
  

  
Abstract—The translocation of a polymer belongs to a class of  

important bio-chemical processes. We propose a sequential 
algorithm designed to reduce the complexity involved in the 
dynamics of polymer molecular transport. The key concept 
behind our algorithm is the sequentialization of a polymer 
movement between its consecutive conformations into a 
sequence of steps, a picture borrowed from the definition of an 
optimal strategy within the theory of games played sequentially. 
As an example we apply our algorithm to study, in two 
dimensions, the driven translocation of a polymer-like structure 
with the length of N monomers through a flat membrane 
containing two holes separated by the distance ∆. We study the 
statistics of the translocation time τ computed as the time 
consumed by the polymer to pass from one side of the membrane 
to another one as a function of N and ∆. The presence of two 
close lying holes frustrates the passing polymer and we observe 
that the average value of  τ oscillates around the scaling function 
(N/∆)1.81. 
 

Index Terms— multi-hole membrane, passage time, polymer 
translocation, sequential algorithm. 
 

I. INTRODUCTION 
The transfer of a polymer across a membrane is the subject 

of extensive theoretical and experimental works. This 
nano-scale transport primarily exists in the world of biology 
with such prominent examples as DNA/RNA translocation 
through nuclear pores, virus injection into a host cell and 
genetic therapy. The experimental approaches to polymer 
science allow to determine the physical, bio-chemical and 
technological properties of polymers [1]-[3]. For example the 
translocation of polymers through nanometer-scale pores is an 
experimental technique to analyze physical properties of 
biomolecules. The results of experiments supply more 
accuracy in the theoretical models which are formulated on an 
analogy between a polymer and a type of random walk 
[4]-[8].  

Typically, a flat membrane with an opening is  considered  
with a chain-like sequence of N monomers passing from 
so-called cis side of the membrane to its another side called 
trans. An important theoretical question in this field is to 
provide the correct estimation of the translocation time τ on 
the polymer length N [9], [10]. One of the objectives of this 
work is the numerical analysis of the polymer translocation in 
terms of polymer length and membrane holes arrangements. 

From the physical point of view, polymers, being classical 
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systems, can be studied by computer simulation. However, 
the complexity of possible polymer conformations along with 
the volume of a solvent make the search space for a 
hypothetical algorithm so huge that real polymers have to be 
mapped onto significantly simplified models [4], [6], [8]. On 
the other hand, the simplifications of a polymer model can be 
less harmful with respect to the real polymer if the search 
space viewed by an algorithm, appropriate to this given 
model, may be quickly sampled in a reliable manner. 

Usually the algorithms which are used for the simulation of 
polymer behavior consider all future states which are 
reachable at a given moment [11]-[14]. Such an approach 
results in computer procedures that are rather  inefficient and 
lead to a very time consuming simulation. Instead we propose 
here another approach to modeling polymer behaviour. Its 
main feature is the sequentialization of the polymer move. 
Amazingly, the idea was inspired by the theory of games: a 
sequence of choices can be viewed as a sequence of moves in 
some sequential game. Analogously to a play in a game, a 
polymer translocation (with rules imposed by Nature) can be 
viewed as a sequence of choices that lead to some outcome. 
When one defines the strategy for  a game which is played 
sequentially, then there is no need to  define the player 
decisions at every possible state of the game. To obtain a well 
defined strategy it is absolutely enough  to determine the 
player decisions only at these stages which may be expected 
in the course of the game, given earlier decisions made by the 
player.  One can easily notice that after each decision made in 
the sequential game, the number of its possible future states 
dramatically decreases. This can seriously simplify the 
situation of the player and we expect that adopting this idea 
we obtain more efficient algorithms for the simulation of 
polymer transport.  

The aim of this work is to present a numerical tool for the 
quick analyzing of the kinetics of chain-like structures from 
the statistical point of view. We do that by introducing a 
sequential algorithm built up around a sequential game 
optimal strategy concept and probabilistic-cellular-automata 
methodology. 

II. THE SEQUENTIAL ALGORITHM FOR MODELING RANDOM 
MOVEMENT OF POLYMER-LIKE STRUCTURES 

In this section we present the algorithm we use to calculate 
the passage time through a flat membrane. We define our 
algorithm in a formal way with the help of the following terms 
and assumptions. 

A. Terms and assumptions 
An abstract 2D polymer position is a finite sequence 

An Approach to Polymer Translocation via a 
Sequential Algorithm  
Zbigniew Domański and Andrzej Grzybowski  

Proceedings of the World Congress on Engineering and Computer Science 2012 Vol II 
WCECS 2012, October 24-26, 2012, San Francisco, USA

ISBN: 978-988-19252-4-4 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2012



  

{ }1 2, , nc c c=c   of 2D points ( ),i i ic x y=  such that the 
distance d between any pair of its successive elements is 
bounded by given limits ( )1: ,i ig d c c g+ < , 1, 2, , 1i n= − . 
The elements of the sequence c are called segments of the 
polymer. The segment nc  is called the head of the polymer, 
while 1c  is called the tail. The number n is called the length of 
the chain. 

Assumption 1 (discretization of motion space): The 
polymer moves along the integer lattice nodes, i.e. 
coordinates ( ),i ix y  are integer. 

The movement trajectory is a sequence of consecutive 
chain positions stored in the matrix Ĉ  whose i-th row is 
interpreted as a polymer position at the moment i. Thus the 
element ijc  denotes the position of the segment j at the 
moment i. 

The relocation of the polymer consists of a sequence of 
moves which transform the polymer from one position to 
another. 

Assumption 2 (sequentialization of the move): Every 
single move of a chain can be sequentialized into a sequence 
of steps, i.e. moves made sequentially by polymer segments. 
A single step may transform the given segment jc  only to one 

of its neighbouring nodes, i.e. ( )1,,ij i jd c c g± < . 

The first to move (FTM) segment is the segment which in a 
given move is chosen by the algorithm to make the step as the 
first from all the polymer segments. The choice is realized 
according a given probability distribution defined on the 
polymer segments. The distribution will be denoted as 
FTMD. 

The steps may be influenced by an outer law given by a 
probability distribution defined on the neighbouring nodes. 
The outer law probability distribution (OLDP) may depend 
on the position of the segment in the motion space. The OLDP 
reflects the existence of restrictions and constraints imposed 
on the system from the environment and resulting from the 
laws of physics.  

The step made by the FTM segment as well as all the 
following steps may be subject to some additional restrictions 
connected with the assumed features of the polymer. These 
restrictions will be denoted as AFR. For example, one of such 
restrictions is the upper limit for the distance between 
successive segments. This restriction assures the continuity of 
a polymer, and – by assumption – it does not concern the FTM 
segment. Another example of the AFR restrictions may be the 
requirement that in a given node, not more than a given 
number of segments can be placed (e.g. the repton model [5]). 

Assumption 3 (polymer nature of the move): Every first 
move of a polymer is started by only one segment, chosen 
according to the OLPD and the AFR. 

The above assumption allows us to simulate the movement 
of the described polymer structure effectively and efficiently. 
However, in many practical problems, such as biopolymer 
behaviour inside a living tissue, one should also take into 
account some additional constraints connected with the 
biochemical nature of the system. Thus we define additionally 
the cost connected with the polymer structure. The structure 
of the polymer is defined by the relative mutual positions and 

interactions between the segments. The cost of the polymer 
structure and its location in the motion space is the function F 
representing its fitness connected with its conformation 
and/or other external (e.g. environmental) properties. The 
lower cost, the better fitness of the polymer structure and 
position. 

Assumption 4 (acceptance of new polymer position): The 
new position of the polymer is accepted (by Nature) with a 
probability depending on its cost. 

B. Algorithm 
The above four assumptions and ideas are implemented in 

the following sequential algorithm for a polymer movement 
simulation: 

Step 0. (Initialization) Set the initial (current) polymer 
position currc  and evaluate its current cost function value 

currF . 
Step 1. (FTM segment selection) According to the given 

FTMD, select FTM segment , , 1, 2, ,curr fc f n=  . 
Step 2. (Step choice for FTM segment) According to the 

given OLPD and AFR, select the neighbouring node for the 
next position of the segment ,new fc . 

Step 3. (Successive steps of remaining segments) To obtain 
a new polymer position newc  sequentially choose the 
segments , ; 1, ,1new ic i f= −   and draw the neighbouring 
nodes for their subsequent positions according the OLPD and 
AFR. This process is terminated for the first segment k, 

1 1f k− ≥ ≥  for which the following condition holds: 

( ), , 1,curr k new kd c c g+ < . If 1k >  then , ,new i curr ic c=  for 

1, ,i k=  . Next sequentially choose the segments ic , 
1, ,i f n= +   and draw the neighbouring nodes for their next 

positions according to the OLDP and AFR. This process 
terminates for the first k: 1f k n+ ≤ ≤ , for which the polymer 

continuity condition ( ), , 1,curr k new kd c c g− <  is fulfilled. If 

k n<  then, for , ,i k n=   we assume , ,new i curr ic c= . 
Step 4. (Acceptance of new position) Compute the cost of 

the new position newF . If new currF F<  accept newc . 
Alternatively, accept newc  only if the random variable U 
having a uniform probability distribution on interval [0,1]  

satisfies ( )new currU F Fψ≤ − , with ψ  being a given 

nondecreasing function. If newc  is accepted then currc  is 
replaced by  newc ; else currc  remains as it is. 

Step 5. Terminate the algorithm if the stopping criterion is 
met; else return to Step 1. 

Step 6. Return the final position of the chain, its cost and 
various statistics connected with the simulated movements. 

 
The nondecreasing function ψ  that appears in Step 4 of 

the above algorithm represents the attitude of Nature towards 
the acceptance of worse states. If Nature accepts all states, 
one may assume that 1ψ ≡ . Otherwise, similarly as in the 
famous Metropolis algorithm, we propose to use function 

( ) exp[ / ]z z Tψ = − , where T is a parameter which can be 
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additionally subject to change during the movement process, 
see e.g. [15]. 

III. DRIVEN POLYMER TRANSLOCATION - SIMULATION 
RESULTS 

We illustrate the possible usage of the introduced algorithm 
by considering a simple example of a chain-like structure 
passing through a membrane with two openings within it. 
Here we consider the translocation process affected by a 
homogenous constant force, e.g. an electric drive applied 
from the outside (assuming that the monomers are similarly 
charged). Fig. 1 shows the layout for our translocation study. 
 

 
 
Fig. 1. Schematic representation of 32-segment length chain-like structure 
translocation through a flat membrane with two holes separated by a distance 
∆ = 6. All distances are scaled by the factor 1/ a,  where a is the length of the 
segment (monomer). 
 

The simulations are started from a configuration with a 
polymer placed far away from the membrane. It is in order to 
ensure that just before the polymer touches the membrane the 
polymer configuration is not influenced by its initial 
conformation. We also assume that the hole is large enough to 
allow the translocation of polymers with folded 
configurations across the membrane [16].  

Below we present the results of the numerical simulations 
of the above specified setup. For each analyzed length of the 
polymer we performed 410  simulations and then we have 
built empirical distributions of the translocation time τ . 

Our simulations yield a common observation: the average 
translocation time τ oscillates around the scaling function  
 

( )1.81 0.04/Nτ ±∝ ∆ ,                (1)  
 
see Fig. 2. This dependence is clearly seen for relatively short 
polymers, i.e. polymers with the length 3N < ∆ , see Fig. 3. 
When only one hole in the membrane is opened this 
oscillatory variation of τ  disappears. Thus, the presence of 
two holes alters the polymer passage. For some relatively 
short polymers the translocation process is slowed down. 
Hence, we conclude that two holes, operating within a 
distance comparable to the length of polymer may frustrate 
the system. 

Oscillation excepted, our finding is in close 
correspondence with the scaling function ( ) 21/ DN ν+∆ , with 

2 0.75Dν =  being the Flory exponent in two dimensions. The 
exponent 21 Dν+ , connected with the so-called Rouse 
dynamics of polymers in stationary solvent, has been 
numerically confirmed [7] and also reported in experiments 
on long double-strand DNA molecules pushed through a 
siliconoxide nanopores [2]. 

 

 
Fig. 2. Scaled mean translocation time of polymers with length N/∆ < 10 
averaged over 104 cases. The holes are separated by distance ∆ = 20. The 
dashed line is drawn using (1) and it is only a visual guide. 
 

 
Fig. 3. Same as in Figure 2 but for scaled polymers length N/∆ < 3. 
 

IV. SUMMARY 
As biopolymer translocations play an increasing role in the 

understanding of basic cell biology, there is an increasing 
need to understand the interplay between the geometry and 
the transport properties of a long polymer traversing a 
punched membrane. In this paper we have studied a 
minimalist model of a polymer, i.e. we have applied our 
sequential algorithm to a so-called freely-joined model of a 
polymer being aware of its serious shortcoming. For example 

∆ 

 

1a ≡
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we did not take into account the interactions among the 
segments and we also neglected the interactions between the 
segments and solvent molecules. We have chosen such a 
simple model only because of the transparency of the 
algorithm presentation, e.g. we have not used Assumption 4 
and Step 4. 

Although we have limited our work to the translocation 
time issue, many other statistical characteristics of the 
movement process as well as the influence of various 
parameters describing both the chain structure itself and the 
distributions involved in the process can be easily examined 
with the help of the presented algorithm. It is worth 
emphasizing that the algorithm is very efficient. We have 
obtained our results with relatively little numerical effort, 
modest memory and CPU resources. 
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