
A Unified Approach to Parallel Programming
Victor Eijkhout

Abstract—We propose a new theoretical model for par-
allelism. The model is explictly based on data and work
distributions, a feature missing from other theoretical models.
The major theoretic result is that data movement can then be
derived by formal reasoning. While the model has an immediate
interpretation in distributed memory parallelism, we show that
it can also accomodate shared memory and hybrid architectures
such as clusters with accelerators.

The model gives rise in a natural way to objects appearing
in widely different parallel programming systems such as the
PETSc library or the Quark task scheduler. Thus we argue
that the model offers the prospect of a high productivity
programming system that can be compiled down to proven
high-performance environments.

Index Terms—Parallel programming, DAG model, dis-
tributed memory

I. INTRODUCTION

AS computer architectures become larger in scale and
more sophisticated in their hybrid nature (cluster,

shared memory, accelerators), the problem of high productiv-
ity high performance programming is becoming acute. The
problem is only to a limited extent one of the low level
programming models: the major part of the problem is the
parallel coordination of cores, devices, cluster nodes, co-
processors, et cetera.

Solutions such as CUDA or MPI have any number of
limitations, foremost among which that they are all special
purpose, so it is not possible to write a code that is portable
between systems. Also, such programming systems are often
of a low level, asking the programmer to be concerned with
details that are not essential to the application.

In this paper we give the design of a system that takes
an abstract approach to implementing parallel algorithms
where specific architectural details can be explicitly modeled.
Our Integrative Model for Parallelism (IMP) allows for an
abstract description of an algorithm, that can be made explicit
through successive transformations, one of which being its
convolution with an abstract description of hardware.

Specifically, the IMP model is based on kernels, which
correspond to parallel tasks without data dependencies. From
the distribution of work and data, data movement is theoreti-
cally derived as a first-class object. A single kernel typically
corresponds to a collective operation, or a bulk data transfer
such as exists in the PETSc [1] and Trilinos [2] libraries.

By composing IMP kernels we arrive at an ‘abstract
algorithm’, which is takes the form of a directed acyclic
graph (DAG) or dataflow diagram. Actual data motion results
from an assignment of tasks to ‘computing locales’: threads,
cores, nodes, et cetera. The strength of the IMP model is that
this assignment is again an explicit feature of the model, so
data motion becomes derivable from the abstract algorithm,

Manuscript received July 18, 2012
V. Eijkhout is with the Texas Advanced Computing Center (TACC) of The

University of Texas at Austin. E-mail: eijkhout@tacc.utexas.edu

rather than being explicitly coded as MPI messages, or
implicitly resulting as side-effect of the execution. We will
explain this in detail, and give motivating examples.

Having an explicit data motion object has several ad-
vantages: for one, it means that a programmer does not
have to code in terms of send/receive. For another, the
same communication pattern is often used several times in
a row. Thus, having a data motion object allows for any
preprocessing for optimizing the communication schedule
to be amortized. This is known as the ‘inspector-executor’
model [3].

A few things our model is not. It is a programming
model, so we offer no transformations of existing codes.
It is not a cost model, though cost can be included in our
formal derivations. We do not propose a new programming
language: we feel that high performance can be reached
by compiling down to already existing tools. We do not
claim to be able to derive optimal algorithms, routing, or
scheduling: the programmer still has the responsibility for
the algorithm design; we offer a high level, high productivity
way of expressing the design.

II. THE BASIC I/MP MODEL

In this section we develop the basic theoretical framework
of the IMP model.

A. Basics

We define a kernel in the IMP model as a directed bipartite
graph, that is, a tuple comprising an input data set, an ouput
data set, and a set of elementary computations that take input
items and map them to output items:

A = 〈In,Out, E〉

where In,Out are data structures, and E is a set of (α, β)
elementary computations, where α ∈ In, β ∈ Out and
‘elementary computations’ are simple computations between
a single input and output. This is a restriction that we will
address in section II-C.

To parallelize a kernel over P processors, we define

A = 〈A1, . . . , AP 〉, Ap = 〈Inp,Outp, Ep〉,

describing the parts of the input and output data set and
(crucially!) the work that are assigned to processor p. The
only restrictions on these distributions are

In =
⋃
p

Inp,Out =
⋃
p

Outp, E =
⋃
p

Ep;

none of these distributions are required to be disjoint. To
foreshadow the rest of the discussion in this section, we
remark that elementary computations in Ep (meaning that
they are executed on processor p) need not have their input
data in Inp, nor their output in Outp. The communication in
a parallel algorithm will be seen to follow directly from the

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

relations in processor locality between input/output data sets
and elementary computations.

Based on the fact that the computations in Ep are executed
on processor p we can now define the input and output data
for these computations:

In(Ep) = {α : (α, β) ∈ Ep},
Out(Ep) = {β : (α, β) ∈ Ep}.

These correspond to the input elements that are needed for
the computations on processor p, and the output elements
that are produced by those computations. These sets are
related to Inp,Outp but are not identical: in fact we can now
characterize the communication involved in an algorithm as

In(Ep)− Inp data to be communicated to p before
computation on p

Out(Ep)−Outp data computed on p, to be
communicated out afterwards

We see that with this basic model we have managed to
capture simple message passing: if (α, β) ∈ Ep and α ∈ Inq
(and α 6∈ Inp) then a message needs to be sent from processor
q to p. We will now expand this basic model.

B. From kernels to algorithms

Above we defined the concept of a parallel kernel. By
composing multiple kernels we arrive an ‘abstract algo-
rithm’: a description of data dependencies between parallel
processes, but without regard for architectural details. This
corresponds to the much-studied dataflow model where a task
can start (‘fire’) if all of its inputs are available, which is
when the earlier tasks have finished; see for instance [4].

As a notation for multiple kernels we use superscripts to
identify the proper sets. If σ and τ are two kernels we denote
them formally as

Aσ = 〈Inσ,Outσ, Eσ〉, Aτ = 〈Inτ ,Outτ , Eτ 〉.

We now have several ways of denoting kernel composition.
For simple comosition we can write y = τ(σ(x)) or y =
τ ◦ σ(x). Interpreting the Eσ, Eτ edge sets as functional
mappings from their inputs to their outputs we also write

Outτ ← Eτ ← Eσ(Inσ).

The advantage of this arrow notation is that it becomes
easy to express graphically a DAG of kernels1: one kernel
can feed into more than one, breaking the linearity of simple
composition.

Finally, if for each kernel we draw up the adjacency matrix
we find a linear algebra description of the abstract algorithm:

Outτ = Aτ ·AσInσ,

where Aσ, Aτ are the adjacency matrices of the σ, τ opera-
tions, and Inσ,Outτ are rendered as vectors.

1Note: this is not the DAG of tasks that appears in much current research,
for which see later.

C. Normal form

We defined the edges in an IMP kernel to map a single
input to a single output, which could be restrictive. We solve
this by recognizing that the integration of computation and
data movement in the elementary computations of a kernel
does not exist in practice: communication and computation
are separate activities. Thus, we can decompose an IMP
kernel into two kernels, where one has arcs that are pure
data movement, and one that has pure computation.
• Since we are mostly interested in data movement, the

computation kernels will be omitted.
• The objection that arcs might connect subsets of In or

Out disappears: a computation that has multiple inputs
(and for instance combines them on the target) can be
split into multiple arcs that simply move data, followed
by a combination on the target task.

III. DISTRIBUTIONS

The model as explained so far incorporates distributed
data. We will now introduce distributions as formal entities.
One justification for this is that the partitioning p 7→ Inp is
obviously a distribution, but p 7→ In(Ep) is also one. The
former is often disjoint; the latter commonly not. Thus, the
transformation from one distribution to another is also an
important aspect of our model. Also, formulating algorithms
in terms of distributions lifts the interpretation of the model
from simple message passing to a more global description.

Let us consider a vector2 of size N and P processors.
A distribution is a function that maps each processor to a
subset of N . We make the common identification of N =
{0, . . . , N−1} and P = {0, . . . , P −1}; likewise NM is the
set of mappings from M to N , and thereby 2N is the set of
mappings from N to {0, 1}; in effect the set of all subsets
of {0, . . . , N − 1}. A distribution is then

v : P → 2N .

Thus, each processor stores elements of the vector; the
partitioning does not need to be disjoint.

A couple of examples. With β = N/P (assuming for
simplicity’s sake that N is evenly divisible by P) we define
the block distribution

b ≡ p 7→ [pβ, . . . (p+ 1)β − 1], (1)

the cyclic distribution

c ≡ p 7→ {i : mod (i, β) = p},

and the redundant replication

∗ ≡ p 7→ N.

Finally, we consider the ‘natural’ distribution

↑≡ p 7→ [f(p), . . . , f(p+ 1)− 1]

where f(p) is the number of elements stored on proces-
sors 0 . . . p − 1. If this distribution is induced by another
distribution u, meaning that f(p) = |u(p)|, we denote this
as u ↑ .

2We can argue that limiting the exposition to vectors is no limitation, as
any object will have a linearization of some sort.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

Let x be a vector and v a distribution, then we can
introduce an elegant, though perhaps initially confusing,
notation for distributed vectors:

x(v) ≡ p 7→ x[v(p)]

That is, x(v) is a function that gives for each processor
p the elements of x that are stored on p according to the
distribution v. As an important special case, x(∗) describes
the case where each processor stores the whole vector.

As observed above, the most important application of
distributions is converting a vector between one distribution
and another. We use the notation T (u, v) for this conversion,
so

x(v) = T (u, v)x(u). (2)

A. The software context

Distributions can be used in software as follows. Suppose
we are adding an kernel K with input x and output y in a
code segment where certain distributions hold:

... code ...
{ x is distributed as x(u) }
// the operation mapping x->y goes here
{ y is distributed as y(v) }
... code ...

Suppose the kernel is defined as K = 〈x(u′), y(v′), EK〉,
then we need to surround the kernel by transformations T
according to equation (2):

{ x is distributed as x(u) }
x(u’) = T(u,u’) x(u)
// apply the kernel on x(u’), giving y(v’)
y(v’) = T(v’,v) y(v)
{ y is distributed as y(v) }

B. Composing distributions

If v and w are distributions, we can compose them, and
indicate the relationship of the composition to the constituent
parts:

x(w) ≡ p 7→ x(v)[v−1 ◦ w(p)]

This means that we can describe x distributed according to w
in terms of the v distribution, involving the communication
described as v−1 ◦ w. We also denote this conversation
between distributions as T (v, w).

Example.: Let x be distributed as x(v). To transform
it to x(∗), we need to move data accoording to v−1 ◦ ∗.

v−1 ◦ ∗(p) = v−1(N) = P.

After all this complication about composing distributions,
we note that often we do not ‘track’ data through multiple
redistributions: we take one distribution for given and only
consider a single redistribution. After this, the resulting
distribution is again interpreted as a natural redistribution, to
be redistributed further again. This is modeled by the object
T (u, u ↑).

C. Sparse distributions

For dealing with irregular data access we extend the
distribution notation further. Let G be an boolean adjacency
matrix, and define

G(i) ≡ Gi ≡ {j : gij 6= 0}

which can be justified by interpreting the matrix as a row
list of column lists of nonzero positions. For example, with
a tri-diagonal matrix we have G(i) = {i− 1, i, i+ 1}.

This adjacency matrix can be used to transform distribu-
tions: with

u : p 7→ u(p) ∈ 2N

we define
Gu ≡ p 7→ ∪i∈u(p)Gi ∈ 2N (3)

In the tridiagonal example, and using the block distribution
of equation (1), we have:{

let u0, u1 be s.t. u(p) = [u0, . . . , u1],
then Gu(p) = [u0 − 1, . . . , u1 + 1].

The justification for such transformations on distribution is
for irregular data access, such as in the sparse matrix-vector
product. With u describing p 7→ Inp, and G the sparsity
pattern of the matrix A, Gu corresponds to In(Ap).

IV. EXAMPLES

We will show two examples of how algorithms are ex-
pressed and analyzed in the IMP model.

A. Matrix-vector product

As a simple example we consider the dense matrix-vector
product. There are several ways of implementing this algo-
rithm, such as with the matrix distributed by rows, columns,
or blocks (see for instance [5]), and each of the three variants
requires a radically different implementation. In this section
we show that it is possible to formulate the algorithm on a
high level, such that data traffic is automatically correctly
derived.

We split the computation into two I/MP kernels3, cor-
responding to computation of temporaries and subsequent
reduction:

∀i : yi =
∑
j aijxj

=
∑
j tij , tij = aijxj .

For an I/MP kernel we need to distribute data and work.
For the data we use some distribution u for both input and
output. The work distribution is induced by the decision that
tij is computed where aij lives.

We now consider the product by rows. In distribution
notation the algorithm is:{

t(v, ∗)← A(v, ∗)x(∗)
y(v)←

∑
j t(v, ∗).

and we reason as follows:
• A(v, ∗) describes the distribution of A by rows.
• x is distributed on input as x(v), so transforming it to
x(∗) is an allgather.

3We only discuss 1D distributions; 2D is possible with slightly more
notation.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

• t(v, ∗) is correctly distributed for the reduction, so no
communication is needed there.

• y(v) is the resulting distribution as desired.
For the product by columns we reason similarly. First of

all, we express the algorithm in distribution notation:{
t(∗, v)← A(∗, v)x(v)
y(v)←

∑
j t(v, ∗).

The differences in reasoning are that x is correctly distributed
as x(v) on input, so no communication is needed here. On
the other hand, the output of the first stage t(∗, v) is not
correctly distributed for the reduction, and we conclude that
a data transposition is needed.

The conclusion from this simple example is that it is
possible to describe the algorithm on a high level, with
a Matlab-like global notation, while the communication is
formally derived from the distributions on the data.

B. N-body problems

Algorithms for the N -body problem need to compute
in each time step the mutual interaction of each pair out
of N particles, giving an O(N2) method. However, by
suitable approximation of the ‘far field’ it becomes possible
to have an O(N logN) or even an O(N) algorithm, see the
Barnes-Hut octree method [6] and the Greengard-Rokhlin
fast multipole method [7].

The naive way of coding these algorithms uses a form
where each particle needs to be able to read values of in
principle every cell. This is easily implemented with shared
memory or an emulation of it. Pseudo-code would look like:

parallel over all particles p:
cell-list = all top level cells
sequential over c in cell-list:

if c is far away, evaluate forces p<->c
otherwise

open c and add children to cell-list

However, this algorithm can be implemented just as easily
in distributed memory, using message passing [8]. To show
that an implementation can be formally derived we consider
the following form of the N-body algorithms (see [9]):
• The field due to cell i on level ` is given by

g(`, i) = ⊕j∈C(i)g(`+ 1, j)

where C(i) denotes the set of children of cell i and
⊕ stands for a general combining operator, for instance
computing a joint mass and center of mass;

• The field felt by cell i on level ` is given by

f(`, i) = f(`− 1, p(i)) +
∑

j∈I`(i)

g(`, j)

where p(i) is the parent cell of i, and I`(i) is the
interaction region of i: those cells on the same level
(‘cousins’) for which we sum the field.

1) Kernel implementation: We can model the above for-
mulation straightforwardly in terms of IMP kernels: the g
computation has E(g) = Eτ ∪ Eγ , where{
Eτ = {τ `ij}
Eγ = {γ`i }

,

{
∀i∀j∈C(i) : τ `ij = ‘ t`ij = g`+1

j ’
∀i : γ`i = ‘ g`i = ⊕j∈C(i)t

`
ij ’

(4)

The t`ij quantities are introduced so that their assignment can
model data communication: as in the matrix-vector example
above, the g`i reduction computation is then fully local.

Similarly, the f computation is E(f) = Eρ∪Eσ∪Eφ∪Eη ,
where
Eρ = {ρ`i}
Eσ = {σ`ij}
Eη = {η`i}
Eφ = {φ`i}

,

∀i : ρ`i = ‘ r`i = f `−1p(i) ’

∀i∀j∈I`(i) : σ`ij = ‘ s`ij = g`j ’
∀i : η`i = ‘ h`i =

∑
j∈I`(i) s

`
ij ’

∀i : φ`i = ‘ f `i = r`i + h`i ’
(5)

These formulations can immediately be translated to a mes-
sage passing implementation.

Transformations of the algorithm are possible. For in-
stance, in the statement

∀i∀j∈I`(i) : s
`
ij = g`j

we recognize a broadcast of g`j to all nodes i such that
j ∈ I`(i). We can reformulate it as such by exchanging the
quantifiers:

∀j∀i∈J`(j) : s
`
ij = g`j

where
J`(i) = {j : j ∈ I`(i)}.

2) Distribution implementation: Instead of individual
message passing, we can derive an implementation using
distributions. Consider for instance the g calculation of
equation (4){

∀i∀j∈C(i) : τ `ij = ‘ t`ij = g`+1
j ’

∀i : γ`i = ‘ g`i = ⊕j∈C(i)t
`
ij ’

As in section III-C we define an adjacency matrix A for this
operation by

Ai = {j : j ∈ C(i)}.

Now let g be distributed with some distribution u, then t is
distributed as t(Au), and summing the t`ij terms is then a
local operation.

3) Practical aspects: We have here given two imple-
mentations of tree algorithms for N-body problems. Both
implementations can cope with the difficulties that distributed
memory imposes; as indicated above, shared memory im-
plementations are considerably easier to describe. However,
our implementations essentially give a dependency graph
of tasks, hence they can also serve as shared memory
implementations.

In the distributed memory case we invoke the inspector-
executor paradigm (see the introduction): we determine
which elements need to communicate, in particular the I`(i)
and C`(i) sets, and use this information to evaluate irregular
gathers repeatedly.

V. FROM ALGORITHM TO IMPLEMENTATION

The model of section II was built around the concepts
of ‘kernel’ and ‘abstract algorithm’. Algorithms were purely
formulated in terms of dataflow and data dependencies; in
particular no architectural considerations were taken into
account. This model implicitly uses a flat processor structure:
all processes can send to and receive from all others and
all communications are treated equally. Thus, the model has

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

direct applicability to distributed memory parallel computing
with an interconnect that is essentially all-to-all, such as a
fat-tree.

However, in other circumstances it fails to account for
several aspects:
• A distributed memory architecture can have a mesh

interconnect, or other scheme where certain processor
pairs do not have a direct connection.

• In a cluster with accelerators the accelerators do not
connect to the network but only to a host processor.

• The model does not suggest any scheduling for opera-
tions, and the available parallelism can greatly exceed
the number of physically available processors.

• In shared memory, using threading, several processes
live in the same physical address space. In this case, cer-
tain data dependencies correspond to a data movement
no-op; also, the precise timing of tasks then becomes
an issue.

In order to cover these aspects we need to include some
more machinery in the IMP model. First of all, we introduce
‘abstract implementations’: abstract algorithms where each
task receives a time stamp and is bound to a computing
locus, an abstraction that will cover cores, nodes, et cetera.
Formally:

B = 〈V,E, p, t〉 where

{
p : V → P

t : V → {t0, t1, . . .}

It is easy to associate an abstract implementation with an
abstracct algorithm. Let A = AK ◦ · · · ◦ A1 be an abstract
algorithm consisting of K kernels. We express this in the
form of a DAG:

A = 〈V,E〉,

{
V = {(k, i) : k = 1 . . .K, i = 1 . . . |Outk|}
E = ∪kEk

(6)
and one abstract implementation is found by associating
vertex (k, i) with time k and locus i.

We call this type of graph an abstract implementation,
since we still ignore various practical considerations:
• Arcs in this graph correspond to data movement, but

they can take the form of a no-op, a cache miss, data
copy, or an MPI message. We will later consider how
this difference can be formalized.

• The abstract implementation can ask for more processes
than there are processors, so an extra layer of mapping
is needed.

Thus, we need to introduce transformations on abstract
implementations in order to arrive at ‘realizable implementa-
tions’: abstract implementations that satisfy, or are optimized
for, real-world constraints. We will do this algebraically,
by applying transformations to the adjacency matrices, as
explained in section II-B.

Finally, we describe how the realization properties of a
realizable implementation can be derived formally: this step
is necessary to account for such facts as that on-node MPI
communication do not involve network traffic.

Discussion: The above transformations on adjacency
graphs accomplish much the same as DAG schedulers such
as Quark [10]. In fact, our transformations do not constitute a
schedule optimization strategy. Finding such a strategy may

be NP-complete [11], and static scheduling does not account
for machine and OS ‘noise’. Thus, the main point of this
section is to illustrate how the IMP model can derive the
DAGs that can then be scheduled by other means.

We will now show two examples of reasoning about
abstract implementations.

A. Derivation of physical data movement

Applying our model to distributed memory with one
process per processor, each data dependency corresponds
uniquely to one phyisical data transfer. In architectures that
feature multi-threading, shared memory cluster nodes, or co-
processors, this is no longer the case. In this section we
develop the mechanisms of deriving physical data movement
from abstract data dependencies by considering two exam-
ples where the process-to-processor assignment mapping is
not one-to-one.

Shared memory cluster nodes: We start with a common
example of distributed memory clusters where each node
supports multiple processes that live on shared memory.
This is illustrated in figure 1, where we have two cluster

Fig. 1. Communication between processes (solid) and nodes (dotted) in a
cluster/shared memory architecture

nodes with two shared memory processes each. In this case,
algorithm edges (1, 2) or (3, 4) do not need an MPI message,
while edges such as (1, 4) do.

Thus, we have two graphs: the process graph from the
IMP kernel, connecting four processes, and the resulting
processor graph, connecting two processors. We derive the
latter from the former by a linear transformation. Let us
consider specifically the IMP dependencies in figure 1.

First we form the embedding operator from the processes
to the cluster nodes

I42 =

(
? ? · ·
· · ? ?

)
that reflects that the first two processes live on node 1, while
the third and fourth live on node 2. We denote its transpose
by I24 .

The process edge (1, 4) in the figure can now be rendered
with an adjacency matrix

G4 =

· · · ·
· · · ·
· · · ·
? · · ·

 .

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

If we now form the product

G2 = I42 ·G4 · I24 =

(
· ·
? ·

)
we get the correct description of communications in terms
of cluster nodes.

However, there is a conceptual problem with this. If we
consider the intra-node edge (1, 2), its transform becomes

G4 =

· · · ·
? · · ·
· · · ·
· · · ·

⇒ G2 = I42 ·G4 · I24 =

(
? ·
· ·

)

stating that a message from node 1 to node 1 is required.
Therefore, we introduce an extra term and form

(I42 ·G4)~ I42 =

(
· · · ·
? · · ·

)
where A~B is the element-by-element computation of a~
b ≡ a ∧ ¬b. The ~-multiplication by I42 has the effect of
limiting the communication description to only processes that
are on different processors. Redoing the above examples we
now find the same G2 matrix for the inter-node case, and

G2 =

(
· ·
· ·

)
for the intra-node case, indicating that no MPI communica-
tion is needed.

Redundant processes: Next we consider redundant
assignment of one process to two processors. As a specific
example we take a domain decomposition method with two
subdomains and one separator. In the forward sweep of
the system solution the separator collects data from the
subdomains; in the backward sweep it distributes data to
them. We model this process by three processes, mapped
to two processors, with the separator process redundantly
assigned to both physical processors.

This process is illustrated in figure 2. In the left column
we have the structure of the forward sweep. The algorithmic

Fig. 2. Communication between logical and physical processors in the
forward and backward sweep

data movement (top) takes the form of data send from the
subdomains 1 and 2 to the separator 3, and the corresponding
physical data movement (bottom). Since process 1 sends data
to process 3, which is redundantly run on processor 2, there
is a message from 1 to 2, and vice versa.

In the backward sweep, process 3 sends data to both
1 and 2, but now, since process 3 is redundantly run on
both processors 1 and 2, this data movement is purely local
to the processor, requiring no message passing.

We model this algebraically as follows. The forward and
backward sweep are IMP kernels, which we represent by

their adjacency matrices. These describe data movement
between processes, that is, the algorithmic data movement:

L : G3 =

 · · ·· · ·
? ? ·

 , U : G3 =

· · ?
· · ?
· · ·

 . (7)

The matrix embedding the logical processes in physical
processors is I32 and by I23 we denote its transpose. We can
now derive the matrix of physical communications as

G2 =
(
(I32 ·G3)~ I32

)
· I23

similar to the previous example.
If we go through this calculation for the operators in

equation (7), we find

L : G2 =

(
· ?
? ·

)
, U : G2 =

(
· ·
· ·

)
(8)

reflecting the above described behaviour that in the L sweep
the processors have to exchange data, but not in the U sweep.

VI. CONCLUSION

In this paper we have presented the Integrative Model for
Parallelism which offers a mode of describing parallel algo-
rithms that is high-level and expressed in global terms Since
data movement (such as message passing in a distributed
memory context) is formally derived in the model, rather
than explicitly coded it offers two prospects:
• Algorithm expression is expressed independent of any

particular machine model, so we can achieve portability
over architecture types; and

• since data movement is derived rather than coded, we
may achieve higher programmer productivity.

Additionally we have shown how architectural features can
explicitly be accomodated in this model.

REFERENCES

[1] W. D. Gropp and B. F. Smith, “Scalable, extensible, and portable
numerical libraries,” in Proceedings of the Scalable Parallel Libraries
Conference, IEEE 1994, pp. 87–93.

[2] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,
A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley, “An overview of the trilinos project,”
ACM Trans. Math. Softw., vol. 31, no. 3, pp. 397–423, 2005.

[3] A. Sussman, J. Saltz, R. Das, S. Gupta, D. Mavriplis, and R. Pon-
nusamy, “Parti primitives for unstructured and block structured prob-
lems,” 1992.

[4] R. M. Karp and R. E. Miller, “Properties of a model for parallel
computations: Determincay, termination, queueing,” SIAM j. Appl
Math., vol. 14, pp. 1390–1411, 1966.

[5] G. Stewart, “Communication and matrix computations on large mes-
sage passing systems,” Parallel Computing, vol. 16, pp. 27–40, 1990.

[6] J. Barnes and P. Hut, “A hierarchical O(N log N) force-calculation
algorithm,” Nature, vol. 324, pp. 446–449, 1986. [Online]. Available:
http://dx.doi.org/10.1038/324446a0

[7] L. Greengard and V. Rokhlin, “A fast algorithm for particle simula-
tions,” J. Comput. Phys., vol. 73, p. 325, 1987.

[8] J. K. Salmon, M. S. Warren, and G. S. Winckelmans, “Fast parallel
tree codes for gravitational and fluid dynamical n-body problems,” Int.
J. Supercomputer Appl, vol. 8, pp. 129–142, 1986.

[9] J. Katzenelson, “Computational structure of the n-body problem,”
SIAM Journal of Scientific and Statistical Computing, vol. 10, pp.
787–815, July 1989.

[10] A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK users’ guide:
Queueing and runtime for kernels,” University of Tennessee Innovative
Computing Laboratory, Tech. Rep. ICL-UT-11-02, 2011.

[11] M. R. Garey and D. S. Johnson, “Complexity results for multiprocessor
scheduling under resource constraints,” SIAM J. Comput., vol. 4, pp.
397–411.

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol I
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19251-6-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012

