ψ2

5) We will repeat the steps from 1. to 4. as many times
as the sparsity of the signal.

In the end we calculate the value x̂ = Ψŝ.
In this algorithm, we use the standard error, given by

erro = ∥x−x̂∥
∥x∥ . The stopping criterion in the reconstruction

of the approximate value for each frequency, ϵ, i.e, the criteria
used to stop adding columns in the range [a, b] is given by
the difference between the errors obtained in two consecutive
iterations. In each iteration the error is given by the sum of
absolute values of ŝ excluding the K higher values, with K
the value of sparsity. If in the interval [a, b], on the step 3f.,
we add the column corresponding to the frequency of the
sinusoid, this error is very small.

III. EXPERIMENTAL RESULTS

In our experiments we use signals of length N = 1024
samples and all the signals contain real-value sinusoids, with
random frequencies. The amplitudes of each frequency is 1
except in the experiment III.

A. Experiment I

In our first experiment, we apply the proposed algorithm to
a signal containing three real-value sinusoids, K = 6, using
M = 100 measurements. Therefore we can reconstruct the
signal with an error of 0.0268, which had an initial error of
0.5275, see Fig. (5).
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Fig. 5. The approximate value of s, first using CVX to solve the BP, and
then with the proposed algorithm in the first, second and third frequencies.

As shown in Fig. (6), the error decreases exponentially
as we add columns in the interval, so we can initialise the
number of adding columns, step 1. of the proposed algorithm,
with a greater value than I = 1. In our experiments we
initialised with I = 650.
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Fig. 6. The error in the first frequency in function of the number of added
columns.
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Fig. 7. Performance of CS signal recovery with the proposed algorithm
for signals with one, two, three and four frequencies which correspond to
K = 2, K = 4 and K = 6 respectively. All quantities are averaged over
400 independent trials.

B. Experiment II

Our second experiment compares the performance of the
proposed algorithm for signals with one, two and three
frequencies. We verify that the number of measurements we
need for the same performance increases with the sparseness
of the signal. See Fig. (7).

C. Experiment III

This experiment shows the behaviour of the proposed
algorithm, when the amplitudes of the signal frequencies
are different. Fig. (8) presents the result of the signal re-
covery using our algorithm for a signal composed by three
random frequencies with amplitudes 1, 0.01 and 0.05. The
proposed algorithm performs better for different amplitudes,
than Thresholding based algorithms, like Spectral Iterative
Hard Thresholding (SIHT) proposed by M. Duarte and et al.
in [10], since the Thresholding algorithms consider, in each
iteration, only the K largest spectral components, removing
the others. With this approach, the smallest frequencies can
be discarded.

D. Experiment IV

Our fourth experiment tests the robustness of the proposed
algorithm to additive noise in the measurements of a signal
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Fig. 8. The approximate value s, for a signal containing three real-value
sinusoids with frequencies of amplitudes 1, 0.01 and 0.05

written as a linear combination of two and three sinusoids.
The error was evaluated for ten signal to noise ratios (SNR)
and the results are depicted in Fig. (9). As we can see, the
proposed algorithm performs quite well.
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Fig. 9. Performance of signal recovery using the proposed algorithm for
a signal composed by two and three different frequencies with 150 noisy
measurements. All quantities are averaged over 100 independent trials.

E. Experiment V

This experiment compares the performance of the pro-
posed algorithm with two of the algorithms proposed by M.
Duarte and et al. in [10], which they called by Spectral CS
(SCS), Spectral Iterative Hard Thresholding (SIHT) using a
heuristic approximation and a Line Spectral Estimation (Root
Music). See Fig. (10).
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For the SIHT, the authors use an over-sampled DFT
frame and a coherent-inhibiting structured signal model, that
inhibits closely spaced sinusoids, and the classical sinusoid
parameter estimation algorithm, periodogram. In our algo-
rithm we do not need to impose a model based, to inhibit the
coherence of the frame, because our interpolating function
is very localised.
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Fig. 10. Performance of signal recovery using the proposed algorithm,
using the SIHT implemented via heuristic algorithm and using the Root
Music algorithm. All quantities are averaged over 400 independent trials.

F. Experiment VI

Our last experiment shows how the proposed algorithm
behaves for two close frequencies and compares its perfor-
mance with the performance of the SIHT and the Root Music
algorithms. We have considered a fixed frequency, f1 and a
second frequency, f2 = f1 + δ, where δ = [0.1 : 0.1 :
1, 1.25 : 0.25 : 5.5]. As shown in Fig. (11), our algorithm
presents a better performance than the others.
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Fig. 11. Performance of signal recovery using the proposed algorithm, the
SIHT implemented via heuristic algorithm and the Root Music algorithm,
considering a signal with two frequencies where f2 = f1 + δ. We have
used 100 measurements. All quantities are averaged over 200 independent
trials.

Note that, although the errors are small for delta values
smaller than 1, the frequencies values can be very different
from the correct ones, as we can see in TABLE I

The results of the proposed algorithm were as it was
expected, since the minimal ℓ1-norm interpolation function
is very localised, unlike the minimal ℓ2-norm interpolation
function - the sinc function, as one can see in Fig. (12).

TABLE I
RECOVERED VALUES OBTAINED WITH THE PROPOSED ALGORITHM, THE

ROOT MUSIC ALGORITHM AND THE SIHT ALGORITHM, USING THE
FIXED FREQUENCY f1 AND f2 = f1 + δ. 

 
 

 Frequencies Prop. Algorithm MUSIC SIHT 

δδδδ �� �� ��� ��� ��� ��� ��� ��� 

0.1000 463.7655 463.8655 463.7638 464.8000 78.8620 463.8151 0.0000 0.0000 

0.2000 463.7655 463.9655 463.7621 464.8000 52.4859 463.8594 460.4439 463.8723 

0.3000 463.7655 464.0655 464.0734 464.0000 265.7705 463.9192 460.4508 463.9125 

0.4000 463.7655 464.1655 463.8000 464.2148 67.0411 463.9667 22.8131 463.9436 

0.5000 463.7655 464.2655 464.2000 463.7007 464.0346 469.9109 378.3570 463.8356 

0.6000 463.7655 464.3655 463.9000 464.4437 0.0377 397.5788 459.2702 463.8318 

0.7000 463.7655 464.4655 463.4965 464.5676 370.1165 464.2669 246.8810 463.3999 

0.8000 463.7655 464.5655 464.6005 463.7246 212.0844 463.8000 129.2858 464.9987 

0.9000 463.7655 464.6655 464.6176 463.7699 408.0093 463.6348 255.1839 463.5699 

1.0000 463.7655 464.7655 463.5866 464.8085 406.0506 464.8486 199.8234 464.9885 
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Fig. 12. Minimal ℓ1-norm using BP and using the interpolating function
with an over sampling factor of l = 9. The dotted curve is the minimal
ℓ2-norm interpolating function: the sinc function.

IV. CONCLUSION

We have developed a new algorithm to estimate the spec-
tral components in the case of sparse finite-length signals.
The algorithm uses a redundant frame, transforming the
DFT basis into a frame with a larger number of vectors,
by inserting columns between some of the initial ones.

From the results can be seen that the proposed algorithm
can recover the sparse signals with an error smaller than
0.001, even for a signal with K = 6.

Furthermore, it presents a good performance in the pres-
ence of noise. In addition to this, it can deal with sig-
nals where the frequency amplitudes are very different,
overcoming other algorithms in this field. Moreover, the
proposed algorithm performs better than others that we have
compared for the same signal while using the same number
of measurements.
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