
 

 

Abstract—The effects of operating conditions such as initiator 

and monomer concentration as well as reactor temperature of 

polymerization reactors are studied in this work. A recently 

developed hybrid model for polystyrene batch reactor is 

utilized in simulation study. The simulation results reveal 

the sensitivity of polymer properties and monomer conversion 

to variation of process operating conditions. In the second 

phase of this study, the optimization problem involving 

minimum time optimal temperature policy is considered for 

control study. An advanced neural network-based model 

predictive controller (NN-MPC) is designed and tested online. 

The experimental studies reveal that the developed controller 

is able to track the optimal setpoint with a minor oscillation 

and overshoot. 

 

 Index Terms—Polymerization reactors, Optimization, 

Polystyrene, Batch reactor. 

 

I.  INTRODUCTION 

 Temperature control of a polymer reactor is still a 

challenging task due to the highly nonlinear process of 

polymerization reaction [1]. The reaction may be auto-

accelerating and heat transfer rates can vary during the 

process. Changes in reactant feed rate often produce an 

inverse temperature response, because the cooling effect of 

the increased feed precedes the increase in the reaction rate. 

Changes in temperature can alter the reaction rate, resulting 

in poor molecular weight control, and, in severe cases, an 

entirely different polymer product [2]. Control of reactor 

temperature is also critical from a purely operational point of 

view [3]. If the polymerization temperature is allowed to 

increase, monomer conversion increases and more polymer is  

produced. Hence, the polymerization mixture becomes more 
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viscous and heat removal becomes difficult. Therefore, 

reactor temperature must be kept within the limits that allow 

one to carry out a safe polymerization, i.e., within the 

systems heat removal capabilities. The final polymer 

properties, such as density, melt index, impact strength, 

rigidity, tensile strength, chemical resistance, thermal 

stability, and plasticizer uptake, can be related, through 

empirical relationships, to the molecular and morphological 

properties of polymers. On the other hand, for a given 

reactor configuration, the molecular properties will be 

strongly dependent on the reactor operating conditions [4]. 

Therefore, the detailed knowledge about operating condition 

is important to control the polymerization reactor. More 

precisely, the study of the effects of operational conditions 

on the performance of batch polymerization reactor control is 

very important to control the polymerization reactor.  

 In the present work, we conduct a theoretical study for a 

batch styrene free radical polymerization reactor and find out  

which variables are more effective for polymerization reactor. 

Later, an optimization problem of minimum time optimal 

temperature policy is formulated based on work reported in 

[5] and solved for the solution polymerization of styrene. 

Finally, the generated optimal temperature profiles are used 

to study closed-loop control using advanced control 

technique which can track the process variable along the 

developed open-loop optimal temperature trajectory.  

 In Section 2, we briefly describes the polystyrene models 

which are later used in simulation study for understanding 

the reactor dynamic behavior as well as calculating of 

optimal temperature profiles and optimal controller 

parameters. Section 3 illustrates the dynamic behavior of the 

polystyrene batch reactors with respect to three important 

reactor operating parameters and solves the minimum batch 

time problem for polymerization of styrene. The simulation 

study is performed to determine the optimal NN-MPC 

parameters in Sub-section 3.3. Sub-section 3.4 describes the 

real time implementation of NN-MPC with optimal setpoint 

tracking. Section 4 concludes the findings of the present 

work and the work done in this article. 

 

II.  MODELLING OF POLYSTYRENE BATCH REACTORS 

 The success of optimization and control efforts depends 

very much upon the accuracy of the process models. It has 

been a trend to use simplified process models to determine 

the optimal control profiles, as the complexity of the proces s 

models is restricted by the methods used to determine the 

optimal control profiles. In this work, a simple mechanistic 

modeling strategy is used to develop optimal temperature 

profile [6]. However, a hybrid model (first principle-neural 
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network model) is used to design the controller to implement 

the optimum temperature profile.   

 

III.  RESULTS & DISCUSSION 

 First of all, the simulation study is performed to analyze 

the dynamic behavior by using previously developed hybrid 

model [7] and conduct the response of reactor outputs with 

different initial operating conditions. Secondly, optimum 

temperature profiles are developed and implemented based 

on reliable simple mathematical model [6]. Finally, an 

advanced controller is developed to track the optimum 

temperature profile. 

 

A.  Dynamic Open Loop Behavior 

 The following simulations are performed in order to verify 

the sensitivity of the control system and calculate the 

appropriate control and system parameters. Among the 

simulations are: 

i. different initial initiator concentration loading to 

reactor (0.013, 0.016 and 0.019 mol/ltr) 

ii. different heat input to reactor system with 

reaction (100, 120 and 150watt) 

iii. different cooling water flow rates in cooling 

jacket chamber (0.5, 0.7 and 0.9 g/s).  

 In order to perform these simulations, the values of 

physical and chemical parameters are given in Table I. 

 
TABLE I 

OPERATING CONDITIONS AND REACTOR SPECIFICATIONS 

Name of the parameters Value Units 

Reactant specific heat (Cp) 1.96886 J/g.K 

Coolant specific heat (Cpc) 4.29 J/g.K 

Heat of reaction, exothermic (H) -57766.8 J/g.K 

Gas constant (R) 8.314 J/mol.K 

Coolant inlet temperature (Tji) 303.14 K 

Overall heat transfer coefficient 

(U) 
55.1 W/(m

2
.K

) 
Reactor volume (V) 1.2 ltr 

Reactor jacket volume (Vc) 1 ltr 

Coolant density (ρc) 998.00 g/ltr 

Reactant density (ρr) 983.73 g/ltr 

Initial initiator concentration (I0) 0.016 Mol/ltr 

Initial heater power (Q) 100 Watt  

Initial coolant flow rate (mc) 0.7 g/s 

 

Reactor Dynamics with Different Initiator Loading  

 One of the control objectives in controlling the batch 

polymerization reactor is to control the exothermic behaviour 

due to the extent of reaction, as the initiator is introduced to 

the monomer and solvent mixture in the polymerization 

system. It is obvious that one needs to monitor the release of 

heat in order to control the target specification. Moreover, 

the heat release may break the glass reactor depending on 

the temperature it can withstand. Three conditions of 

polymerization are used with initial initiator concentration of 

0.013, 0.016 and 0.019 mol/ltr for this study. Each starting 

condition has to be maintained at fixed steady state 

condition with fixed values of others remaining initial 

parameters as shown in Table I. Fig. 1 represents the time 

trend of temperature change in terms of different initial 

initiator load. In this case, polymer quality (Xn) highly 

depends on the initial initiator concentration but the 

conversion (X) is a little affected by it. 

 

Reactor Dynamic with Different Heat Loading  

 In the second task, the initial initiator is fixed at a value of 

0.016 mol/ltr. Three different heat inputs simulate the reaction 

in the reactor with a fixed steady state temperature at 364K. 

Table II illustrates the conversion achieved when 

temperature reaches the steady state after high release of 

heat upon initiation. In addition, Fig. 2 clearly illustrates the 

transient behaviour of reactor temperature. As it can be seen 

from the figure, the reactor with the highest amount of heat 

input attains the highest overshoot. The temperature 

ascends from 364K to a maximum of 416K and starts 

descending to the steady state of 403.8K completely after 

500min at a heat input 150watt. In addition, it can be seen in 

Fig. 2 that the final polymer quality highly depends on the 

heat input. At a lower heat input, the NACL and conversion 

is higher than at high heat input though it requires a more 

reaction time. 

 
TABLE II 

SIMULATION RESULTS FOR DIFFERENT HEAT INPUTS 

Heat, Q Final conversion (%) T- highest  Tss 

150 34.17 416 403.8 

120 40.61 411 386.2 

100 48.46 401 376.4 

 

Reactor Dynamic with Different Jacketed Flow Rate  

 In the third task, the jacketed flow-rate is varied three 

times (0.5, 0.7, and 0.9 g/s) with the other variables kept the 

same as Table I. This is done to observe the reactor 

dynamics. It can be seen in Fig. 3 that the final polymer 

quality (NACL) highly depends on the jacketed flow rate. 

The lower the jacketed flow rate, the larger the NACL and 

conversion. This means that a longer reaction time is 

required when the flow rate is high. 

 For all three conditions, it can be seen that the reactor 

temperature profile significantly changes with regard to 

initial operating conditions and inputs. Based on these 

results, more attention will be taken for setting the values of 

these operating variables at the time of experimental work. 

Variations in this reactor may serve as disturbances to the 

reactor operation. 
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Fig. 1.  Reactor dynamics with different initiator 

concentration. (──) at 0.013mol/ltr, (- - -) at 0.016mol/ltr and 

(∙−∙−∙) at 0.019mol/ltr. 
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Fig. 2.  Reactor dynamics with different heat input. (──) at 

100 watt, (- - -) at 120 watt and (∙−∙−∙) at 150 watt. 
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Fig. 3.  Reactor dynamics with different jacketed flow rate. 

(──) at 0.5g/s, (- - -) at 0.7g/s and (∙−∙−∙) at 0.9g/s  

 

B. Minimum Time Optimal Temperature Profile 

 Recently, the offline or open loop minimum time optimal 

control policies were applied for the simulation of styrene 

polymerization in batch reactors [6, 8, 9]. In this work, the 

optimization problem involving minimum time optimal 

temperature policy is formulated and solved for a batch 

reactor for the solution polymerization of styrene based on 

previous work [5]. This optimal temperature profile is then 

used as the setpoint for controller study.  

 The objective of optimization problem is to calculate an 

optimal temperature policy for a given initial initiator and 

monomer concentration that minimizes the reaction time, tf, 

required to achieve a desired final monomer conversion, Xd. 

The performance target of a closed loop control minimum 

time optimal temperature tracking is to produce polystyrene 

with the specification of Xd =50% and NACL, Xn =500.  

 Polymerization temperature and initiator concentration are 

employed as control variables to obtain the operating 

conditions for minimum polymerization end-time. Since the 

temperature can be used to infer the end-quality of polymer, 

this work is devoted to produce specified polymer quality 

within the minimum time. The governing equation [6] for the 

optimal temperature profile is expressed as follows: 

0.5

0.5

2

( / 2 / 2) /

2
ln
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E p I MA E

A

  


     
                        (1) 

 The results of calculation for X= 50% and Xn =500 with 

optimal temperature (T*) are shown in Fig. 4. In this work, the 

value for initial initiator, I0 has to be basically guessed. The 

procedure can determine any feasibility of the guessed 
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value. It is found that the optimal initial initiator 

concentration for the initial monomer concentration of 

M0=6.089 mol/ltr is I0=0.016 mol/ltr. These optimal values are 

achieved within the reaction time of 138 minutes. It can be 

noted that the reaction time (tf) increases with increasing I0. 

Therefore, it is concluded that the optimal I0 can be obtained 

by successively reducing the value of I0 until a limiting value 

is obtained below which the desired conversion can never be 

reached. Furthermore, as the I0 is decreased, the gradient of 

the optimal temperature (T*) becomes steeper. The optimal 

temperature profile for I0 = 0.016 will be used for tracking the 

setpoint in the control study. 
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Fig. 4.  Optimum temperature profiles with different initiator 

concentration (I0 = 0.013 mol/l (___), I0 = 0.016 mol/l (- - -), I0 

= 0.019 mol/l (∙−∙∙−∙) 

 

C.  Controller Design 

 In this work, an advanced neural network based model 

predictive controller (NN-MPC) is used to control the 

polystyrene reactor. The NN is trained to represent the 

forward dynamics of the process. The experimental data of 

the manipulated variable (heat load Q) and plant output 

(reactor temperature T) at t with two time delay units are used 

as inputs. The target is the reactor output temperature at t+1. 

The Levenberg–Marquardt method is used to train the NN 

model through minimization of the mean squared error (MSE) 

as the cost function. MSE is mathematically expressed as: 

 
2

tg N

1

1
MSE ( ) ( )

n

k

T k T k
n 

 
                               (2)

 

 where n is the number of training data, Ttg is the 

target/desired reactor temperature and TN is the NN output. 

After some trial and error, it is found that a NN with ten 

hidden nodes achieves the minimum MSE value of 5.36x10
-6

.  

The design specifications for NN model are given in Table 

III.  

 
TABLE III 

DESIGN SPECIFICATIONS OF NN MODEL 

No. of input nodes  6  
 

No. of hidden layer nodes  10  
 

No. of output nodes  1  
 

Total sample size  10000  
 

Training function 
Levenberg-Marquardt 

Method 

 
Sample size 

Mean 

square 

error 

Training data  5000  5.36 x 10
-6

  

Testing data  2500  4.13 x 10
-6

  

Validation  2500  4.69 x 10
-6

  

 

 Before implementing the MPC controller in real time, its 

tuning parameters should be optimized to achieve best 

performance. For designing a good MPC controller, it is 

important to specify the following controller parameters: the 

sampling interval and prediction and control horizon. In this 

work, the developed hybrid model is utilized to determine the 

sampling interval and prediction and control horizon. Marlin 

[10] general rule is used to determine the sampling interval of 

MPC. The prediction and control horizon are determined by 

trial and error method [11].  

 The performance of the controlled variable is monitored 

for a sufficient span of process dynamics time to determine 

the value of the prediction and control horizon. It is 

observed that the prediction horizon of 24 sample intervals 

and the control horizon value of 4 sample intervals provide a 

satisfactory control performance. The other parameters of 

the NN-MPC controller are given in Table IV. 
 

TABLE IV 

DESIGN SPECIFICATION OF MPC 

Prediction horizon (N
2
)  24 

 

Control horizon (N
u
)  4  

 
Control weight factor (M) 0.09  

 
Move suppression factor(Λ) 0.003 

 

Minimization routine  
Backtracking 

Optimization  

  

D. On-line optimal control of polystyrene reactor 

 The concentration of 0.016 mol/ltr and 6.089 mol/ltr for 

initiator and monomer loading are chosen to produce the 

desired target. It is noted that the benzoyl peroxide and 

styrene loading can produce an NACL of 500 and monomer 

conversion of 50% at the end of 183 minutes polymerization 

period.  

 The experimental results of optimal setpoint tracking of 

polystyrene polymerization using NN-MPC are shown in Fig. 

5. As we can see from the figure, when the initiator is 
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introduced, the mixture temperature falls below the setpoint 

profile at nearly 2 K. The response is realized by the 

controller and it increases the heat input (Q). As a result, the 

temperature overshoots at a maximum of 2K. This overshoot 

gradually disappears in a decreasing oscillatory manner in 

730 sec. An offset can be noted at less than 0.5K. This is 

attributed by the high exothermic load during the early 

course of polymerization. Nevertheless, the temperature 

controller performs well in tracking the temperature setpoint 

profile at the later stage of polymerization. Fig. 5 also shows 

the transient response of manipulated variable of heater. The 

regulation is smooth. It is worth mentioning that the heater 

regulation is initially at Q=150 watt and gradually increases 

until 200 watt at the end of the batch-run. The final NACL 

and conversion are 496 and 52.8% respectively which are 

almost the same as desired values. 
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Fig. 5.  Optimal setpoint tracking using NN-MPC 

 

IV. CONCLUSION 

 In this work, the first principle-NN model is utilized to 

study the dynamic behaviour of the polystyrene batch 

reactor. The effect of operating conditions on the properties 

of final product is investigated. An optimization algorithm is 

applied to optimize the reactor temperature profile based on 

minimal time operation. The conversion and number average 

chain length is considered here as the target for optimization. 

The optimized minimal time temperature profile is used as the 

setpoint for control study. An advanced controller named 

NN-MPC is designed and tuned for styrene polymerization 

batch reactor to track the optimum setpoint point 

experimentally. According to the experimental results 

demonstrated here, it can be concluded that the developed 

controller tracks the optimum setpoint with minor oscillations  

and overshoots and achieves the desired polymer quality 

and quantity.  
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