
 
Abstract—Acceleratory and inhibitory cardio-regulator 

nerves innervate the heart of a living creature. The two nerves 
discharge concurrently to maintain an equilibrium state of the 
heart. The nerves change their frequency of discharge in a 
reflexive manner to meet the demand from the periphery, such 
as augmentation of oxygen supply or vice versa. Consequently, 
the heart exhibits a dynamic change in rate of pumping and 
force of contraction. If the control system fails, the heart exhibits 
an unhealthy state. However, an assessment of a 
healthy/unhealthy status is uneasy, because we are not able to 
monitor the nerve activities by non-invasive methods. Therefore, 
we challenged to detect a state of the heart without 
nerve-recordings. We used the Detrended Fluctuation Analysis 
(DFA) by applying it to a heartbeat interval time series because 
the DFA is to be believed, that it can quantify the state of heart. 
The objective of this research was to determine whether the 
analytical technology, DFA, could function as a useful method 
for the evaluation of the subject’s quality of a 
cardiovascular-related illness and transition to and from a 
normal healthy state. We performed DFA on the EKGs 
(Electrocardiograms) from various living organisms, including 
humans. We found that DFA could describe a brain-heart 
interaction quantitatively: The scaling exponents of (1) healthy, 
(2) sick-type (such as stressful or arrhythmic states), and (3) 
unpredictable-death type (such as ischemic heart disease) were 
corresponding to individuals who exhibited, (1) nearly one, (2) 
less than one, and (3) greater than one, respectively. We 
conclude that scaling exponents could determine whether the 
subjects are under sick or healthy conditions on the basis of 
cardiac physiology.

Index Terms—cardiac regulation, crustaceans, DFA, 
heartbeat, scaling exponent

I. INTRODUCTION

espite the development in the field of heart disease with 
pharmacotherapy and a device for resynchronization 

therapy, the number of hospitalizations for heart failure in the 
United States each year exceeds over 1 million, and the 
mortality still remains high [1]. Technology is required for 
much more improvement of our ability to issue early warnings. 
However, there is no straightforward theory that can predict 
when a heart failure might occur. We cannot hope to improve 
public health without a shift into early detection and 
prevention of a disease. The key question is how to make an 
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early detection. We propose that a computation method on a 
heartbeat-interval time series is practically useful for 
distinguishing between a sick heart and a healthy heart. The 
Detrended Fluctuation Analysis (DFA) was originally 
developed by Peng et al. [2, 3], to check power-law
characteristics of the heartbeats. Since Peng’s publication, it 
has been widely accepted that a healthy heart exhibits a 
healthy scaling-exponent, which is one (1.0). We here show 
results of DFA obtained from various living organisms, 
including humans. The present tests revealed that DFA could 
describe brain-heart interactions quantitatively. We conclude 
that scaling exponents could determine whether the subjects 
are under sick or healthy conditions on the basis of cardiac 
physiology. We believe that DFA is a new, useful numerical 
method for quantifying the degree of wellness and the 
transition from illness to wellness and vice versa.

II. MATERIALS AND METHODS

A. Peak detection
Our heartbeat-interval analysis requires detection of the 

precise timing of the heartbeat. A consecutive and perfect 
detection without missing any beat is necessary. According to 
our preliminary tests, about 2,000 consecutive heartbeats 
were required for obtaining a reliable computation of scaling 
exponent. Peng [2] suggested that, in his e-mail to the author, 
longer recording of the heartbeats would give better results. 
However, we found that a long recording was not justifiably 
useful and a recording of about 2,000 consecutive heartbeats 
are preferable.

To detect the timing of the heartbeats, one may assume that 
a common EKG (Electrocardiograms) recording is 
sufficiently useful. However, the problem with a conventional 
EKG was the drifting of the baseline of the recording. Due to 
the drift and the contamination of an unexpected noise, 
recording failures may happen. 

Another obstacle arose from the premature ventricular 
contraction (PVC). Among the “normal” subjects (age over 
40 years old), about 60 % of subjects have PVC arrhythmic 
heartbeats. Normally, this PVC is believed to be a benign 
arrhythmia, and in fact during our recording, we found many 
healthy-looking individuals exhibited this arrhythmia. 
However, PVC is an obstacle to a perfect detection of 
accurate timing of the heartbeat, because the height of its 
signal varies often. If the baseline of EKG recording could be 
stable, the heartbeats would automatically be detectable, even 
when irregular beats appeared sporadically. Unfortunately, in 
commercial EKG recording devices, the baseline of the 
recording is not stable.
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Fig.1.  A, an example of the baseline-stable recording. One 
can see nine peaks that were captured automatically. Subject 
moved (pointed by arrows). B, a heartbeat-interval time series 
from the recording-A, about 3000 beats, was made at once.

B. Stable baseline
To capture heart beat peaks without missing any detection, 

we made an EKG amplifier that stabilizes the baseline of the 
recording (Fig. 1). The important issue was: we discovered 
that a time-constant for an input-stage of recording must be 
adjusted to an appropriate level (the ideal time would be, τ < 
0.22 s).

Having a stable baseline recording was an advantage to our 
DFA research. However, in some cases, inevitable noises 
would ruin the recording. In such case, we removed the noises 
by identifying them visually on the PC screen, thus making a 
perfect (without miscounting) heartbeat-interval time series. 
We have already identified how this inconvenience occurred. 
Most of these cases were due to the sweat on the skin under 
the electrodes. We were able to overcome this problem by 
cleaning the skin with an appropriate solution.

C. DFA:Background
DFA is based on the concepts of “scaling” and 

“self-similarity” [5]. It can identify “critical” phenomena, 
because the systems near critical points exhibit self-similar 
fluctuations [2, 4], which means that recorded signals and 
their magnified/contracted copies are statistically similar. In 
general, statistical quantities, such as “average” and 
“variance,” of fluctuating signals can be calculated by taking 
the average of the signals through a certain section; however, 
the average is not necessarily a simple average. In this study, 
we took a squared average of the data. The statistical quantity 
calculation depended on the section size. The scaling 
exponent and DFA are well explained recently by T. 
Stadnitski [5]: Consult the article about fractal, scaling, 
Hurst-exponent, and power spectral density, regarding to 
fractality research [5]. Here, we used α as the “scaling 
exponent,” which characterizes self-similarity.

Stanley and colleagues considered that a scaling property 
can be detected in biological systems, because most of these 
systems are strongly nonlinear and resemble the systems in 
nature, which exhibit critical phenomena. They applied the 
DFA to DNA arrangement and EKG data and discovered the 

usefulness of the scaling property [2, 6], and emphasized the 
potential utility of DFA in life sciences [6]. Although the 
practical medical use of DFA technology has not progressed 
to a great extent, nonlinear technology is now widely accepted 
[5], and rapid advances are being made in this technology.

D. DFA:Technique
We made our own computation program, based on the 

previous publication [2, 3, 5], which is described in one of the 
references [7].

E. Heartbeat recording
For heartbeat recordings, we used a Power Lab System 

(AD Instruments, Australia). For EKG electrodes, a set of 
ready-made three AgAgCl electrodes (+, -, and ground; 
Nihonkoden Co. Ltd. disposable Model Vitrode V) were used.
Wires from EKG electrodes were connected to our newly 
made amplifier. These EKG signals were then connected to a 
Power Lab System. Finger pulse recordings were also used 
with a Power Lab System.

F. Volunteers and ethics
Heartbeats were recorded outside of the hospital; university 

laboratory, convention hall (Innovation Japan Exhibition) etc.  
All subjects were treated as per the ethical control regulations 
of our universities, Tokyo Metropolitan University, Tokyo 
Women’s Medical University.

III. RESULTS

A. Fractal and scaling in biology
Numerous studies identified fractal noise in biology, 

including human behavior and heart physiology. According to 
the theory of Self Organized Criticality, a long 1/f scaling is a 
signature of complex dynamical systems [5]. The 1/f scaling 
of heartbeat time series is a typical signature of health, as 
shown by Kobayashi and Musha [8]. Technologically, we 
have confidence in this technique, with subjects, who exhibit 
1/f scaling, are healthy. If the scaling exponents are not 1, the 
subjects are identified as unhealthy. This rule might be useful 
and valuable to test how it works in our biological data. To 
investigate 1 or not 1, we selected the method of DFA. Before 
that, among some popular estimators of fractal parameters, 
such as a spectral density and a scaling exponent, we first tried 
the best known method, the power spectral density (PSD), 
because Kobayashi and Musha used it [8].

We tested the PSD on two kinds of the lobster heart data: 
one was a heartbeat recorded from an isolated heart and the 
other one was from an intact heart. It is important to 
acknowledge that isolated hearts do not receive 
cardio-regulator nerve impulses, instead, intact hearts receive 
dynamical control from the cardiac center of the brain. We 
expected that the PSD discriminates an isolated-heart from an 
intact-heart. However, we found that PSD did not work well 
and DFA did discriminate them [9]. Since then, we have been 
using DFA, in our study. Finally, we found that naturally 
dying crab’s heart exhibits a low scaling exponent (about 0.7), 
and crabs underwent an unpredictable death, which exhibited 
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a high exponent, spanned 1.2-1.5 [10]. 
We found that natural-death crabs experience a 

hyperkalemia. Biology can explain the mechanism. Cell death 
leads to puncture of the cells. The more cells die, the more 
potassium leaks into the circulation, where the concentration 
of potassium ions is ~27 times lower, than inside the cell. This 
potassium leakage from the dead cells causes depolarization 
of myocardial cell membrane. Depolarization increases the 
rate of discharge of pace-making heart muscle cells. The 
outcome of the chain reactions were detectable as a high rate 
of heartbeats. It is well known that a human, who is near an 
end exhibits a high heart rate over 200 beat per min (BPM). In 
our study, sea lice crustaceans, Ligia exotica, showed a high 
heart rate, over 300 BPM, when they died. The largest species 
of dragonflies, a native of Japan, Anotogaster sieboldii, also 
showed a high heart rate, over 250 BPM. Natural death 
proceeded gradually, resulting from a gradually increasing 
number of dead cells. Therefore, from the heart rate, one can 
notice that the subject is dying, so one can predict a near 
future event in case of natural death. 

Surprisingly, in crab-heart experiments, we encountered an 
abnormal death, that was different from the above-mentioned 
predictable death; it was an unpredictable death at a high 
exponent. We noticed that a blood condition of 
unpredictable-death crabs was normal, because the heart rate 
did not increase until death. However, interestingly, we 
noticed that myocardial cells were partially injured by the 
penetration of EKG electrodes. We conceived the reason why 
sudden death occurred. In general, sudden death occurs while 
body cells are normal and heart muscle cells are partially 
damaged. In such a condition, the pump (heart) was not able 
to cope with the oxygen demand of body cells, including 
myocardial cells. The pump gave up working, especially 
when the acceleratory nerves commanded extraordinarily 
increased work. That is the heart attack: i.e., 
unpredictable-death. This unpredictable-death of model 
animals was comparable to the human ischemic hearts’ event. 
One can recall a sudden death, such as professional athletes. 
Through the experiments on invertebrate model animals, we 
learned and found that the scaling exponents are reliable 
parameters.

Exponentiation is a mathematical operation, written as nα, 
involving two numbers, the base n and the exponent (or 
power) α. In our study, the base is a box-size of a heartbeat. 
DFA calculates α, which is the scaling exponent. 
Theoretically, n is infinite. But it is impossible to record an 
infinite length of EKGs. Technologically, how long must we 
record an EKG for the practical use of DFA in medicine? 
Which size of box in DFA (see [2, 5]) is required? The 
answers were not given previously, especially for the field in 
biology and medicine, instead of in the field of nonlinear 
dynamic theory. We needed to solve the problems practically.

Dynamic systems are systems that change over time and 
that can autonomously generate complexity and form. The 
current state is a function of pervious states and in turn is the 
basis for future states. In biology, fractal and scaling exist 
everywhere [11] (Figs. 2 and 3). The figures show examples 
of scale-invariance in biology. One can see that this plant’s 
fractal is the results of plant-cells’ development over time 
(Figs. 3A and 3B). However, this scaling does not continue to 

infinity (see Fig. 3C). Biological morphogenesis does not 
show an infinite feature. There is a limit in biological 
scale-invariance. When we use DFA in biology, box length 
(box size in DFA) is limited. In tree structure, the size is 
confined from 1 mm to 10 m, from leaf, branch, and to trunk 
(Fig. 3). Thereby, in case of a tree, a range of the values of n
was confined to [1; 10,000] in mm.

When conducting the DFA on the heartbeat data, at first, 
we did not know the value of n. We have investigated some 
hundreds of hearts by our DFA program and already found 
out that a proper n range was confined to [30; 270] [12]. As 
long as we use our DFA program, DFA computation with this 
length of heartbeat-numbers, n, guaranteed a good estimation 
of scaling in heartbeat analysis. The period length from 30 
beats to 270 beats roughly corresponds to the length of 
recordings of EKG from 0.5 min to 3 min, respectively. This 
period of time indicates that it is the period for human keeping 
the memory in a stationary state. It is only during a restricted 
time-period, for 3 min.

B. Estimation accuracy
DFA is the idea of dividing the accumulated or integrated 

series into boxes of equal length, n, and to fit a regression line 
of each box to represent a local trend. This trend is then 
subtracted from the integrated time series. DFA calculates the 
corresponding fluctuations, F(n) (see [5] in details). This 
computation is repeated over all box sizes. A linear 
relationship between log F(n) and log n indicates the presence 
of a power law scaling F(n) � nα , thus fractality. The slope of 
the regression line relating log F(n) to log n estimates the 
scaling exponent α. 

DFA calculates the positive slope of the line relating to log 
F(n) and log n. DFA calculates how much variance (F(n)) is 
accounted for by each box-size (n) (heartbeat number). 
However, it is essential to know whether or not our DFA 
program is accurately reflecting to the state of a real world 
data, because estimation accuracy depends on the order of 
transformation steps [5]. We therefore compared results of 
our computation program with those of “original idea” that is 
Peng’s program [2]. We confirmed accuracy of our DFA 
(Figs. 4 and 5). The two computations showed almost 
identical results.

Fig. 2.  Diagrammatical representation of fractal and 
scale-invariance in biology. A, B, and C resemble in each 
structure, different scale from leaf to trunk in size.
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A B C
Fig. 3.  Fern tree leaf pictures. Photo shows: A, 
scale-invariance structure develops over time. B, developed 
structure resembles with those shown in Fig. 1. C, fractal 
disconnects at the veins of a leaf. Photo: taken by an author at 
near the University drive, Berkeley, CA, USA.

      
Fig. 4.  Results of our DFA. Female age 60s. The scaling 
exponent (α) was 0.95 with box size 30-270. Inset; 
Heartbeat-interval time series upon which DFA applied.

Fig. 5.  Results of Peng’s DFA (see [2]) applied on the same 
data shown in Fig. 3. Female age 60s. The scaling exponent, 
(α) was 0.9434 with box size 30-270. n: box size.

Fig. 6.  Heartbeat-interval time series, simultaneously 
recorded from three male professors at the medical school 
office. Age: early 50s for A, 65 for B, and 61 for C. Subject C 
exhibited two premature ventricular contractions (*).

Fig. 7.  Results of DFA on data shown in Fig. 6. Inset, 
Estimated scaling exponents, calculated the slope of the line. 
Box size 30-270.

C. Scaling in human heartbeat
Figures 6 and 7 show the results of DFA for three persons. 

EKGs were simultaneously recorded in a room sitting 
together side by side, with talking and laughing, for about 40 
min. Subject-A exhibited a normal healthy value, 1.04. His 
heart was perfectly normal in terms of DFA. As for the 
subject-B, on first sight of time series (Fig. 6B), we could not 
find any significant symptoms. However, his α was 0.85, 
which was lower than normal value. He mentioned that he 
feels PVCs especially at mid night (no PVCs in Fig. 6B). 
Years ago, he was admitted to the hospital to checkup 
although no significant problem was found. We considered 
that he had not a perfect health condition in terms of DFA. As 
for subject-C, time series exhibits apparent PVCs (see 
asterisks, *). His value was very low, 0.72. He mentioned that 
the number of occurrence of PVCs sometimes increase up to 6 
times per min. Although this value is a benign value according 
to a medical doctors’ guideline (exceeding 10 times per min is 
border line), our DFA seemed to be detecting a hidden 
abnormality in his system though, we did not identify it. 

We have so far examined over 300 subjects (not in the 
hospital) aged 5-88. More than half subjects exhibited 
unhealthy scaling exponent (never near 1.0 in box size range 
[30; 270]). Subject-B and subject-C were representative 
volunteers whom we met. Ironically, subject-A was a healthy 
but atypical example. Detailed large cohort investigations are 
required to gather statistics, but we believe that the concept of 
tailored medicine and healthcare by DFA could be reliable 
and more helpful than statistics. If the DFA reveals that one 
has the standard exponent of 1.0, one can never be at a loss. 
We met a Russian friend researcher (age mid 30s), who have 
had a valve operation (mitral valveloplasty) a year before. 
Our DFA revealed that he had the exponent of 1.0, himself 
and his wife was very relieved. Despite these good results his 
doctor already told him that the operation was very successful, 
he and his wife told us, they were happy to get a double 
confirmation.
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D. Quantification of stress
Stress is a physiological reaction of an organism to an 

uncomfortable or unfamiliar physical or psychological 
stimulus. The stimuli induce biological changes as the results 
from activation of the sympathetic nervous system, including 
a heightened state of alertness, increased heart rate, and so 
forth. We can define stress in this manner. However, we are 
not able to quantify stress efficiently. In fact, we can hardly 
determine if an organism is experiencing stress in response to 
the stimuli.

We have found that the Japanese spiny lobster, (15 to 25 
cm in size) while in a relaxed condition in a shelter, exhibit, 
on/off switching patterns of heartbeat sequences; i.e., 
alternating heart rates from a high rate of 50 to 70 BPM to 
extremely low rate of 5 to 15 BPM [13] (see Fig. 8A). 
However, during stressful states, the lobster does not exhibit 
the alternating pattern of a heartbeat, but exhibits the 
continuous beating pattern of 70 BPM (see Fig. 8B). The 
continuous pattern lasts quite a while, as long as the stress 
stimuli exist. The continuous pattern is the physiological 
consequence of discharge of cardio-regulatory nerves, i.e., an 
increased cardio-accelerator discharge at about 60 Hz, and 
simultaneously occurring cessation of the inhibitory nerve 
discharge [13]. 

We therefore focused attention on the difference of pattern 
of heartbeats between relaxed and stressful states, and 
challenged to quantify stress by DFA. Figure 8 shows the 
pattern of heartbeats of relaxed lobsters and stressful lobsters. 
We measured heartbeat intervals of EKG data and 
constructed a time series of heartbeat-intervals. Figure 9 
shows a part of time series (578 beats) corresponding to both, 
relaxed and stressful states. Then we conducted DFA and 
found that relaxed lobsters in shelter, exhibited a normal 
scaling exponent of 1. And stressful lobsters being handled by 
humans, exhibited a lower scaling exponent of 0.6 (Fig. 10).

Fig. 8.  EKGs of Japanese spiny lobster, Panulirus japonicus, 
for 20 min. A, Lobster was at rest in a shelter under the sea 
water tank. Lobsters’ heart at rest exhibits alternating on/off 
pattern. B, This lobster was receiving significant stress under 
the condition of the micro-dialysis blood sampling 
experiment.

Fig. 9.  Interval time series calculated from Fig. 8. A, Relaxed 
lobster. B, Stressful lobster. A and B correspond to AA and 
BB in Fig. 8. Only 578 beats shown.

Fig. 10.  DFA profile. The same lobster shown in Figs. 8 and 
9.

IV. DISCUSSION

Many people are introduced to the visual world of 
nonlinear dynamics through a never-ending stream of fractal 
patterns cascading towards them from deep within their 
computer screens [14]. The virtual space, generated by 
computers, seems to be an ideal environment for exhibiting 
their stunning properties [14]. 

Unlike computer screens, empirical data in nature, such as 
fractals in tree-structure and in the heartbeat, is not generated 
in a never-ending ideal manner. Fractal patterns are found in 
limited space, indeed a tree fractality range was confined to 
[1; 10,000] in mm and heartbeat fluctuation fractality was 
confined to [30; 270] in beat numbers. We showed that DFA 
works under those limited environment, not under an infinite 
environment. Despite not infinite, using DFA, we 
discriminated a healthy heart, unhealthy heart, dying heart, 
and stressful heart. Stress, particularly its profound, 
long-lasting effects on behavior and health is a significant 
health concerns in our days. In the present article, we showed 
that stress is measurable by our DFA technology. The heart is 
an opening of mind.  

It was in the 80s-90s when Goldberger, Amaral, Hausdorff, 
Ivanov, Peng, Stanley and colleagues have emphasized the 
potential utility of DFA in life sciences [6]. Numerous 
empirical studies identified a noise in human behavior, 
including noise in heartbeat behavior [5]. However, practical 
medical use of DFA technology has not progressed to a great 
extent. Our temporary guideline for determining the wellness 
of the heart by the scaling exponent, is that a value near 1.0 
(specifically, 0.90–1.19) is healthy.

The fluctuation analysis (i.e., DFA) was a potential helpful 
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tool in medicine for the early identification or physiological 
disorders, as it reveals information that is not provided by an 
EKG. Unlike HRV [15] (i.e., heart rate variability, the power 
spectrum, PSD), the excelling point for DFA, is that it has a 
base line value persistence of one (1), like a standard body 
temperature (37ºC), a standard blood pH (7.4), and so on. 
DFA is simple as a tool that everyone could use. No two 
individuals are ever the same in terms of molecular biology, 
thus supporting the concept of providing individually tailored 
medicine and healthcare.

V. CONCLUSION

The scaling exponents could determine whether the 
subjects are under sick or healthy conditions on the basis of 
cardiovascular neurophysiology. DFA is practically a useful, 
numerical method for quantifying the degree of wellness and 
the transition from sickness to wellness and vice versa. DFA 
is a simple tool, such as a clinical thermometer and a 
blood-pressure gauge. Our temporary guideline for 
determining the wellness of the heart by the scaling exponent 
is, a value near 1.0 (specifically, 0.90–1.19) is healthy.

ACKNOWLEDGMENT

We thank G. Witte C. for English correction.

REFERENCES

[1] Roger, V. L, Go A. S, Lloyd-Jones D. M, et al. 2012. “Heart disease 
and stroke statistics -- 2012 update: a report from the American Heart 
Association”, Circulation, 125, e2-e220.

[2] Peng, C. -K., S. Havlin, H. E. Stanley, and A. L. Goldberger, 1995, 
"Quantification of scaling exponents and crossover phenomena in 
nonstationary heartbeat time series," Chaos, 5, pp. 82-87.

[3] Stanley, H. E., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Peng, 
C.-K., Simons, M., 1993, “Long-range power-law correlations in 
condensed matter physics and biophysics, Phys. A, 200, pp. 4-24.

[4] Stanley, H. E., 1995, “Phase transitions. Power laws and universality,” 
Nature, 378, pp. 554.

[5] Stadnitsuki, T., 2012, “Some critical aspects of fractality research,” 
Nonlinear Dynamics, Psychology, and Life Sciences, 16, pp. 137-158.

[6] Goldberger, A. L., Amaral, L. A. N., Hausdorff, J. M., Ivanov, P. C., 
Peng, C.-K., and Stanley, H. E., 2002, “Fractal dynamics in 
physiology: Alterations with disease and aging,” PNAS, 99 (Suppl 1), 
pp. 2466-2472.

[7] Katsuyama, T., Yazawa, T., Kiyono, K., Tanaka, K., Otokawa, M., 
2003, “Scaling analysis of heart-interval fluctuation in the in-situ and 
in-vivo heart of spiny lobster, Panulirus japonicus”, Bull. Housei Univ. 
Tama, 18, pp 97-108, (in Japanese).

[8] Kobayashi, M., Musha, T., 1982, “1/f fluctuation of heartbeat period,” 
IEEE Transactions on Biomedical Engineering, 29, pp. 456-457.

[9] Yazawa, T., Kiyono, K., Tanaka, K., Katsuyama, T., 2004, 
“Neurodynamical control systems of the heart of Japanese spiny lobster, 
Panulirus japonicus,” IzvestiyaVUZ Applied Nonlinear Dynamics, 
12(1-2), pp. 114-121.

[10] Yazawa, T., Tanaka, K., Katsuyama, T., 2007, “DFA on Cardiac 
Rhythm: Fluctuation of the Heartbeat Interval Contain Useful 
Information for the Risk of Mortality in Both, Animal Models and 
Humans,” Journal of Systemics, Cybernetics and Informatics, 5(1), 
pages: 44-49.

[11] Barnsley, M., 1988, “Fractals everywhere” Academic press, San Diego, 
CA, USA.

[12] Yazawa, T., Tanaka, K., Kato, A., Nagaoka, T., Katsuyama, T., 2007, 
“Alternans lowers the scaling exponent of heartbeat fluctuation 
dynamics in animal models and humans,” WCECS2007 Proceedings, 
1, pp. 1-6.

[13] Yazawa, T., Katsuyama, T., 2001, “Spontaneous and repetitive cardiac 
slowdown in the freely moving spiny lobster, Panulirus japnicus,” J. 
Comp. Physiol. A., 187, pp. 817-824.

[14] Taylor, R. P., 2012, “The transience of virtual fractals,” Nonlinear 
Dynamics, Psychology, and Life Sciences, 16, pp. 91-96.

[15] Task Force of the European Society of Cardiology the North American 
Society of Pacing Electrophysiology, 1996, “Heart Rate Variability. 
Standards of Measurement, Physiological Interpretation, and Clinical 
Use,” Circulation. 93, pp. 1043-10.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012




